ULTRAFILTRI E METODI
NONSTANDARD - Corso della
laurea magistrale - I semestre
2023/2024.
Le prime sessioni per gli esami
sono fissate come segue:
-
PRIMA SESSIONE:
Martedi 9 Gennaio, Aula
Seminari, ore 16:00
(Iscritti: Vignati, Noe,
Punis)
-
SECONDA SESSIONE: Martedi
23 Gennaio, Sala Riunione,
ore 14:30 (Iscritti: Giomi,
De Castelli)
-
TERZA SESSIONE: Mercoledi
31 Gennaio, Aula Seminari
Ex-Albergo, ore 15:00
(Iscritti: Capolla,
Molinari, Costa)
Chi intende partecipare deve
iscriversi inviandomi una email.
Ricordo che un paio di giorni
prima degli esami, dovete inviarmi
un file con alcune vostre note
relative al seminario che terrete,
con inclusi il riferimento (o i
riferimenti) bibliografici.
Ricordo inoltre che la durata del
seminario sara' di circa 40-45
minuti, e che il livello dovra'
essere paragonabile a quello di
una lezione del corso, in modo che
tutti gli altri studenti possano
seguire.
Raccomando di consultare anche
il Microsoft Team del corso per
eventuali altre informazioni.
L'orario delle lezioni del corso
e' il seguente:
LUNEDI, Aula P1, 11.00-13.00.
MERCOLEDI, Aula N1, 16.00-18.00.
Scopo del corso č quello di
presentare alcuni fondamentali
risultati della teoria
combinatoria dei numeri e di
Ramsey,
per le cui dimostrazioni saranno
fondamentali due strumenti
originati dalla logica
matematica, e cioč gli
ultrafiltri e l'analisi
nonstandard.
Il programma previsto, e la
modalita' degli esami, sono
consultabili qui.
Articoli utili per la preparazione
dei seminari-esame si possono
trovare qui.
TESTI e ARTICOLI di
RIFERIMENTO:
M. Di Nasso, I. Goldbring, M.
Lupini - Nonstandard Methods in
Ramsey Theory and Combinatorial
Number Theory,
LNM vol. 2239, Springer, 2019.
R. McCutcheon – Elemental
Methods in Ergodic Ramsey Theory,
LNM vol. 1722, Springer, 1999.
I. Protasov – Combinatorics of
Numbers, VNTL Publishers, 1997.
V. Bergelson – Ergodic Ramsey
Theory - an update, in “Ergodic
Theory of Z^d-actions" (M.
Pollicott and K. Schmidt eds.),
London Math. Soc. Lecture Note
228, 1996, pp. 1-61.
N.B. Molti articoli
interessanti di V. Bergelson e N.
Hindman su argomenti del corso
sono scaricabili dalle
loro rispettive homepages:
http://www.math.ohio-state.edu/~vitaly
http://nhindman.us
|