F r a n c i s c i M a u r o l y c i O p e r a M a t h e m a t i c a |
Introduzione | Help | Pianta | Sommario |
Fragmenta arithmeticorum SP 115 | Frag. 21 |
<- | App. | -> | <- | = | -> |
[A:25v] 290 Qua forma secanda sit pagina ad compaginandas bases solidorum regularium.
![]()
291
Pyramis
![]()
Cubus
![]()
Cubus
![]()
![]()
![]() aliter
![]()
![]()
292 Unde patet quod unumquodque regularium quinque solidorum potest compaginari ex uno frusto paginae, ita, ut commissurae coeuntium sive contiguarum sive collateralium basium sint tot, quot anguli solidi sive cacumina ipsius solidi regularis, et etiam uno pauciores. 293 Illae autem eminentiae, quae protenduntur [[ex]] bases, relictae sunt ad recipiendum gluten et commissuras [[secundum]] connectenda. 3o iulii 1536. 294 Et quamvis producta quinque frusta paginae possint sub alia dispositione secari, tamen talis dispositio, qua secta sunt, visa [[modo]] fuit maxime commoda, quoniam in ea commissurae conglutinandae sunt ita distributae, ut melius distribui nequeant.
![]()
![]()
![]()
![]()
![]()
295 Unde manifestum est quod202 unumquodque regularium quinque solidorum duobus pluribusne203 modis compaginari potest: in204 quorum singulis unicum adhibetur paginae frustum. Atque ipsae commissurae sunt uno pauciores, quam solidi anguli. 296 25o decembris 1537 martis die illucescente
298 Unde patet latera indivisa in unoquoque solido esse uno pauciora, quam sunt <bases>. 26 decembris. [A:26v] 299 Item manifestum est in unoquoque regularium solidorum, numerum basium coniunctum cum numero cacuminum conflare numerum, qui binario excedit numerum laterum.
![]()
![]() Non placet.
302
// Item patet quod
// // Praeterea in unoquoque numerus laterum dimidius est numeri angulorum planorum. // Adhuc pyramidis tot sunt latera indivisa quot conglutinanda. // Ipsorum vero octahedri et cubi quot in altero indivisa tot in reliquo conglutinanda. Et eadem icosahedri et dodecahedri comparatio. 303 Decembris 29 1537. |
Inizio della pagina |
-> |