F r a n c i s c i M a u r o l i c i O p e r a M a t h e m a t i c a |
Introduzione | Help | Pianta | Sommario |
Emendatio et restitutio Apollonii Pergaei conicorum elementorum | Liber primus | Propositio 5 |
<- | App. | -> | <- | = | -> |
* LEMMA Si curvam lineam recta subtendat: omnis autem cathetus a curva in rectam possit rectangulum, quod sub segmentis rectae1; curva linea circuli periferia est, cuius diameter2 recta ipsa.
![]() ![]() Dico quod Abg flexa circulus est. Secetur enim ag bifariam in puncto e et connectatur eb.
Cumque sit per hypothesim
![]()
Igitur [A:3v] Similiter ostendam quod omnes rectae a puncto e ductae9 ad flexam lineam abg singulae sunt aequales ipsi eg quare, per diffinitionem abg curva circulus10 est: sicut11 proponitur.
5a Si conus scalenus plano secatur per axim ad rectos12 basi: secetur autem et altero plano ad rectos triangulo per axim13, auferente autem ad verticem triangulum simile quidem per axim triangulo, subcontrarieque14 positum; sectio circulus est. Vocetur autem talis sectio subcontraria. . ![]() [S:9] Conum scalenum, cuius vertex a basis bg circulus: secet planum per axem et rectum ad bg circulum; ac faciens, per 3am abg triangulum. Item secet et conum aliud planum ipsi abg triangulo rectum: cuius cum triangulo communis sectio sit recta hc ita ut triangulum ahc15 ablatum ad verticem simile sit triangulo agb subcontrarie vero16 positum, hoc est ut angulus ach aequalis sit angulo abg et reliquus reliquo. Faciatque tale planum in superficie conica periferiam htc. Dico iam quod htc17 sectio circulus est. Capiantur enim puncta quaedam in periferiis htc blg quae sint18 t l a quibus ad planum trianguli abg catheti ducantur19: cadent utique ad communes sectiones planorum: cadant ergo, sintque tz lm quae per 6am 11i Euclidis erunt aequidistantes. Sit ergo dze ipsi bg aequidistans.
Eritque per 15am 11 Euclidis planum ezt aequidistans circulo glb conicae scilicet basi. Quare per praecedentem planum ezt circulum, qui est etd facit in cono. Et ideo per 35am 3ii20 Euclidis,
Verum propter similitudinem triangulorum dzb cze ut quae22 sint invicem aequiangula ex hypothesi. Sic quidem23 dz
Quare per 15am sexti Euclidis
Igitur et28
|
Inizio della pagina |
-> |