F  r  a  n  c  i  s  c  i        M  a  u  r  o  l  y  c  i        O  p  e  r  a        M  a  t  h  e  m  a  t  i  c  a
Introduzione Help Pianta Sommario
Archimedis de circuli dimensione liber ex traditione Francisci Maurolyci Propositio 2
<- App. -> <- = ->

2a

5 Si a puncto extra circulum duae linae ducantur circulum contingentes, de figura sub contingentibus et assumpto arcu comprehensa plus quam dimidium abscindet recta, quae circulum contingit apud punctum medium arcus assumpti.

figura 2

A puncto e extra circulum abg ducantur duae rectae ea, eg contingentes circulum [A:22r] in punctis a, g6 et secta bifariam periferia abg in puncto b, agatur per signum b recta zbh circulum contingens et apud zh occurrens ipsis ae, eg.

Aio quod triangulum zeh maius est quam dimidium figurae eabg contentae scilicet sub lineis ae7, eg et periferia abg.

6 Connectantur enim rectae ab, be, bg8 [S:27] et quoniam ex penultima 3ii ae, eg9 sunt aequales, et per 27am eiusdem, rectae ab, bg, aequales, ideo per 8am primi triangula aeb, beg sunt invicem aequiangula; igitur anguli zab, hgb aequales. 7 Sed angulus zba aequalis angulo zab et angulus hbg10 aequalis angulo hgb, quoniam utrumque triangulorum azb, bhg isosceles ex pen. 3ii. Igitur triangula azb, bhg sunt invicem aequilatera per 26am primi, quare rectae az, gh aequales, et11 ipsae zb, bh aequales. 8 Itemque supersunt ze, eh aequales, unde12 triangula13 bez, beh14 invicem15 aequilatera16 erunt per 8am primi et aequiangula; et ideo angulus zbe aequalis angulo ebh17 recti sunt ergo anguli zbe, ebh18. Itaque per 19am primi, ez maior quam zb et ideo maior quam az, quare per primam 6i maius triangulum ebz triangulo zba. 9 Similiter ostendam quod triangulum ebh maius triangulo hbg, igitur totum triangulum zeh maius quam duo triangula zba, hbg simul. Quare triangulum zeh maius quam dimidium triangulorum eba, ebg sed19 figura eabg minor quam duo triangula eba, ebg. Ergo, a fortiori, triangulum zeh maius quam dimidium figurae eabg comprehensae videlicet sub lineis ae, eg et arcu abg, quod est propositum.

Corollarium

Manifestum est ergo quod quatuor linae az, zb, bh, hg sunt invicem aequales.

Inizio della pagina
->