PROGRAM
- 9:30 H. Hatzikirou (TU Braunschweig & Helmholtz centre for infection research): The role of cell-decision making on tumor development
- 10:30 Coffee break
- 11:00 J. C. Alfonso Lopez (TU Braunschweig & Helmholtz centre for infection research): Therapeutic potential of the interplay between immune system dynamic and tumor-associated vasculature
- 11:45 L. Bianchi (TU Berlin): Amplitude equations for stochastic Swift-Hohenberg equation
- 12:30 Lunch break
- 14:00 M. Maurelli (TU Berlin & WIAS): Regularization by noise for scalar conservation laws
- 14:45 T. Funaki (University of Tokyo): KPZ, nonlinear fluctuations in Glauber-Kawasaki dynamics
- 15:45 Coffee break
- 16:15 C. Geldhauser (Università di Pisa): Optimizing the fractional order in a nonlocal SPDE
We say that a regularization by noise phenomenon occurs for a possibly ill-posed differential equation if this equation becomes well-posed (in a pathwise sense) under addition of noise. Most of the results in this direction are limited to SDEs and associated linear SPDEs.
In this talk, we show a regularization by noise result for a nonlinear SPDE, namely a stochastic scalar conservation law on Rd with a space-irregular flux:
∂tv + b·∇[v2] + ∇v∘∂tW = 0,
where b = b(x) is a given deterministic, possibly irregular vector field, W is a d-dimensional Brownian motion (∘ denotes Stratonovich integration) and v = v(t, x, ω) is the scalar solution. More precisely we prove that, under suitable Sobolev assumptions on b and integrability assumptions on its divergence, the equation admits a unique entropy solution. The result is false without noise.
The proof of uniqueness is based on a careful combination of arguments used in the linear case: first we show the renormalization property for the kinetic formulation of the equation, then we use second order PDE estimates and a duality argument to conclude.
If time permits, we will discuss also some open questions.
PARTICIPANTS
- J. C. Alfonso Lopez (TU Braunschweig & Helmholtz centre for infection research)
- Luigi Bianchi (TU Berlin)
- Giuseppe Da Prato (Scuola Normale Superiore, Pisa)
- Valeria De Mattei (Università di Pisa)
- Gianluca Finocchio (Università di Pisa)
- Franco Flandoli (Università di Pisa)
- T. Funaki (University of Tokyo)
- Carina Geldhauser (Università di Pisa)
- Rita Giuliano (Università di Pisa)
- Paolo Grazieschi (Università di Pisa)
- Francesco Grotto (Università di Pisa)
- H. Hatzikirou (TU Braunschweig & Helmholtz centre for infection research)
- Marta Leocata (Università di Pisa)
- Mario Maurelli (TU Berlin & WIAS)
- Maurizio Pratelli (Università di Pisa)
- Cristiano Ricci (Università di Firenze)
- Marco Romito (Università di Pisa)
- Dario Trevisan (Università di Pisa)
To register, please send a mail to Marco Romito.
Venue
Aula Magna
Dipartimento di Matematica
Università di Pisa
Largo Bruno Pontecorvo 5
56127 Pisa
Italia
Supported by Università di Pisa (Fondi di ateneo) and the project PRA2016/41: Fenomeni singolari in problemi deterministici e stocastici ed applicazioni.