PROGRAM
- 9:30 H. Hatzikirou (TU Braunschweig & Helmholtz centre for infection research): The role of cell-decision making on tumor development
- 10:30 Coffee break
- 11:00 J. C. Alfonso Lopez (TU Braunschweig & Helmholtz centre for infection research): Therapeutic potential of the interplay between immune system dynamic and tumor-associated vasculature
- 11:45 L. Bianchi (TU Berlin): Amplitude equations for stochastic Swift-Hohenberg equation
- 12:30 Lunch break
- 14:00 M. Maurelli (TU Berlin & WIAS): Regularization by noise for scalar conservation laws
- 14:45 T. Funaki (University of Tokyo): KPZ, nonlinear fluctuations in Glauber-Kawasaki dynamics
- 15:45 Coffee break
- 16:15 C. Geldhauser (Università di Pisa): Optimizing the fractional order in a nonlocal SPDE
Currently, most of the basic mechanisms governing tumor-immune system interactions, in combination with modulations of tumor-associated vasculature, are far from being completely understood. In this talk I will present a mathematical model of vascularized tumor growth, where the main novelty is the modelling of the interplay between functional tumor vasculature and effector recruitment dynamics. Parameters were calibrated on the basis of different in vivo Rag1-/- and wild-type (WT) BALB/c murine tumor growth experiments. The model analysis supports that vasculature normalization can be a plausible and effective strategy to treat cancer when combined with appropriate immuno-stimulation. We find that improved levels of functional vasculature, potentially mediated by vascular normalization or stress alleviation strategies, can provide beneficial outcomes in terms of tumor burden reduction and control. Normalization of tumor blood vessels opens a therapeutic window of opportunity to augment the anti-tumor immune responses, as well as to reduce the intratumoral immunosuppression and hypoxia due to vascular abnormalities. The potential success of normalizing tumor vasculature closely depends on the effector cell recruitment dynamics and tumor sizes. Furthermore, an arbitrary increase of initial effector cell concentration does not necessarily imply tumor control, and we evidence the existence of an optimal effector concentration range for tumor shrinkage. Based on these findings, we suggest a theory-driven therapeutic proposal that optimally combines immune- and vaso-modulatory interventions. Finally, I will also show an example of how the proposed mathematical model is used to investigate the therapeutic potential of bacterial infections against solid tumors.
PARTICIPANTS
- J. C. Alfonso Lopez (TU Braunschweig & Helmholtz centre for infection research)
- Luigi Bianchi (TU Berlin)
- Giuseppe Da Prato (Scuola Normale Superiore, Pisa)
- Valeria De Mattei (Università di Pisa)
- Gianluca Finocchio (Università di Pisa)
- Franco Flandoli (Università di Pisa)
- T. Funaki (University of Tokyo)
- Carina Geldhauser (Università di Pisa)
- Rita Giuliano (Università di Pisa)
- Paolo Grazieschi (Università di Pisa)
- Francesco Grotto (Università di Pisa)
- H. Hatzikirou (TU Braunschweig & Helmholtz centre for infection research)
- Marta Leocata (Università di Pisa)
- Mario Maurelli (TU Berlin & WIAS)
- Maurizio Pratelli (Università di Pisa)
- Cristiano Ricci (Università di Firenze)
- Marco Romito (Università di Pisa)
- Dario Trevisan (Università di Pisa)
To register, please send a mail to Marco Romito.
Venue
Aula Magna
Dipartimento di Matematica
Università di Pisa
Largo Bruno Pontecorvo 5
56127 Pisa
Italia
Supported by Università di Pisa (Fondi di ateneo) and the project PRA2016/41: Fenomeni singolari in problemi deterministici e stocastici ed applicazioni.