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Introduction

This thesis is focused on the study of minimal planar soap bubble clusters.

The aim is to determine the configuration of N disjoint regions E1, . . . , EN

with fixed areas a1, . . . , aN , which minimizes the length of the interfaces:⋃N
i=1 ∂Ei. The 3D version of this problem (i.e regions enclosing prescribed

volumes with minimal total surface area) has a simple physical model given

by soap bubbles (see Figure 1).

Figure 1: Double bubble in R3 provides the least-area way to enclose and

separate the given volumes of air.

If we have a single bubble the problem becomes the classic isoperimet-

ric problem already well known since the times of ancient Greeks, which

knew the solution: the circle. But the first real proof is due to Steiner [14]

in the nineteenth century. He proved that, if the solution exists then neces-
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Introduction 4

sarily has to be a circle. Carathéodory 1 completed the proof showing the

existence of the solution. We want to emphasize that the circle is connected,

so intuitively, it would seem clear even in the presence of more than one re-

gion, that the best configuration is one in which each region is connected.

This is called the soap bubble conjecture

Conjecture 0.1. [12] All regions of a minimizing cluster are connected.

In particular it is not known if the problem to determine the configura-

tion of N disjoint connected regions E1, . . . , EN with fixed areas a1, . . . , aN

has solution. As often happens, however, what is intuitive is particularly

difficult to prove mathematically; this is the case, a method is not yet found

to solve directly the conjecture but partial results are obtained a posteriori

after finding an explicit solution of the problem. The problem can be pre-

sented in the more general case of clusters in Rn; it is called the generalized

soap bubble problem.

Almgren in 1976 [1] proved existence and regularity almost everywhere

for n ≥ 3 of a solution to the generalized soap bubble problem. Taylor im-

proved this result for n = 3 in the same year (see [15]).In 1985, Bleicher

[4] proved important properties of the solutions to the problem in 2 di-

mensions without giving a rigorous proof of their existence, while in 1992,

Morgan [11] proved the existence of the solutions to the planar problem

and properties of minimizers (the same is also proved by Maggi in [10]).

Some years later, in 1994 − 1995 Cox, Harrison, Hutchings, Kim, Light,

Mauer and Tilton [6] proved that to each region Ei of the minimum one

can associate a real number pi (said pressure) so that each edge between re-

gions Ei and Ej has curvature pi − pj . In 1996, Bleicher [5] proved a useful

property that, in a minimizing bubble, any 2 components may meet at most

once. This reduces many combinatorial possibilities for candidate bubble

clusters.

Once the existence and local structure of minimizers have been com-

pletely established, the problem stated in Conjecture 0.1 remains the most

1Blaschke [3] credits Edler, Carathéodory and Study with existence results. Bandle [2]

claims Carathéodory was first. Schmidt and Weierstrass completed the three dimensional

analogue.
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important open question. In 1994 the planar double bubble problem (i.e

cluster of two bubbles)

Figure 2: A standard double bubble.

was solved by Foisy, Alfaro, Brock, Hodges and Zimba [7], a group of

students of Morgan: all minimizers are as in Figure 2.

Figure 3: A standard triple bubble with the same area.

The case N = 3 (Figure 3) was fully proved in 2002 by Wichiramala

in his PhD thesis [17], exploiting the PhD thesis of Vaughn [16] of 1998.

Vaughn proved that any minimizing triple bubble with equal pressures and

connected exterior is composed by connected regions. Other significant

result is the proof of the classical honeycomb conjecture: any partition of
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the plane into regions of equal area has perimeter at least that of the regular

hexagonal honeycomb tiling. It is proved in 1999 by Hales [8].

The purpose of this thesis is to solve Conjecture 0.1 in the case N = 4

and all regions with the same area.

We conclude this introduction with a short summary of each chapter of

the thesis.

• Chapter 1. In this chapter we briefly recall previous results on the

soap bubble problem and we give important definitions that are used

throughout this dissertation. In particular we introduce the notion of

weak minimizers, which is a minimizing cluster with areas |Ei | ≥ ai
(instead of |Ei | = ai). We focus on progress in the planar case.

The first section is devoted to the existence and regularity of soap

bubbles.

In the second section we introduce a significant concept: the pres-

sure. Here the most important result is Corollary 1.47, that links the

perimeter of a bubble with the pressures and areas of each region.

In the last section we show that, under some suitable conditions,

weak minimizers are minimizers, and if weak minimizers are stan-

dard (i.e each region is connected), then minimizers are standard (see

Theorem 1.50).

• Chapter 2. Here, following also the PhD thesis of Wichiramala [17],

we discuss geometric properties of planar soap bubbles.

In the first section we introduce Möbius transformations, that are

maps with particular properties; they transform straight lines and cir-

cles into straight lines and circles and they preserve angles between

curves and orientation, as shown in Theorem 2.6 and Remark 2.9 re-

spectively.

In the second section, we determine some conditions under which

some components are vertically symmetric, as shown in Corollary

2.16. Furthermore Lemma 2.18 is very interesting, since it describes

the situation when there is a sequence of four-sided components.
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Finally, in the last section, we conclude with Lemma 2.22, where we

show how to simplify clusters by reducing one component with three

edges.

• Chapter 3. In this chapter we introduce some new tools which are

used in the following. In this first section, we present the key theorem

of the thesis; it is Theorem 3.5 and it gives some necessary conditions

on the quantity of area that different components of the same region

must have. In particular, under suitable conditions, we are able to

identify a big component and the small components in each region.

In the second section we introduce three particular variations of a

cluster in Lemma 3.11, Lemma 3.12 and Lemma 3.14. In the first

we find the minimum quantity of area that a component of a dis-

connected region must have. In the second the goal is to remove a

small component in favor of the big component. This will give an

important estimate for the pressure of a region. Finally in the last we

determine a simple estimate for the length of all edges of a weakly

minimizing planar cluster.

In the third section we conclude with an interesting lemma (Lemma

3.16) where we determine a significant estimate for the pressures of a

standard double bubble.

• Chapter 4. In this chapter we show how the tools developed in Chap-

ter 3 can be successfully used to prove, in an alternative way respect

to the already presented solutions, that the double and triple bubbles

with all regions of equal area are connected.

In the first section we deal with the double bubble. The result is a di-

rect consequence of Remark 4.7 and Corollary 4.8, that give an upper

and lower estimate on the area of a small component respectively.

In the second section we deal with the triple bubble. Remark 4.12

and Corollary 4.15 are the keys, because again they give an upper

and lower estimate on the area of a small component respectively.

Finally we also underline Lemma 4.21, that describes a component of

a disconnected region and a component of a connected region.



Introduction 8

• Chapter 5. This chapter contains the new result of this thesis. We con-

sider a cluster of four regions of equal area and we prove that each

region is connected (i.e. Conjecture 0.1 is true in the case in which

each region has the same area). The chapter is divided in four sec-

tions.

In the first section the most important results are Theorem 5.6 and

Corollary 5.10, which give estimates on the area of disconnected re-

gions.

In the second section, exploiting Remark 5.7 and Corollary 5.10, we

list all possible cases of disconnected planar weakly minimizing 4-

cluster (see Remark 5.12), which remain to be excluded.

Theorems 5.15, 5.23, 5.39 and 5.55, contained in the second, third and

fourth section respectively, are the crucial theorems to prove the con-

jecture. Indeed they eliminate all possibilities of disconnected planar

weakly minimizing 4-cluster, listed in Remark 5.12.



Chapter 1

Preliminary results

In this chapter, we summarize known results on the soap bubble prob-

lem and we give important definitions that are used throughout this dis-

sertation. We focus on progress in the planar case.

In particular the first section is devoted to the existence and the regu-

larity of soap bubbles.

In the second section we introduce a significant concept: the pressure.

Here the most important result is Corollary 1.47, that links the perimeter of

a bubble with the pressures and areas of each region.

In the last section we show a new approach in order to prove the planar

soap bubbles conjecture. It is summarized in Theorem 1.50, which, under

suitable conditions, shows when a weakly planar minimizing cluster is a

planar minimizing cluster and underline that the soap bubble conjecture holds

if every weak minimizer is standard.

1.1 Existence and regularity of soap bubbles

The core of this first section is the existence and the regularity of soap

bubbles. In particular we are especially interested in the planar case.

We start with some definitions.

Definition 1.1. [10] AN -cluster E is anN -uple of sets, E := (E1, E2, . . . , EN )

with these properties

a) Ei is a subset of Rn, Ln-measurable for all i = 1, . . . , N ;

9
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b) 0 < |Ei | < +∞ for all i = 1, . . . , N ;

c) |Ei ∩ Ej | = 0 for all i 6= j;

d) P(Ei) = Hn−1(∂∗Ei) < +∞ for all i = 1, . . . , N .

Furthermore, given an N -cluster E, we define

e) E0 := Rn \
N⋃
i=1

Ei, called exterior region;

f) P(E) :=
1

2

N∑
j=0

P(Ej).

We introduce the following notation to denote the set of N -clusters E of Rn

En,N := {E |E N − cluster of Rn}.

We denote with P(B), |B |, ∂∗B andHn−1(B) respectively the perimeter,

the volume, the reduced boundary and the n − 1-dimensional Hausdorff

measure of any subsets B of Rn. We use the vector notation to denote a

vector of given volumes a = (a1, . . . , aN ) with ai > 0 for all i = 1, . . . , N

and m(E) = (|Ei |, . . . , |EN |).

The soap bubble problem is the following:

min

{
P(E)

∣∣E ∈ En,N ,m(E) = a

}
, (1.1)

namely it consist in the search for the least surface area way to enclose and

separate N regions Ei of given volumes ai. If n = 2, we call the problem

the planar soap bubble problem.

We formulate the corresponding weak version of the problem (1.1):

min

{
P(E)

∣∣E ∈ En,N ,m(E) ≥ a

}
, (1.2)

where m(E) ≥ a is |Ei | ≥ ai, for all i = 1, . . . , N .

We call this problem weak soap bubble problem.

Definition 1.2. We denote with

pn,N (a) = min

{
P(E)

∣∣E ∈ En,N ,m(E) = a

}
,
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p∗n,N (a) = min

{
P(E)

∣∣E ∈ En,N ,m(E) ≥ a

}
.

Definition 1.3. Let E be a N -cluster. If m(E) = a, then we say that E is a

competitor for the problem (1.1). Then we denote with

Cn,N (a) := {E ∈ En,N |m(E) = a },

the set of all competitors.

In the same way, given a N -cluster E, we say that it is a weak competi-

tor for the problem (1.2) if m(E) ≥ a. Then we denote by

C∗n,N (a) := {E ∈ En,N |m(E) ≥ a },

the set of all weak competitors.

Remark 1.4. By Definition 1.2, it is clear that

pn,N (a) = inf

{
P(E)

∣∣E ∈ Cn,N (a)

}
,

(1.3)

p∗n,N (a) = inf

{
P(E)

∣∣E ∈ C∗n,N (a)

}
.

Since Cn,N (a) ⊂ C∗n,N (a), then p∗n,N (a) ≤ pn,N (a).

Remark 1.5. By (1.3) of previous remark, we have that

p∗n,N (a) = inf
b≥a

pn,N (b).

where b ≥ a is bi ≥ ai, for all i = 1, . . . , N .

Definition 1.6. A N -cluster E is a minimum for the problem (1.1) if

1) E ∈ Cn,N (a);

2) P (E) ≤ P (E′) for all E′ ∈ Cn,N (a).

We denote withMn,N (a) the set of minimizers, namely

Mn,N (a) := {E ∈ Cn,N (a) |P (E) ≤ P (E′), ∀E′ ∈ Cn,N (a)}.

Similarly for the problem (1.2), given a N -cluster E, we say that it is a

weak minimum if
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1) E ∈ C∗n,N (a);

2) P (E) ≤ P (E′) for all E′ ∈ C∗n,N (a).

We denote byM∗n,N (a) the set of weak minimizers, namely

M∗n,N (a) := {E ∈ C∗n,N (a) |P (E) ≤ P (E′), ∀E′ ∈ C∗n,N (a)}.

Remark 1.7. If E ∈ M∗n,N (a), then E ∈ Mn,N (m(E)). Otherwise there

would exist E′ such that m(E′) = m(E) and P (E′) < P (E) ≤ P (E′′) for all

E′′ ∈ C∗n,N (a). Since m(E′) = m(E) ≥ a, E′ ∈ C∗n,N (a), then P (E) ≤ P (E′),

so we get a contradiction.

Remark 1.8. LetM∗n,N (a) 6= ∅. We note that when for all E ∈ M∗n,N (a) is

true that m(E) = a, then weak minimizers and minimizers are the same.

Indeed let be E ∈ M∗n,N (a), since m(E) = a, then P (E) ≤ P (E′′) for all

E′′ ∈ Cn,N (a). Therefore E ∈Mn,N (a), namely E is a minimizer.

On the other hand, since m(E) = a, E is a competitor for the problem

(1.1), therefore, taken a minimizer E′, then P (E) ≥ P (E′). Furthermore,

since m(E′) = a ≥ a, E′ is a weak competitor for the problem (1.2), there-

fore P (E) ≤ P (E′). So E′ is a weak minimizer.

Remark 1.9. Furthermore, by the definitions of pn,N (a) andMn,N (a) seen

in Remark 1.4 and in Definition 1.6 respectively, we have that

Mn,N (a) =

{
E ∈ Cn,N (a)

∣∣P (E) = pn,N (a)

}
,

for any vector a of positive components.

The existence and basic regularity almost everywhere of the solutions

to the soap bubble problem in Rn for n ≥ 3 was proved by Almgrem in 1976

[1], while in 1994 Morgan proved the existence and regularity of solutions

to the planar soap bubble problem (the same is also proved by Maggi in

[10]).

Theorem 1.10. [11][4][10] For all a = (a1, . . . , aN ) ∈ RN+ there exists E ∈
M2,N (a). Every E ∈M2,N (a) must satisfy these conditions:
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1. it is composed by a finite number of arcs of circle (segments are considered

edges with zero curvature);

2. each vertex is meeting point of exactly three edges that make angles of
2π

3
;

3. edges that separate the same pair of regions have the same curvature;

4. in each vertex the cocycle condition holds, namely the sum of the signed

curvatures is zero.

Remark 1.11. By Almgrem [1] and by Theorem 1.10 we have that the set

Mn,N (a) 6= ∅ for any vector a of positive components. So by Remark 1.9,

there exists E ∈Mn,N (a), such that P (E) = pn,N (a).

We recall the isoperimetric inequality

P (E) ≥ n(ωn)
1
n |E |

n−1
n , ∀E ⊂ Rn, E Ln −measurable, |E | < +∞,

where ωn is the volume of the unit ball in Rn. We denote by Cn :=n(ωn)
1
n ,

thus if n = 2, C2 = 2
√
π.

We set Da := [a1,+∞[× . . .× [aN ,+∞[, where ai > 0 for all i.

Here, we show a preliminary lemma for the proof of the existence of the

minimum for the the soap bubble weak problem (1.2).

Lemma 1.12. Let a = (a1, . . . , aN ) ∈ RN+ and pn,N be the following function,

pn,N :Da → R, b =(b1, . . . , bN ) 7→ pn,N (b)=min

{
P (E)

∣∣E ∈ Cn,N (b)

}
,

(1.4)

then:

1) pn,N (b) ≥ pn,j(bj), where bj is a vector of j-components of the vector b;

2) lim
|b|→+∞

pn,N (b) = +∞ (|b| denotes the Euclidian norm of b ∈ Da);

3) pn,N is continuous.

Proof. First of all we note that the minimum of the set {P (E)
∣∣E ∈ Cn,N (b)}

exists and there is E ∈ Mn,N (b), such that P (E) = pn,N (b), as we have

seen in Remark 1.11.
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We show 1). Let E ∈ Mn,N (b) and j with 1 ≤ j ≤ N , we consider

Ej , a vector of j-components of E with Ej0, the complementary set of the

union of j-components of E, then Ej is a j-cluster and E ∈ Cn,j(bj)(see the

Definition 1.1) and one has

pn,N (b) = P (E) ≥ P (Ej) ≥ pn,j(bj).

This finishes 1).

The property 2) is a directed consequence of 1); in fact for all j fixed,

such that 1 ≤ j ≤ N , we obtain that

pn,N (b) ≥ pn,j(bj) = Cn · b
n−1
n

j .

From which, choosing j such that bj → +∞, the claim follows.

Finally we prove 3). The idea is to show that pn,N is, fixed b ∈ Da,

upper and lower semicontinuous in b. We check that pn,N is upper semi-

continuous in b: let x ∈ Da with x ≥ b (i.e xi ≥ bi for all i = 1, . . . , N ), then

taken E∈Mn,N (b), we consider E′=E∪(B1, . . . , BN ) = (E1∪B1, . . . , En∪
BN ), whereBi are wirwise disjoint balls, each ballBi is disjoint from E and

|Bi | = xi − bi. E′ is in Cn,N (x), thus we get

pn,N (x) ≤ P (E′) = P (E) +
n∑
i=1

P (Bi) = pn,N (b) + Cn

N∑
i=1

(xi − bi)
n−1
n

(1.5)

= pn,N (b) + CnN ||x− b ||
n−1
n .

From (1.5), for all ε > 0, chosen δ go that

0 < δ <
( ε

CnN

) n
n−1 , (1.6)

we have that for all x, x ≥ b and ||x−b|| < δ one has pn,N (x) ≤ pn,N (b)+ε.

We must also consider the case where x ∈ Da, x → b and x has at

least one component xi such that xi < bi. Without loss of generality we

can suppose that the components of x, which are smaller than the corre-

sponding components of b, are the first components of x. So we use the

following notations: x = (xk,xN−k), with xk < bk, xN−k ≥ bN−k, where
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we let b = (bk,bN−k), xk = (x1, . . . , xk), xN−k = (xk+1, . . . , xN ) and the

same for bk and bNk . Let x be as above and E ∈ Mn,N (x), then we let

λ =

( k∏
i=1

bi
xi

) 1
n

and E′ : = λ ·E. We will prove the following facts:

a) x′ ≥ b, where x′ = λn · x;

b) if x→ b then x′ → b;

c) P (E′) = pn,N (x′) ≥ pn,N (x).

We have that x′ = m(E′) = λn ·m(E) = λn · x, with

x′j = |E′j | = λn · xj =


bj

(∏
i 6=j

bi
xi

)
, if 1 ≤ j ≤ k,

λn · xj , if k + 1 ≤ j ≤ N ,

therefore, since bk > xk and xN−k ≥ bN−k, a) follows.

We see b); we have

||x′ − b|| = ||λn · x− b||

=

√√√√ N∑
j=1

(
λn · xj − bj

)2

.

If 1 ≤ j ≤ k one has ∣∣∣∣λn · xj − bj∣∣∣∣ =

∣∣∣∣bj
(∏
i 6=j

bi
xi

)
− bj

∣∣∣∣

=

bj

∣∣∣∣∏
i 6=j

bi −
∏
i 6=j

xi

∣∣∣∣∏
i 6=j

xi
,

while, if k + 1 ≤ j ≤ N we have

∣∣∣∣λn · xj − bj∣∣∣∣ =

∣∣∣∣
(

k∏
i=1

bi

)
xj −

(
k∏
i=1

xi

)
bj

∣∣∣∣
k∏
i=1

xi
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=

∣∣∣∣
(

k∏
i=1

bi −
k∏
i=1

xi

)
xj −

(
k∏
i=1

xi

)
(bj − xj)

∣∣∣∣
k∏
i=1

xi

≤

∣∣∣∣ k∏
i=1

bi −
k∏
i=1

xi

∣∣∣∣|xj |+ |bj − xj |∣∣∣∣ k∏
i=1

xi

∣∣∣∣
k∏
i=1

xi

.

Thus, by previous estimates, it is clear that, if x → b, then x′ → b. This

proves b).

Finally we show c); we argue by contradiction, so we suppose there

exists E′′ ∈ Cn,N (x′) such that P (E′′) < P (E′). We consider E′′′ : = E′′

λ , then

m(E′′′) = m(E′′)
λn = x′

λn = x, hence E′′′ ∈ Cn,N (x). So it follows

P (E) = pn,N (x) ≤ P (E′′′) =
P (E′′)

λn−1
<
P (E′)

λn−1
= P (E);

this is a contradiction, thus c) is true. Since
k∏
i=1

bi
xi
≥ 1, it follows that

pn,N (x′) ≥ pn,N (x); therefore, from a), b) and c), eventually taking a smaller

δ in (1.6), we have that

pn,N (x) ≤ pn,N (x′) ≤ pn,N (b) + ε.

So the upper semicontinuity of pn,N is proved.

Now we will prove the lower semicontinuity of pn,N ; the idea is the

same that we used for the upper semicontinuity. Let x ∈ Da with x ≤ b and

E ∈Mn,N (x), then we consider E′ = E∪(B1, . . . , BN ) = (E1∪B1, . . . , En∪
BN ), where Bi are pairwise disjoint balls, each ball is disjoint from E and

|Bi | = bi − xi. E′ is in Cn,N (b), thus we obtain

pn,N (b) ≤ P (E′) = P (E) +
n∑
i=1

P (Bi) = pn,N (x) + Cn

N∑
i=1

(xi − bi)
n−1
n

(1.7)

= pn,N (x) + CnN (||x− b ||)
n−1
n .
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From (1.7) for all ε > 0, chosen 0 < δ <
(

ε
CnN

) n
n−1 , we have that for all

x ∈ Da, x ≤ b and ||x− b|| < δ it holds pn,N (b) ≤ pn,N (x) + ε.

From here, as in the case of the upper semicontinuity, we show that it is

always possible to be in the situation, up to a rescaling of x, where x ≤ b.

So we must also consider the case where x ∈ Da, x → b and x has at least

one component xi such that xi > bi. Without loss of generality we must

think that the components of x, which are greater than the corresponding

components of b, are the first components of x. So we use the following no-

tations: x = (xk,xN−k), with xk > bk, xN−k ≤ bN−k where b = (bk,bN−k),

xk = (x1, . . . , xk), xNk = (xk+1, . . . , xN ) and the same for bk and bNk . Let

x be as above, λ =

( k∏
i=1

bi
xi

) 1
n

and E′ : = λ · E, where E ∈ Mn,N (x).

Therefore the following facts hold:

d) x′ ≤ b, where x′ = λn · x;

e) if x→ b then x′ → b;

f) P (E′) = pn,N (x′) ≤ pn,N (x).

The proof of d), e) and f) is the same as the one we have already presented

in the case of the upper semicontinuity; then from this also the lower semi-

continuity of pn,N follows; together the upper and the lower semicontinuity

give the continuity of pn,N .

Corollary 1.13. The problem (1.2) admits minimum.

Proof. By Remark 1.5 it suffices to prove the existence of the minimum of

the problem

inf

{
pn,N (b)

∣∣b ≥ a

}
, (1.8)

so the proof is finished. The existence of the minimum for the problem (1.8)

is a direct consequence of 2) and 3) of Lemma 1.12.

At the end of this section we introduce other important definitions, that

are used throughout this dissertation.
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Definition 1.14. Let E be a N -cluster in Rn, we say that Ei is a connected

region of E if for any subset E1
i , E2

i of Ei such that

i) Ei = E1
i ∪ E2

i ;

ii) Eji is Ln-measurable for any j ;

iii) |E1
i ∩ E2

i | = 0;

iv) P (Eji ) < +∞ for any j;

v) P (Ei) = P (E1
i ) + P (E2

i ),

then either |E1
i | = 0 or |E2

i | = 0.

Definition 1.15. Let E be a N -cluster in Rn, we say that C is a component

of some region Ei of E if

i) C is a connected subset of Ei

ii) |C | > 0;

iii) P (C) < +∞

iv) P (Ei) = P (C) + P (Ei \ C).

In particular a bounded component ofE0 is specifically called an empty

chamber as it does not contribute area to any of N bounded regions Ei
(i 6= 0).

Definition 1.16. Let E ∈ En,Nand C be a component of a some region Ei of

E, we say that C is inner if Hn−1(∂∗C ∩ ∂∗E0) = 0. While we say that C is

external ifHn−1(∂∗C ∩ ∂∗E0) > 0.

Definition 1.17. Let E ∈ En,N and Ci, Cj be two components of the regions

Ei andEj of E respectively, we say thatCi andCj are disjoint ifCi∩Cj = ∅.
While we say that Ci and Cj are adjacent ifHn−1(∂∗Ci ∩ ∂∗Cj) > 0.

Definition 1.18. Let E be a N -cluster in Rn and C be a component of a

region Ei of E, we say that

i) C is small if |C | < |Ei |
2 ;
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ii) C is big if |C | > |Ei |
2 .

Remark 1.19. Let E be a (weak) minimizing N -cluster. We note that each

disconnected region Ei can be seen as finite disjoint union of its compo-

nents by Almgrem [1] and Theorem 1.10.

.

Definition 1.20. Let E be a N -cluster in Rn, we say that E is standard if

each region Ei is connected.

Definition 1.21. Let E ∈ En,N , we define the vector, called connection

type, IE := (M(1), . . . ,M(N)), where M(i) denotes the number of small

components for any region Ei of E.

In particular we explicitly note that if E is a minimizer, by Almgrem [1]

and Theorem 1.10, M(i) is finite for all i = . . . , N .

Remark 1.22. It is clear that any connected region Ei of E ∈ En,N is a big

component. We set the number of small components, M(i), equal to zero

for any connected region.

The soap bubble conjecture can be phrased as follows: every minimiz-

ing cluster is standard.

1.2 The concepts of pressure and results on minimiz-

ing clusters

Here we introduce an important definition: the definition of pressure

of a region and furthermore we conclude with some significant results for

a minimizing cluster, that link together the concepts of perimeter, area and

pressure. From now on we will focus on the planar soap bubble problem

min

{
P(E)

∣∣E ∈ E2,N , m(E) = a

}
, (1.9)

and on the corresponding weak problem

min

{
P(E)

∣∣E ∈ E2,N , m(E) ≥ a

}
, (1.10)

unless otherwise noted.
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Definition 1.23. Let E be a N -cluster of R2, we say that p1 . . . , pN ∈ R are

the pressures of E1, . . . , EN respectively, if each edge between Ei and Ej

has curvature | pi − pj | and curves into the lower pressure region with the

convention that the pressure of the exterior region is zero.

Remark 1.24. Note that a priori regions may have negative pressures.

Existence of pressures implies the cocycle condition at all vertices and

further implies that all edges separating a specific pair of regions have the

same curvature.

Later, following the work of Cox, Harrison, Hutchings, Kim, Light,

Mauer and Tilton [6], we show that for a minimizing planar N -cluster it

is possible to define the pressure for each region.

Definition 1.25. The sign of the curvature of a directed edge is considered

positive (negative) if edge is turning left (right).

Remark 1.26. When considering a component C, we implicitly direct its

edges counter-clockwise with respect to C thus to the left on each edge.

Hence the signed curvature of an edge of a component is well-defined.

Remark 1.27. Another convention for the oriented curvature that we use

is the one represented in Figure 1.1.

Figure 1.1: Sign conventions for the oriented curvature of an edge crossed by a

path.

Remark 1.28. Let e be an edge of a component C. We say that e is convex

(concave) if its signed curvature is non negative (non positive). If all edges

of a component C are convex (concave), we say that C is convex (concave).
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Definition 1.29. An edge of a cluster is redundant if it separates a region

from itself.

Remark 1.30. Clearly a cluster with redundant edges is not minimizing.

Definition 1.31. Let E be a planar N -cluster, we say that E is regular if E

satisfies the properties of Theorem 1.10, it has pressures for its regions and

it has not redundant edges. We also call a regular N -cluster a N-bubble.

Proposition 1.32. [4] A minimizing planar N -cluster E is path connected and

each component is simply connected.

Proof. We argue by contradiction and we suppose that E is not path con-

nected, thus by sliding two pieces of E until they touch, we create a clus-

ter of the same perimeter and areas but with an invalid meeting between

edges. This contradicts 2. of Theorem 1.10. Hence E is path connected.

Arguing in the same way seen previously, we obtain that each compo-

nent is simply connected.

Proposition 1.33. [5] For a minimizing planar N -cluster any two components

may meet at most once along a single edge.

An edge e is said to be incident to a vertex v if v is an endpoint of e.

Definition 1.34. An incident edge of a component C is an incident edge at

a vertex of C that is not an edge on the boundary of C.

Corollary 1.35. [7] A minimizing planarN -cluster has no two sided components

if N ≥ 3.

Proof. If there is a two sided component, then the two components sur-

rounding the two sided component meet twice unless the two incident

edges on the two sided component are the same edge. By the previous

proposition the latter case is true; therefore the two sided component with

this third edge form a standard double bubble. But N ≥ 3, then there is an-

other bounded component not attached to this part, contradicting Proposi-

tion 1.32.
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Definition 1.36. The turning angle of an edge of a component is the prod-

uct of its signed curvature and its length.

Remark 1.37. The product of the length and the absolute curvature of an

edge L is also the central angle subtended by L, but at the same time it is

also the double of the angle between the tangent to L in B (or the tangent

to L in A) and the edge L (see Figure 1.2).

Figure 1.2: It is clear that L · 1
R = L · k = 2θ, where R is the radius of curvature

of L and k is its curvature.

Lemma 1.38. [17] For an n-sided component of a bubble, the sum of all edges’

turning angles is
(

6−n
3

)
π if the component is bounded and is

(
−6−n

3

)
π if the

component is unbounded.

Figure 1.3: A bounded component C with four edges and the corresponding poly-

gon F .
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Proof. We show in detail the case of bounded component C. We consider

a component C with n edges γ1, . . . , γn with the convention for the orien-

tation view in Remark 1.26. We build the polygon F determined by the

vertices of C. Since C has n edges, then S has n sides (see Figure 1.3). Let

θi be the angle between γi and the corresponding side of F and we de-

note with Lj the length of γj . We call S1 = {j ∈ {1, . . . , n} | k̃j > 0} and

S2 = {j ∈ {1, . . . , n} | k̃j < 0}, where k̃j is the signed curvature of γj . The

sum of the inner angles of F is nπ − 2π, but at the same time it is equal to

n · 2π
3 − 2

∑
i∈S1

θi + 2
∑

i∈S2
θi, because C is a component of a bubble, then

its inner angles are 2π
3 . So we have

nπ − 2π = n · 2π

3
−
∑
i∈S1

Li k̃i −
∑
i∈S2

Li k̃i,

namely the statement

∑
i∈S1

Li k̃i +
∑
i∈S2

Li k̃i = 2π − nπ + n · 2π

3
=

(
6− n

3

)
π.

In the case of unbounded component C, the argument is the same, but

in this situation we must consider the external angles of F (again, see Fig-

ure 1.3, where the component C is unbounded). The inner angles of C are

always 2π
3 (because C is a component of a bubble), while the sum of the

external angles of F is equal to 2nπ − (nπ − 2π) = nπ + 2π. The proof is

then concluded as before.

Now we follow [6] in defining variations.

Definition 1.39. Let E be a regular N -cluster of R2, a variation of E is a C1

family of clusters (Et)|t|<ε, where Et = E(t, x) : [−ε, ε] × R2 → R2 is such

that

1) E(0, x) = E,

2) Et is injective for all t fixed in [−ε, ε],

with ε > 0.
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Following [9] and [13] we find a formula for the first derivative of the

perimeter of a bubble.

Consider a planarN -cluster E with smooth interfacesEij (preciselyEij
represents the union of the edges between Ei and Ej) between Ei and Ej .

Let Nij be the unit normal vector on Eij from Ej into Ei (see Figure 1.4).

Figure 1.4: An example of an edge between Ei and Ej .

Consider a continuous variation V = {Et = E → R2}|t|<ε of E, that is

smooth on each Eij up to the boundary. The associated initial velocity is

X : = dEt
dt

∣∣∣
t=0

. The scalar normal component of X from Ej to Ei is uij : =

X ·Nij . Let kij 1 be the oriented curvature ofEij ; this is nonnegative ifEi has

higher-pressure. It is clear that Nij , uij and kij are skew-symmetric in their

indices. Let N , u and k be the disjoint union functions
∐
i<j Nij ,

∐
i<j uij

and
∐
i<j kij . The normal component of X is uN , where uN denotes the

pointwise product of the functions u andN . Given a scalar or vector valued

function f =
∐
fij defined on the interfaces of E, we define a function

Y (f) on the vertices of E by Y (f)(p) = fij(p) + fjh(p) + fhi(p) if Ei, Ej
and Eh meet at p (in that order counterclockwise). If Y (f)(p) = 0, we say

that f or fij agree in p. For a bubble, since Nij agree at p for any X and

the associated normal component u, Y (u)(p) = X ·Y (N)(p) = 0. Hence uij
agree at p. Initially the area ofEi changes at the rate

∑
j 6=i
∫
Eij

uij = dai
dt

∣∣∣
t=0

,

precisely in each interface Eij there is a change of
∫
Eij

uij , thus in totaly we

must sum each previous contribution.

We will calculate the first variation formula of the perimeter for a planar

N -cluster. We let T (p) be the sum of the unit tangent vectors to the edges

1Let γij be the parameterization of one edge of Eij with respect to the arc-length s, then

we have that γ
′′
ij(s) = kij(s)Nij(s), namely kij(s) = γ

′′
ij ·Nij(s).
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meeting at p. Note that T (p) = ∗Y (N)(p), where ∗ denotes the rotation of

90◦ clockwise.

Lemma 1.40. [9] Let E be a planar N -cluster and V = (Et)|t|<ε a variation of E

with associated initial velocity X , normal scalar component uij on Eij , interfaces

C∞, then the first derivative of the perimeter at the initial time is:

dP (Et)

dt

∣∣∣∣
t=0

= −
∑
j>i

∫
Eij

kijuij −
∑

vertex p

X(p) · T (p)

= −
∫
E
k · u−

∑
vertex p

X(p) · T (p). (1.11)

In particular, if E is a bubble then

dP (Et)

dt

∣∣∣∣
t=0

= −
∑
j>i

∫
Eij

kijuij = −
∫
E
k · u. (1.12)

Proof. Let V = (Et)|t|<ε be a variation of a planar N -cluster E with associ-

ated initial velocity X . In order to determine the statement we find the first

variation of the length of each edge of E. Let e be an edge of E of length l0
and signed curvature k; we denote with γ0 : [0, l0] → R2 its parameteriza-

tion with respect to the arc-length s (note that | γ′0 | = 1). For all t ∈ [−ε, ε],
γt : [0, l0] → R2 is a parameterization of the deformed edge et of e at the

time t according to the variation V (see Figure 1.5).

Figure 1.5: The edge e with its deformed edge et.
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Observe that this parameterization is not necessarily respect to the arc-

length.We call Tg andN the unit tangent vector and the unit normal vector

on γ0 respectively, where N is obtained by Tg with a counterclockwise ro-

tation of 90◦ degrees. We denote with ḟ = ∂f
∂t and f ′ = ∂f

∂s , where t and s

are the temporal and spatial variable respectively. In this way we have γ
′
0 =

Tg , γ
′′
0 = k N = Tg ′, and dγt

dt

∣∣∣
t=0

= (γ̇t)
∣∣∣
t=0

= X. Expanding in series of

Taylor the function γt for t = 0 we obtain that γt(s) = γ0(s)+tX(s)+O(t2),

thus γ
′
t(s) = γ

′
0(s) + tX ′(s) +O(t2). Then we have that (note that | γ′0 | = 1)

| γ′t(s) |2 = | γ′0(s) |2 + 2
(
γ
′
0(s) ·X ′(s)

)
t+O(t2)

= 1 + 2
(
γ
′
0(s) ·X ′(s)

)
t+O(t2). (1.13)

Furthermore by Taylor expansion, we know that

√
1 + h = 1 +

h

2
+O(h2). (1.14)

Now let lt be the length of et, then we get:

lt =

∫ l0

0
|γ′t(s)|ds

1.13
=

∫ l0

0

√
1 + 2

(
γ
′
0(s) ·X ′(s)

)
t+O(t2) ds

1.14
=

∫ l0

0

(
1 +

(
γ
′
0(s) ·X ′(s)

)
t+O(t2)

)
ds

= l0 + t

∫ l0

0
γ
′
0(s) ·X ′(s) ds+O(t2).

Thus, integrating by parts, since the interfaces Eij are smooth (so γ0 is

smooth), we obtain that

dlt
dt

∣∣∣∣∣
t=0

=

∫ l0

0
γ
′
0(s) ·X ′(s) ds = [γ

′
0(s) ·X(s)]s=l0s=0 −

∫ l0

0
γ
′′
0 (s) ·X(s) ds

= [Tg(s) ·X(s)]s=l0s=0 −
∫ l0

0
k(s)N(s) ·X(s) ds

= [Tg(s) ·X(s)]s=l0s=0 −
∫ l0

0
k(s)u(s) ds

= −
∫ l0

0
k(s)u(s) ds+

(
Tg(l0) ·X(l0)− Tg(0) ·X(0)

)
.

Then, when we sum the contribution of each edge of E, we have that

dP (Et)

dt

∣∣∣∣
t=0

= −
∑
j>i

∫
Eij

kij(s)uij(s) ds−
∑

vertex p

X(p) · T (p). (1.15)
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In particular, if E is a bubble, (1.12) holds, because∑
p vertex

X(p) · T (p) = 0.

Indeed each vertex is the meeting point of exactly three edges that make

angles of 2π
3 (see Figure 1.6), thus, for all vertex p, we get that

X(p) · T (p) = |X(p) |

(
cosα+ cos

(2π

3
− α

)
+ cos

(2π

3
+ α

))
= 0,

since cosα+ cos (2π
3 − α) + cos (2π

3 + α) = 0 for all α.

Figure 1.6: In a vertex p three edges meet, whose tangents t1, t2 and t3 define

angles of 2π
3 .

Remark 1.41. We explicitly note that the identity (1.12) also holds if E is a

minimizing planar N -cluster. Indeed the proof of (1.12) is based, as shown

in previous lemma, on each vertex is a meeting point of exactly three edges

that define angles of 2π
3 . By Theorem 1.10, this property is still true in the

case that E is a minimizing planar N -cluster.

Proposition 1.42. [6][5] For any closed path that crosses only edges of a mini-

mizing planar N -cluster E, the sum of the oriented curvatures of the crossed edges

is zero.

Proof. We consider a closed path γ (see Figure 1.7) that crosses a minimizing

planarN -cluster E. Let vi be the vertices of E inside γ and γi be the directed

curves (oriented as γ) around each vi such that each γi crosses E only in the

three incident edges of vi and nowhere else.
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Figure 1.7: A closed path γ that crosses E with the directed curves γi around the

vertices vi, that have the same orientation of γ.

By 4. of Theorem 1.10, the sum of the oriented curvatures of the three

edges on each vi is zero. Then the sum of the oriented curvatures of the

edges crossed be γ is equal to the sum over vi of the sum of the oriented

curvatures of the three edges crossed by γi, that is a sum of zero and hence

is equal to zero as claimed (note that the contribution of the oriented cur-

vatures of edges in common between two γi is null, because these arcs are

crossed in two directions, one the opposite of the other; for example in

Figure 1.7 the green edge is considered by γ1 and γ2 and the red edge is

counted by γ2 and γ3 in a opposite direction respectively).

Remark 1.43. The previous Proposition is also true if E is a planar regu-

lar N -cluster. Indeed, the previous proof is based on the cocycle condition,

which is also true in all vertices of a regular planar N -cluster E (see Defini-

tion 1.31).

Proposition 1.44. [6] A minimizing planar N -cluster E is regular.

Proof. Let E be a minimizing planar N -cluster. By Theorem 1.10 and by

Definition 1.31, we have only to show that each region of E has a pressure.

The proof is divided in three parts:
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1) first of all we define pressure for a component C of each region;

2) then we prove that the previous definition is well posed;

3) finally we prove that different components of the same region have

the same pressure; so the pressure of a region is the pressure of any

of its component.

We show 1). Fixed a region Ei we consider one of its components C and let

γ be an external path to E, such that γ is not closed, does not pass through

the vertices of E and it arrives inside C (see Figure 1.8). Then we define the

pressure of C as the sum of the signed curvatures of the edges crossed by

γ. In formula

pγ(C) :=
∑
γ

kγ , (1.16)

where kγ represents a signed curvature of an edge crossed by γ.

We prove 2). We take another path γ1 with the same characteristics of γ,

then we must see that the definition (1.16) is independent from the choice

of the path, namely pγ(C) = pγ1(C).

Figure 1.8: Two path γ and γ1 external to E and that arrive inside C. In order to

prove the independence of the definition of pressure of a component C we consider

the path γ + (−γ1).

Hence we link γ with γ1, considering a new path γ+ (−γ1) (see Figure 1.8),
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then by Proposition 1.42
∑

γ+(−γ1)

kγ+(−γ1) = 0, thus

0 =
∑

γ+(−γ1)

kγ+(−γ1) =
∑
γ

kγ +
∑
−γ1

k(−γ1)

=
∑
γ

kγ −
∑
γ1

kγ1 = pγ(C)− pγ1(C);

this completes 2).

Finally we see 3). Now in (1.16), by 2) we can write p(C) =
∑
γ

kγ .

We consider two different components C1 and C2 of the same region Ei

and we prove that p(C1) = p(C2). If p(C1) 6= p(C2), then without loss

of generality we can assume that p(C1) < p(C2) and so we may create a

variation V = (Et)|t|<ε, that moves some area from C2 to C1 (see Figure

1.9) in order to conserve all areas of the regions at the initial time.

Figure 1.9: The variation V removes the red area in C2 and gives the green area

(which is the same of the red area) to C1; so the component of Ej adjacent to C1

and C2 does not change its area as also the region Ei.

In particular for the regionEi we have dai(t)
dt

∣∣
t=0

= 0, because daC2
(t)

dt

∣∣
t=0

=

−daC1
(t)

dt

∣∣
t=0

(note thatC1 takes area fromC2, thus daC1
(t)

dt

∣∣
t=0

> 0). By (1.12)

of Lemma 1.40 (see also Remark 1.41) we get that (recall that initially the

area of Ei changes of
∫
Eij

uij in the interface Eij)

dP (Et)

dt

∣∣
t=0

=
(
p(C1)− p(C2)

) daC1(t)

dt

∣∣
t=0

< 0.

This contradicts the minimality of E and concludes the proof.
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Remark 1.45. By Remark 1.7 and Proposition 1.44, we explicitly note that a

planar weak minimizer E is a regular cluster. Hence it is possible to define

the pressure of for each region.

Proposition 1.46. [6] In a planar regular N -cluster E with areas a1, . . . , aN and

pressures p1, . . . , pN , and any variation (Et)|t|<ε, we have

dP (Et)

dt

∣∣∣∣
t=0

=
N∑
i=1

pi
dai(t)

dt

∣∣∣∣
t=0

, (1.17)

where ai(t) = |Ei(t) | denotes the area of the ith bounded region of Et.

Proof. Let V = (Et)|t|<ε be a variation of a planar regular N -cluster E with

associated initial velocity X and let uij be the scalar normal component

of X on Eij (recall that Eij is the union of edges between Ei and Ej).

By (1.12) of Lemma 1.40 we know that dP (Et)
dt

∣∣
t=0

= −
∑

i<j

∫
Eij

kij uij =

−
∑

i<j

∫
Eij

(pi− pj)uij . Furthermore the total area lost by Ei in favor of Ej
is −

∑
j 6=i
∫
Eij

uij = dai(t)
dt

∣∣
t=0

, since
∫
Eij

uij is the initial rate of decrease in

the area of Ei taken by Ej . Note that uij = −uji for all index i and j, thus

called aij := −
∫
Eij

uij , we have that aij = −aji. Observing that p0 = 0, we

get that∑
i<j

kij aij =
∑
i<j

(pi − pj) aij =
∑
i<j

pi aij −
∑
i<j

pj aij

=
∑
i<j

pi aij −
∑
j<i

pi aji =
∑
i>0

∑
i<j

pi aij −
∑
j≥0

∑
j<i

pi aji

=
∑
i>0

∑
i<j

pi aij −
∑
i>0

∑
j<i

pi aji =
∑
i>0

(∑
j>i

pi aij −
∑
j<i

pi aji

)

=
∑
i>0

(∑
j>i

pi aij +
∑
j<i

pi aij

)
=
∑
i>0

pi
∑
j 6=i

aij =
∑
i>0

pi
dai(t)

dt

∣∣
t=0

.

We present an important corollary of the previous proposition, that con-

tains a formula, which links the perimeter of a bubble with the pressures

and areas of each region.
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Corollary 1.47. LetB be aN -bubble of areas a1 . . . , aN and pressures p1, . . . , pN ,

then

P (B) = 2
N∑
i=1

pi ai. (1.18)

Proof. We consider the following variation Bt = B(t, x) : [−ε, ε]×R2 → R2,

with Bt(x) = (t+ 1)x and ε > 0. With this choice P (Bt) = (t+ 1)P (B) and

ai(t) = (t + 1)2 ai for any i. Thus dP (Bt)
dt

∣∣
t=0

= P (B) and dai(t)
dt

∣∣
t=0

= 2ai,

then by (1.17) we obtain the claim.

Remark 1.48. In aN -bubbleB of areas a1, . . . , aN and pressures p1, . . . , pN ,

from (1.18) the highest pressure must be positive, because P (B) > 0.

1.3 The weak approach

In this section we show a new approach, in order to prove the planar

soap bubbles conjecture, that allows to consider the exterior region con-

nected and to take as competitors any clusters E with m(E) ≥ a.

We present two significant statements, one proposition and one theo-

rem. In the first we show that for a weak minimizer the pressures are non

negative and the exterior region is connected and in the second we prove

that, under suitable conditions, weak minimizers are minimizer and the

soap bubble conjecture applies if every weak minimizer is standard.

We recall that, by Remark 1.7, each weak minimizer is a minimizer, then

by Proposition 1.44, each weak minimizer is a regular cluster. Therefore if

E is a weak minimizer, the pressures are defined for all its region.

Proposition 1.49. [17] The exterior region of a weak minimizer for area a1, . . . , aN

is connected. Its pressures p1, . . . , pN are non negative. Furthermore if a region

has area greater than ai then pi = 0.

Proof. Let E be a weak minimizer. If the exterior region E0 is not connected

then at least one empty chamber of E0 exists; thus we can reassign C to

be part of one of the neighboring components and then we remove the
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redundant edge. Then we have a shorter cluster that satisfies the condition

of m(E) ≥ a, contradicting the minimality of E.

If there exists an index i such that pi is negative, we can define a vari-

ation V = (Et)|t|<ε such that the area of Ei increase and the other remain

the same; so the length decreases by Proposition 1.46, giving again a con-

tradiction.

If the area of Ei is greater than ai and pi > 0, we can define, as before,

a variation V = (Et)|t|<ε such that the area of Ei decrease making sure that

the area of each region is at least ai. By Proposition 1.46 the length decreases

again. Hence we get a shorter cluster that still contains areas bigger than

a1, . . . , aN ; this is a contradiction.

Theorem 1.50. Let E ∈ M∗2,N (a) and NC be the total number of bounded com-

ponents of E. If NC ≤ 6, then m(E) = a and E ∈M2,N (a).

In particular, if N ≤ 6, the soap bubble conjecture holds if every weak

minimizer is standard, where N is the number of the regions of the problem (1.10).

Proof. It is clear that N is not larger than NC . We explicitly note that,

by Proposition 1.49, E0 is connected, thus there are no empty chambers.

Therefore the only bounded components are components of some regions

Ei with i 6= 0. We suppose by contradiction that the statement is false.

Therefore an index i ∈ {1, . . . , N} exists such that |Ei | > ai. By Proposi-

tion 1.49, its pressure pi = 0 and it is the lowest pressure region. Hence the

turning angle of any edge of Ei is non positive, then the turning angle of

any its component is non positive. Therefore, by Lemma 1.38, any compo-

nent of Ei has at least six edges. By Proposition 1.33 and by the fact that

NC ≤ 6, we have that any component of Ei has exactly six edges. So the

turning angle of any its component is zero. Since the turning angle of any

its edges is non positive, by Lemma 1.38, we get that any component of

Ei is an hexagon, namely its edges are a straight lines with zero curvature.

Thus NC = 6 and the pressure of any region is zero, in particular the pres-

sure of the highest pressure region. By Remark 1.48 this is a contradiction;

by Definition 1.6 we have that E ∈M2,N (a).

If every E ∈ M∗2,N (a) is standard, then NC = N , therefore if N ≤ 6
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we have that NC ≤ 6. Hence E ∈ M2,N (a), thus, taken E′ ∈ M2,N (a),

P (E) ≥ P (E′) (note that if E ∈ M2,N (a), then E ∈ C2,N (a)). At the same

time m(E′) = a ≥ a (i.e E′ ∈ C∗2,N (a)), thus P (E′) ≥ P (E). Since P (E) =

P (E′), then E′ ∈M∗2,N (a) and so, by assumption E′ is standard.

Remark 1.51. Theorem 1.50 shows that to prove the planar soap bubble

conjecture for N ≤ 6 it suffices to consider nonstandard clusters with exte-

rior region connected and with non negative pressures and to prove they

are not weakly minimizing.



Chapter 2

The geometry of planar soap

bubbles

In this chapter, following also the PhD thesis of Wichiramala [17], we

discuss geometric properties of planar soap bubbles.

In the first section we introduce Möbius transformations, that are maps

with particular properties, namely they transform straight lines and circles

into straight lines and circles and they preserve angles between curves and

orientation as shown in Theorem 2.6 and Remark 2.5.

In the second section we determine some conditions under which some

components are vertically symmetric, as shown in Corollary 2.16. Further-

more Lemma 2.18 is very interesting, since it describes the situation when

there is a sequence of four-sided components.

Finally, in the last section, we conclude with Lemma 2.22, where we

show how to simplify clusters by reducing one component with three edges.

2.1 Möbius transformations

We introduce an important class of functions which have some nice

properties: Möbius transformations. We place Σ = C∪{∞} and we define

the set of Möbius transformations

35
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M =

{
F : Σ→ Σ

∣∣∣∣∣F (z) =
az + b

cz + d
, a, b, c, d ∈ C, ad− bc 6= 0

}
,

where

F

(
− d

c

)
=∞, if c 6= 0,

and

F (∞) =

{
∞, if c = 0
a
c , if c 6= 0.

Remark 2.1. We observe that F ∈ M is an homeomorphism on Σ, because

F is continuous, and its inverse transformation is F−1(z) = dz−b
−cz+a ∈ M.

The following maps are particular and important elements ofM:

i) the inversion F (z) = 1
z ;

ii) the translation F (z) = z + a with a ∈ C;

iii) the similarity F (z) = az with a ∈ Cr {0}.

These transformations are called elementary transformations.

It is easy to see that each F ∈ M is a composition of elementary trans-

formations. Indeed if c = 0, then (note that by the condition ad − bc 6= 0,

since c = 0, a and d are different from zero)

F (z) =
az

d
+
b

d
= (f2 ◦ f1)(z),

where f1(z) = az
d and f2(z) = z + b

d .

While if c 6= 0, then

F (z) =
az + b

cz + d
+ b = (f4 ◦ f3 ◦ f2 ◦ f1)(z),

where f1(z) = z + d
c , f2(z) = 1

z , f3(z) = bc−ad
c2
· z and f4(z) = z + a

c .
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Definition 2.2. Let Ω be an open set of R2 and f : Ω→ R2 a function. We say

that f is a conformal map in p ∈ Ω if it preserves the amplitude of angles

between curves through p.

In particular if f also preserves the orientation we say that f is a direct

conformal map in p.

Finally we say that f is a (direct) conformal map in Ω if f is a (direct)

conformal map in all p ∈ Ω.

We recall that the angle between two curves is the angle between the

two tangent lines to the curves in their common point.

Remark 2.3. If f is a differentiable function in Ω, the condition to preserve

the orientation is expressed by detDf(x) > 0 for all x ∈ Ω, where Df is the

Jacobian matrix of f .

Proposition 2.4. Let Ω be a subset of C and f : Ω → C a holomorphic function

in Ω with f ′(z) = df(z)
dz 6= 0 for all z ∈ Ω, then f is a direct conformal map in Ω.

Proof. We denote z = x + iy for all z ∈ C and f(z) = P (z) + iQ(z), then

f(x, y) = (P (x, y), Q(x, y)). Since f is holomorphic in Ω and f ′(z) 6= 0

for all z ∈ Ω, then1 detDf(x, y) = | f ′(z) |2 > 0. Now we prove that f

preserves angles. Let γ : (−1, 1) → R2, γ = (γ1, γ2) be a curve such that

γ(0) = z = x + iy = (x, y) and v = γ′(0) 6= 0. Thus, in view of Cauchy-

Riemann equation, the tangent vector ṽ to f ◦ γ is given by

ṽ =
d(f ◦ γ)(t)

dt

∣∣∣∣∣
t=0

= Df(x, y) · γ′(0)

1We recall that if f : Ω ⊆ C→ C is holomorphic in Ω, then we have that{
f ′(z) = ∂f(x,y)

∂x
= ∂P (x,y)

∂x
+ i ∂Q(x,y)

∂x

i ∂f(x,y)
∂x

= ∂f(x,y)
∂y

,

where i ∂f(x,y)
∂x

= ∂f(x,y)
∂y

is the Cauchy-Riemann equation, that is{
∂P (x,y)
∂y

= − ∂Q(x,y)
∂x

∂Q(x,y)
∂y

= ∂P (x,y)
∂x

.

Therefore we obtain that

detDf(x, y) = det

(
∂P (x,y)
∂x

∂P (x,y)
∂y

∂Q(x,y)
∂x

∂Q(x,y)
∂y

)
= det

(
∂P (x,y)
∂x

− ∂Q(x,y)
∂x

∂Q(x,y)
∂x

∂P (x,y)
∂x

)
= |f ′(z)|2.
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=

(
∂P (x,y)
∂x −∂Q(x,y)

∂x
∂Q(x,y)
∂x

∂P (x,y)
∂x

)
· γ′(0)

=
(

∂P (x,y)
∂x · γ′1(0)− ∂Q(x,y)

∂x · γ′2(0), ∂Q(x,y)
∂x · γ′1(0) + ∂P (x,y)

∂x · γ′2(0)
)

= f ′(z) · v,

where the last · denotes the complex multiplication. By assumption f ′(z) is

different from zero for all z ∈ Ω, thus we have that

f ′(z) = |f ′(z)|eiθ(z),

v = | v |eiθ.

So it follows that

ṽ = |f ′(z)| · | v |ei(θ(z)+θ),

namely ṽ is obtained expanding or contracting v of a factor |f ′(z)| and fi-

nally turning it of an angle θ(z). The key observation is that the angle θ(z)

depends only on z and not on the curve γ through z. Therefore, given two

curves γ1 and γ2 through z with tangent vectors v1 and v2 respectively, the

corresponding tangent vectors ṽ1 and ṽ2 to f ◦ γ1 and f ◦ γ2 differ from v1

and v2 of the same angle θ(z). It follows that if v1 and v2 define an angle α,

then ṽ1 and ṽ2 define the same angle.

Remark 2.5. By the previous proposition it is clear that

a) F ∈M is a direct conformal map in C if c = 0,

b) F ∈M is a direct conformal map in Cr {−d
c} if c 6= 0.

Indeed if c = 0, F ′(z) = a
d 6= 0 (in this case, since ad − bc 6= 0, ad 6= 0,

therefore a and d are different from zero), while if c 6= 0, F ′(z) = ad−bc
(cz+d)2

6=
0, thanks to the condition ad− bc 6= 0.

We note that if c = 0, F ∈ M is holomorphic in C, because it is a

composition of one translation and one similarity (see Remark 2.1). At the

same time if c 6= 0, by Remark 2.1, F ∈ M is a composition of elementary

transformations (translation, similarity and inversion), therefore it is holo-

morphic in Cr {−d
c} (note that the inversion is holomorphic in Cr {0}).



The geometry of planar soap bubbles. 39

We conclude this section with two significant results about Möbius trans-

formations. The first shows that Möbius maps transform straight lines and

circles into straight lines and circles. The second proves that Möbius trans-

formations are direct conformal maps in C.

Theorem 2.6. The elementary transformations, the translation and the similar-

ity,transform straight lines (circles) into straight lines (circles).

The inversion map F (z) = 1
z transforms straight lines R and circles C into

straight lines and circles in this way:

1) if C is a circle with center c and radius r, which does not pass through the

origin O = (0, 0), F (C) is a circle with center c̄
|c|2−r2 and radius r

| |c|2−r2 | ;

2) if C is a circle with center c and radius r, which passes through the origin

O = (0, 0) and c is not on the x-axis, F (C) is a straight line with slope
Re (c)
Im(c) and y-intercept q = − 1

2Im(c) ;

3) if C is a circle with center c and radius r, which passes through the origin

O = (0, 0) and c is on the x-axis (but it is not the origin), F (C) is the

vertical line with equation z + z̄ = 1
Re (c) ;

4) if R is a straight line with slope m and y-intercept q 6= 0, F (C) is the circle

with center c = −m
2q −

i
2q and radius r =

√
m2+1
2|q| ;

5) if R is a straight line with slope m and y-intercept q = 0, F (C) is the

straight line with slope −m and y-intercept q = 0;

6) if R is a vertical line with equation z+ z̄ = 2k and k 6= 0, F (C) is the circle

with center c = 1
2k and radius r = 1

2|k| ;

7) if R has equation x = 0, then it is kept.

In particular any F ∈ M transforms straight lines and circles into straight

lines and circles.

Proof. We recall that the equation of a circle with center c ∈ C and radius r

is

z · z̄ − z · c̄− z̄ · c+ |c|2 − r2 = 0, (2.1)
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while the straight line y = mx+ q can be written as

z(1− im)− z̄(1 + im)− 2iq = 0, (2.2)

if the straight line is not vertical with slope m and y-intercept q, while if it

is vertical and has equation x = k, the equation in z is

z + z̄ = 2k. (2.3)

It is easy to verify the statement about to the translations and homoth-

eties, therefore we only show the case of the inversion function F (z) = 1
z .

We begin to prove the first three assertions. The circle of equation (2.1)

becomes

(|c|2 − r2)z · z̄ − z · c− z̄ · c̄+ 1 = 0. (2.4)

If |c|2 − r2 6= 0, we can divide by |c|2 − r2 obtaining

z · z̄ − z ·

(
c

|c|2 − r2

)
− z̄ ·

(
c̄

|c|2 − r2

)
+

1

|c|2 − r2
= 0.

By (2.1), this is the equation of a circle with center c̄
|c|2−r2 and radius r

| |c|2−r2 | ,

because the square of the radius is

c̄

|c|2 − r2
· c

|c|2 − r2
− 1

|c|2 − r2
=

(
r

|c|2 − r2

)2

.

If |c|2− r2 = 0, i.e. the circle C passes through the origin O, by equation

(2.4), F (C) is the following straight line:

z · c+ z̄ · c̄− 1 = 0. (2.5)

By multiplying by i we have

z · (ic) + z̄ · (ic̄)− i = 0,

where ic = −(Im(c) − iRe (c)) and ic̄ = (Im(c) + iRe (c)). Thus if Im(c) is

different from zero, the previous equation becomes
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z ·

(
1− i

Re (c)

Im(c)

)
− z̄

(
1 + i

Re (c)

Im(c)

)
− 2i

(
− 1

2Im(c)

)
= 0.

By (2.2), this is the equation of a straight line with slope m = Re (c)
Im(c) and

y-intercept q = − 1
2Im(c) .

If |c|2 − r2 = 0 and Im(c) = 0, i.e. the circle C passes through the origin

O and the center is on the x-axis, by (2.5), F (C) is

z · Re (c) + z̄ · Re (c)− 1 = 0. (2.6)

Since r is positive and |c|2 − r2 = 0, then |Re (c) | = r, therefore Re (c) is

different from zero. Hence the equation (2.6) represents a vertical straight

line of equation z + z̄ = 1
Re (c) .

Now we prove 4) and 5). The straight line of equation (2.2) becomes

z̄ · (1− im)− z · (1 + im)− 2iqz̄ · z = 0. (2.7)

If q 6= 0, we can divide by −2iq obtaining

z̄ · z − z ·

(
− m

2q
+

i

2q

)
− z̄ ·

(
− m

2q
− i

2q

)
= 0.

By (2.1), it is an equation of a circle with center −m
2q −

i
2q and it passes

through the origin, therefore its radius is | − m
2q −

i
2q | =

√
m2+1
2|q| .

If q = 0, i.e. the straight line R passes through the origin O, by (2.7),

F (R) is the following straight line

z̄ · (1− im)− z · (1 + im) = 0. (2.8)

By (2.2), it is an equation of a non vertical straight line passing through the

origin (thus the y-intercept is q = 0) with slope −m.

Finally we prove 6) and 7). The straight line of equation (2.3) becomes

z̄ + z = 2k · z̄ · z. (2.9)

If k 6= 0, we can divide by 2k obtaining

z̄ · z − z · 1

2k
− z̄ · 1

2k
= 0.
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By (2.1), it is an equation of a circle with center 1
2k and it passes through the

origin, therefore its radius is 1
2|k| .

If k = 0, i.e. the vertical straight line R is the y-axis, by (2.9), F (R) is R

because its equation is

z̄ + z = 0.

By Remark 2.1 any Möbius transformation is a composition of elemen-

tary transformations. Then it is obvious that any Möbius function trans-

forms straight lines and circles into straight lines and circles.

Definition 2.7. Let r1 and r2 be two intersecting lines in a point p. We say

that the angle to ∞ between r1 and r2 is the supplementary of the angle

defined in p.

Proposition 2.8. The inversion F (z) = 1
z is a direct conformal map on C.

Proof. By Remark 2.5 for all z ∈ C r {0}, F is a direct conformal map. We

prove that F keeps the oriented angles also in z = 0.

We denote by Rθ(z) = eiθz a rotation of angle θ. We observe that (F ◦
Rθ)(z) = (R−θ ◦ F )(z) for all z ∈ Cr {0} (note that F−1 = F ), thus we can

show the statement up to rotations.

Furthermore let T be the tangent line to the curve γ in the origin, then

F (T ) is parallel to the tangent line, T ′, to F (γ). We parameterize γ with a

cartesian parameterization

Φ: I → R2,Φ(u) = (u, ϕ(u)), (2.10)

where 0 ∈ I , I is an open interval of R, ϕ ∈ C2(I,R) and ϕ(0) = 0. We see

the inversionF as a function of real variables, i.e. F (x, y) = ( x
x2+y2

,− y
x2+y2

).

Certainly F ◦ Φ is a parameterization of F (γ), where

(F ◦ Φ)(u) =

(
u

u2 + ϕ(u)2
,− ϕ(u)

u2 + ϕ(u)2

)
, u ∈ I.

In order to prove that F (T ) is parallel to T ′, it is sufficient to show that

the slopes of F (T ) and T ′ are the same. By (2.10) the slope of T is ϕ′(0),
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therefore, by Theorem 2.6, the slope of F (T ) is

−ϕ′(0). (2.11)

The cartesian coordinate of F (γ) is U := u
u2+ϕ(u)2

. We note that U → +∞ if

and only if u→ 0; furthermore

d

dU
=

(
− (u2 + ϕ(u)2)2

u2 − ϕ(u)2 + 2u · ϕ(u) · ϕ′(u)

)
d

du
.

Thus the slope of T ′ is

lim
u→0

(
− (u2 + ϕ(u)2)2

u2 − ϕ(u)2 + 2u · ϕ(u) · ϕ′(u)

)
· d

du

(
− ϕ(u)

u2 + ϕ(u)2

)
. (2.12)

We observe that

− ϕ(u)

u2 + ϕ(u)2
=

u

u2 + ϕ(u)2
·

(
− ϕ(u)

u

)
, u 6= 0. (2.13)

By Taylor expansion we have that

−ϕ(u)

u
= −ϕ′(0) +O(u), u→ 0.

Hence, by (2.13), we get that

− ϕ(u)

u2 + ϕ(u)2
=

u

u2 + ϕ(u)2
·
(
− ϕ′(0) +O(u)

)
, u→ 0.

By simple calculations we find that

d

du

(
u

u2 + ϕ(u)2

)
= −u

2 − ϕ(u)2 + 2u · ϕ(u) · ϕ′(u)

(u2 + ϕ(u)2)2
,

and d
du(−ϕ′(0) +O(u)) is bounded around u = 0. Therefore we have that

lim
u→0

(
−

(u2 + ϕ(u)2)2 ·
(
− ϕ′(0) +O(u)

)
u2 − ϕ(u)2 + 2u · ϕ(u) · ϕ′(u)

)
· d

du

(
− u

u2 + ϕ(u)2

)
=−ϕ′(0),

lim
u→0

(
− (u2 + ϕ(u)2) · u
u2 − ϕ(u)2 + 2u · ϕ(u) · ϕ′(u)

)
· d

du

(
− ϕ′(0) +O(u)

)
= 0,

because it holds that

lim
u→0

(
(u2 + ϕ(u)2) · u

u2 − ϕ(u)2 + 2u · ϕ(u) · ϕ′(u)

)
= 0.
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Thus, by (2.12), we derive that the slope of T ′ is −ϕ′(0). By (2.11), we see

that F (T ) and T ′ have the same slope, therefore F (T ) and T ′ are parallel.

Hence recalling that the angle between two curves is the angle between

the two tangent lines to the curves in their common point, we need to

prove that F keeps the oriented angles between two straight lines that pass

through the origin. Up to rotations we can think that one straight line has

equation x = 0 and the other has equation y = mx. By Theorem 2.6 the

straight line of equation x = 0 is kept, while the straight line of equation

y = mx becomes the straight line of equation y = −mx. We establish to

measure the angle between two straight lines counterclockwise. Thus, by

Definition 2.7 we get the statement (see also Figure 2.1).

Figure 2.1: In the origin O = (0, 0) two straight lines of equations x = 0 and

y = mx pass creating an angle α. The inversion function fixes the straight line

of equation x = 0 and transforms the straight line of equation y = mx into the

straight line of equation y = −mx defining an angle to the infinity of π − β = α.

Remark 2.9. By Remark 2.5 and Proposition 2.8 it follows that any Möbius

transformation is a direct conformal map on C.
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2.2 The geometry of planar bubbles

This section establishes important facts about basic planar geometry of

lines and circles.

Lemma 2.10. [17] At a vertex where three circular arcs meet at 120◦ angles, the

cocycle condition is equivalent to requiring that the three circular edges leaving the

vertex meet again in a single point and thus form a standard double bubble in the

extended plane (R2 ∪∞).

Proof. Let three edges meet at 120◦ angles in a point p. First of all we prove

that if the three edges satisfy the cocycle condition (the sum of the three

oriented curvatures is zero), then the three edges meet again in other point

q.

Figure 2.2: The cases where at least one edge is straight; in the first picture there

are three straight edges and in the other only one edge is straight.

At the beginning we consider the situation where two edges are straight.

Then by the cocycle condition, the third edge is also straight. Hence the

three edges meet again at infinity at 120◦ (see Figure 2.2).

We suppose now that there is only one straight edge, therefore by the

cocycle condition, the other two edges have the same absolute curvature.

So the two edges define a component with two sides with two possibilities

as in Figure 2.2.
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Finally we take the case where each absolute curvature is positive; we

suppose that two edges g and h meet in another point q (see Figure 2.3),

then we must prove that the third edge, f , meets q. We consider the edge

c of the circle C, that crosses p and q and which has the same direction of

the edge f in p (i.e the two arcs have the same tangent in p and the same

position respect to it), then we just show that k(c) = k(f), where we denote

by k(l) the absolute curvature of any edge l (see Figure 2.3). In this way we

have two arcs c and f with the same absolute curvature, that pass through

p and have the same direction in p, then the two edges are the same and so

f meets q.

By the assumptions, we know that (we use the convention seen in Re-

mark 1.27)

k(g)− k(h)− k(f) = 0,

hence we want to prove that also

k(g)− k(h)− k(c) = 0;

so we get k(c) = k(f).

Figure 2.3: The edges g and h meet again in q; we must see that the third edge, f ,

has the same absolute curvature of edge c of the circle, that crosses p and q and it

has the same direction of edge f in p.

Indeed, observing Figure 2.3, we have that (we denote by d(p, q) the
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distance between two point, p and q)

k(c) =
2 sin θ

d(p, q)
,

k(g) =
2 sin (2π − 2π

3 − θ)
d(p, q)

= −
2 sin (2π

3 + θ)

d(p, q)
, (2.14)

k(h) =
2 sin (θ − 2π

3 )

d(p, q)
.

Using also the convention view in Remark 1.27, we get that

k(g)− k(h)− k(c) = − 2

d(p, q)

(
sin
(2π

3
+ θ
)

+ sin
(
θ − 2π

3

)
+ sin θ

)

= − 2

d(p, q)

(√
3 cos θ

2
− sin θ

2
− sin θ

2
−
√

3 cos θ

2
+ sin θ

)
= 0, ∀θ.

Finally we prove the viceversa, namely if the three edges meet again

in q forming a standard double bubble, then the sum of the three oriented

curvature in p is zero. The proof is based on Figure 2.3, on the formulas

(2.14) and on the fact that sin (2π
3 + θ) + sin (θ − 2π

3 ) + sin θ = 0 for all θ.

Figure 2.4: The four cases for three edges meet in a point p with positive

absolute curvature.

Remark 2.11. We explicitly observe that the possibilities in Figure 2.4 are

the only cases for three edges to meet in a point p with positive absolute
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curvature; at the top there are two possibilities where the cocycle condi-

tion is not satisfied, at the bottom other two possibilities where the cocycle

condition is satisfied.

Corollary 2.12. [17] The cocycle condition is invariant under a Möbius map.

Proof. By Theorem 2.6, any Möbius map transforms straight lines and cir-

cles into straight lines and circles and, by Remark 2.9, it preserves the ori-

ented angles, therefore any standard double bubble is also sent to another

standard double bubble. Thus, by Lemma 2.10 we have the claim.

In the next lemmas we discuss about geometry of consecutive edges of

a component where it has internal angles of 120◦ (see Figure 2.5).

Figure 2.5: Internal angles of a component are 120◦. The shade denotes

interior of a component.

Figure 2.6: Three consecutive edges e, g and f with internal angles of 120◦

where e and f have the same signed curvature but different centers, O and

O′.
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Lemma 2.13. [17] Let e, g and f be consecutive edges of a component C, such

that e and f have the same signed curvature and different centers, O and O′ re-

spectively. Denote by l the axis of the segment OO′, then l is the axis of g (see

Figure 2.6).

Proof. Let E and F be the circle to which e and f belong; having different

centers, E and F are distinct.

Figure 2.7: Three consecutive edges e, g and f with internal angles of 120◦ where

e and f have the same signed curvature but different centers. So the axis of the

segment OO′ is the axis of g.

Looking at Figure 2.7 and denoted by α, the angle between the line

through the vertices A and B of the edge g and the arc g, then the angle

between the tangent t1 to E in A and AB is 2π
3 − α. The same is the angle

between the tangent t2 to F in B and AB. Furthermore the angle between

t1 and the radius OA of E is 90◦, and at the same time, the angle between

t2 and the radius O′B of F . Therefore OÂP = O′B̂Q := γ and so

OP = d(O,AB) = R sin γ = O′Q = d(O′, AB).

Thus AB and OO′ are parallel; furthermore in this way l is perpendicular
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to AB and AT = TB, because AP = AO cos γ = O′B cos γ = QB and

PT = OS = SO′ = TQ, since l is the axes of the segment OO′. This

completes the proof.

Remark 2.14. We explicitly note that in Lemma 2.13 it is very significant

that the edges have the same signed curvature, indeed it allows us to prove

that the straight lines AB and OO′ are parallel.

Definition 2.15. Let e and f be two edges; we say that e and f are cocircular

if e and f are in the same circle.

Figure 2.8: Two examples of components C with four sides and vertically sym-

metric.

Corollary 2.16. Let C be a component with four edges, whose lateral sides have

the same signed curvature and which are not cocircular, then C is vertically sym-

metric.

Proof. Let e and f be the lateral sides of C, component with four edges;

since e and f are not cocircular, then e and f have different centers, O and

O′ respectively, as shown in Figure 2.8. Furthermore by assumption e and
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f have the same signed curvature, so by Lemma 2.6, if we consider the axis

l of the segment joining the centers O and O′, l is the axis of the top and

bottom sides of C. Therefore l is the vertical axis of C.

Now we show two important lemmas. In the first one we determine

the unique shape for a particular component with four edges and in the

second we describe the situation where there is a sequence of four-sided

components.

Lemma 2.17. Let C be a four-sided component with inner angles of 2π
3 and two

opposite concave edges (concave edge according to Definition 1.28), then, if the

concave sides are cocircular, the top and the bottom edge of C are strictly convex

and strictly concave respectively. In particular the shape of C, up to translations,

rotations and homoteties, is uniquely determined and it is represented in Figure

2.9.

Figure 2.9: The unique shape of a four-sided component C with two opposite

concave circular edges and internal angles of 2π
3 .

Proof. Since the two opposite edges are concave and cocircular, then they

are external to the circle. Furthermore C has four edges, therefore its turn-
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ing angle is 2π
3 , thus at least one of the other sides must be strictly convex

(i.e its signed curvature must be positive). It is clear that the bottom edge of

C must be strictly concave because, as shown in Figure 2.10, otherwise the

condition of inner angles of 2π
3 is contradicted. This concludes the proof.

Figure 2.10: In the first and second picture the bottom edge is straight and strictly

convex respectively. In both, we note that there are two inner angles greater than

π.

Lemma 2.18. [17] In a sequence of four-sided components of a bubble E (see

Figure 2.11), if the sides ui and vi are cocircular, then any edges uj and vj are

cocircular.

Proof. By assumption there exists an index i such that the edges ui and vi

are cocircular. We note that, since this sequence of four-sided components

is in a bubble E, in each vertex the cocycle condition holds. Therefore all

edges uj and vj have the same absolute curvature respectively. We just

show that uj and vj also have the same center. This is a consequence of

Lemma 2.10. Indeed we consider a couple of edges uj and vj , respectively

consecutive to ui and vi, as shown in Figure 2.11.
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Figure 2.11: A sequence of four-sided components of a bubble E.

Since in the vertices A and B it is true the cocycle condition and the

edges ui and vi are cocircular meeting the edge s in A and B, then, by

Lemma 2.10, both edges uj and vj belong to the same arc, that passes to

A and B with the same direction of uj in A and the same direction of vj
in B. Therefore uj and vj also have the same center. We repeat the same

argument for another couple of edges, so the lemma statement is clear.

Now we present a lemma, that describes the curvature of a inner and

external edge to a circle.

Lemma 2.19. Let C be a circle of radius R and let L be an arc of a circle joining

two points P and Q of C. If L meets inside C at inner angles 2π
3 as in Figure 2.12,

then its curvature is given by

kiL(θ) :=
1

R
·

sin
(
π
6 − θ

)
cos θ

, θ ∈
]
− π

2
,
π

2

[
. (2.15)

Instead if L meets outside C at inner angles 2π
3 as in Figure 2.13, then its

curvature is given by

keL(θ) :=
1

R
·

sin
(

5π
6 − θ

)
cos θ

, θ ∈
]
− π

2
,
π

2

[
. (2.16)
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In particular the functions kiL and keL are bijective and kiL, keL are strictly

decreasing and increasing respectively.

Figure 2.12: An edge L meets inside the circle C at inner angle 2π
3 .

Proof. We can assume that the circle C is centered in the origin of the plane

O = (0, 0), otherwise we translate it. We call P and Q the meeting point

between L and C and we respectively denote by α and θ, the angle between

L and the joining line of its vertices P and Q and the angle determined

by P on the circle. We denote by d(A,B) the distance between two point

in the plane. Initially we prove (2.15); observing Figure 2.12 we have that
π
2 + θ + α = 2π

3 , thus

α =
π

6
− θ. (2.17)

Now P = R(cos θ, sin θ) and Q = R(− cos θ, sin θ). By the formulas in

Proposition 5.4 we get that (note that θ ∈]− π
2 ,

π
2 [)

kiL(α) =
2 sinα

d(P,Q)

(2.17)
=

2 sin
(
π
6 − θ

)
2R| cos θ|

=
1

R
·

sin
(
π
6 − θ

)
cos θ

.

This is (2.15).
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Figure 2.13: An edge L meets outside the circumference C at inner angle 2π
3 .

Finally we prove (2.16). In this case we are in the situation illustrated in

Figure 2.13. By assumption L meets C at inner angles 2π
3 , then the external

angles between L and C are 4π
3 . Therefore we have that π2 +θ+α = 4π

3 , thus

α =
5π

6
− θ. (2.18)

We also obtain that P = R(cos θ, sin θ) and Q = R(− cos θ, sin θ). By the

formulas in Proposition 5.4 we get that (note that θ ∈]− π
2 ,

π
2 [)

keL(α) =
2 sinα

d(P,Q)

(2.18)
=

2 sin
(

5π
6 − θ

)
2R| cos θ|

=
1

R
·

sin
(

5π
6 − θ

)
cos θ

.

This is (2.16).

We see that the functions kiL and keL are bijective. Their first derivative

are

d kiL(θ)

dθ
= −
√

3

2
· 1

cos2 θ
· 1

R
,

d keL(θ)

dθ
=

√
3

2
· 1

cos2 θ
· 1

R
.
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Thus the first derivatives are negative and positive respectively, there-

fore kiL and keL are strictly decreasing and increasing respectively. Then kiL
and keL are injective. It is very simple to see that

lim
θ→−π

2
+
kiL(θ) = +∞,

lim
θ→π

2
−
kiL(θ) = −∞,

lim
θ→−π

2
+
keL(θ) = −∞,

lim
θ→π

2
−
keL(θ) = +∞.

Hence kiL and keL are surjective (note that kiL and keL are continuous), then

the proof is concluded.

Remark 2.20. We note that in Lemma 2.19, the monotonicity and the bi-

jectivity of the functions kiL and keL do not depend by the radius R of the

circle.

2.3 Reduction of a bubble with three edges

In this section we show how to simplify clusters by reducing any com-

ponent with three edges. We call this method reduction of a three-sided

component.

We begin with a lemma, that gives the uniqueness of a three-sided com-

ponent with internal angles of 2π
3 on an equilateral triangle.

Lemma 2.21. Let T be an equilateral triangle, then the three-sided component

C with internal angles of 2π
3 and the same vertices of T is unique and it is as in

Figure 2.14, namely the angles between the edges of C and the corresponding sides

of T (i.e the chord line of the edge of C) are 30◦. In particular each edge of C has

the same curvature.
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Figure 2.14: The only three-sided component C with internal angles of 2π
3 and the

same vertices of an equilateral triangle T .

Proof. Fixed an equilateral triangle T , let A, B and C be its vertices and l be

the length of its side. It is clear that we can make a three-sided component

with internal angles of 2π
3 and the same vertices of T . Indeed we fix a vertex

of T and the corresponding opposite side, then we consider the circle with

center in this vertex and radius l. Since T is equilateral, this circle passes

through the vertices of the fixed side, creating an angle of π
6 between the

side of T and the arc of the circle for the vertices of the side (see Figure

2.15).

Figure 2.15: The sides AB and CB are equal, because T is equilateral, therefore if

we consider the circle with center in B and radius l, then it passes from A and C,

creating an angle of π6 between itself and the side of T , that crosses the vertices A

and C.
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We repeat this construction for the other vertices and the corresponding

opposite sides and so we obtain the component as illustrated in Figure 2.14.

Now we must see that, given T , we cannot realize any other three sided

component C with internal angles of 2π
3 and the same vertices of T . We

call θ1, θ2, θ3 the half of the turning angle of the edges L1, L2 and L3 of C

respectively. We note that, since the vertices of T must be the vertices of

C, then each side of T represents the chord line of an arc of C. By Lemma

1.38, we know that
∑3

i=1 θi = π
2 , thus there exists an index i ∈ {1, 2, 3}

such that 0 < θi < π (i.e there exists at least one edge of C with positive

signed curvature2). Without loss of generality we can assume i = 1 and

we consider positive the angles that are exterior to the triangle. The edges

L2 and L3 cannot be straight, because if L2 is straight (the argument is the

same if L3 is straight), then θ1 = π
3 , because the internal angles ofC must be

of 2π
3 and T is equilateral. Therefore L3 is also straight, then C would have

an internal angle of π3 as illustrated in Figure 2.16, but this is a contradiction.

Figure 2.16: If L2 is straight, since the internal angles of C must be of 2π
3 and T

is equilateral, then L3 must be straight and so C would have an internal angle of
π
3 .

2We recall that the curvature k of an edge through the points P and Q is k = 2 sin θ
d(P,Q)

,

where θ is the angle between the edge and the segment.
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Figure 2.17: The situation in the case if min
i=2,3

θi = θ2 ≤ −
π

3
.

Therefore we have that min (| θ2 |, | θ3 |) > 0. Furthermore we prove that,

if min (θ2, θ3) < 0, then

min (θ2, θ3) > −π
3
, (2.19)

namely, the arcs of C are external or inner to T .

For example we suppose that min (θ2, θ3) = θ2; if min (θ2, θ3) = θ3 the

argument is the same. We proceed by contradiction, then we are in the

situation described in Figure 2.17. We recall that 0 < θ1 < π and the internal

angles of C must be of 2π
3 , but in the angle between L1 and L2 we have that

2π

3
= θ1 + θ2 < π − π

3
=

2π

3
.

This is a contradiction, thus min (θ2, θ3) > −π
3 .

We note that we have decided to consider positive the angles that are

exterior to the triangle and by (2.19) the angles θ1, θ2, θ3 are external or

internal to T (θ1 is always external). Since the internal angles of C must be

of 2π
3 , θ1, θ2, θ3 must satisfy the following linear system (in Figure 2.18 the
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Figure 2.18: This is the situation when min
i=1,2,3

θi > 0.

case when min
i=1,2,3

θi > 0 is represented)
θ1 + π

3 + θ2 = 2π
3

θ2 + π
3 + θ3 = 2π

3

θ3 + π
3 + θ1 = 2π

3 .

The only solution of this system is θ1 = θ2 = θ3 = π
6 . Therefore C is as

in Figure 2.14.

Figure 2.19: A componentC with three edges, whose incident edges are prolonged.
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Lemma 2.22. [17] Let C be a component with three edges of a planar regular N -

cluster E, then, extending its three incident edges (incident edge according to the

Definition 1.34) into the component, they meet in a point satisfying the cocycle

condition (see Figure 2.19).

Proof. By Definition 1.31 we know that in each vertex of a planar regularN -

cluster E, the cocycle condition is satisfied. By Lemma 2.10 this means that

the three edges leaving the vertex meet again and thus form a standard

double bubble. Thus we can extend in this way the three incident edges

of a three-sided component C of E. We recall that the orientation of any

component is fixed as in Remark 1.26. We choose F , a Möbius map, such

that the three vertices of C go into the vertices of an equilateral triangle as

in Figure 2.20.

Figure 2.20: A component C with three edges and its extended incident edges are

mapped by a Möbius map into an equal-sided three component.

We explicitly note that, by Remark 2.9, any Möbius transformation is a di-

rect conformal map on C. Hence C and F (C) have the same orientation

and so in this way the interior of the image of C is the image of the interior

of C. Since the vertices A′, B′ and C ′ of F (C) are vertices of an equilateral
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triangle, by Lemma 2.21, F (C) is a three component with equal edges and

each arc has the same curvature. Furthermore in the vertices A′, B′ and C ′

of F (C) the cocycle condition applies because it is true in the vertices A, B

and C and F is a Möbius map (see Corollary 2.12). Thus the three incident

edges of C are mapped by F in three straight lines, which are the axis of

symmetry of F (C) (see Figure 2.20). In the inner point of F (C), where the

image of extended incident edges of C meet, the angles are 120◦ creating

a standard double bubble at the infinity; so by Lemma 2.10 here it is sat-

isfied the cocycle condition. Now we can return back with F−1 (since F

is a Möbius map then F−1 is a Möbius map ) and so we obtain the state-

ment.

Remark 2.23. The Möbius map of the previous lemma, up to translations

and homotheties, that sends the three vertices A, B and C of a three-sided

component of a regular planar N -cluster E in the three vertices A′, B′ and

C ′ of an equilateral triangle, is

F (z) =
z · eiπ

3 (C −B)

z(C −B · eiπ
3 )− CB(1− eiπ

3 )
. (2.20)

Indeed, without loss of generality, we can assume thatA = (0, 0) (other-

wise we translate the three-sided component; in complex notation A = 0)

and B = (B, 0) (otherwise we rotate the three-sided component; in com-

plex notation the imaginary part ofB is null and so B ∈ R). We show that a

Möbius transformation exists, that transforms A, B and C in the following

equilateral triangle A′ = (0, 0), B′ = (1, 0) and C ′ = (1
2 ,
√

3
2 ) (in complex

notation they are 0, 1 and eiπ
3 respectively). If we prove this, then three

vertices A, B, C can be transformed in any equilateral triangle composing

F with suitable translations or homotheties.

In order to prove that A, B and C can be mapped in A′, B′ and C ′,

we must imposed the following relations (we recall that F (z) = az+b
cz+d , with

a, b, c, d ∈ C such that ad− bc 6= 0)
b = 0

aB = cB + d

aC = eiπ
3 (c · C + d).
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Since three vertices A, B and C are distinct we have that (we can divide for

B and C that are non zero)


b = 0

a = cB+d
B

a = ei
π
3 (c·C+d)
C .

From the second and third equation we get that

c · CB(1− eiπ
3 ) + d(C −B · eiπ

3 ) = 0.

If C−Beiπ
3 = 0, then we have that the starting triangle is equilateral, there-

fore we can choose F (z) = z. Thus C −Beiπ
3 6= 0 and so we find that

d = −c · CB(1− eiπ
3 )

C −B · eiπ
3

. (2.21)

Since we have that b = 0, then ad − bc = ad 6= 0, thus a and d must be

different from zero. By (2.21), we obtain that c 6= 0. Therefore with simple

algebraic computations we have (2.20).



Chapter 3

Conditions on area, variations

and estimates of bubbles

This chapter is divided in three section.

In this first section, we present the key theorem of the thesis; it is Theo-

rem 3.5 and it gives some necessary conditions on the quantity of area that

different components of the same region must have.

In the second section we introduce three particular variations in Lemma

3.11, Lemma 3.12 and Lemma 3.14. In the first we find the minimum quan-

tity of area that a component of a disconnected region must have. In the

second the goal is to promote the external components of a region respect

to its inner components; this will give an important estimate for the pres-

sure of a region. In particular it is very significant in the case when a big

component of a region is external.

Finally in the last Lemma we determine a simple estimate for all edges

of a weakly minimizing N -cluster for the problem (1.10).

In the third section we conclude with an interesting lemma, Lemma

3.16, where we determine a significant estimate for the pressures of a stan-

dard double bubble.

64
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3.1 Necessary conditions on area

Lemma 3.1. Let C and D be real constants such that D is non negative and
√
D ≤ C ≤

√
2D, then the solution of the following inequality

√
x+
√
D − x ≤ C, 0 ≤ x ≤ D, (3.1)

is

0 ≤ x ≤
D −

√
C2 · (2D − C2)

2
or

D +
√
C2 · (2D − C2)

2
≤ x ≤ D.

(3.2)

Proof. With easy algebraic steps and by assumption on the constants C and

D, we obtain that the solution of (3.1) is the same of the following inequality

4x2 − 4x ·D + (C2 −D)2 ≥ 0,

that is just (3.2).

Remark 3.2. Let C and D be real constants such that D is positive and
√
D < C <

√
2D, then

0 <
D −

√
C2 · (2D − C2)

2
<
D

2
,

D

2
<
D +

√
C2 · (2D − C2)

2
< D.

(3.3)

First of all we note that D+
√
C2·(2D−C2)

2 = D − D−
√
C2·(2D−C2)

2 . There-

fore we just show that 0 <
D−
√
C2·(2D−C2)

2 < D
2 . By assumption it is imme-

diately clear that D−
√
C2·(2D−C2)

2 < D
2 , while

D −
√
C2 · (2D − C2)

2
> 0

is equivalent to

C2 · (2D − C2) < D2
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and it is the same as

C4 − 2D · C2 +D2 = (C2 −D)2 > 0.

By assumption C2 > D, thus the last inequality is true.

This proves (3.3).

Remark 3.3. Let C and D be real constants such that D is positive and
√
D < C <

√
D
(
1 + 2

√
2

3

)
, then

0 <
D −

√
C2 · (2D − C2)

2
<
D

3
,

2D

3
<
D +

√
C2 · (2D − C2)

2
< D.

(3.4)

Since 1 + 2
√

2
3 < 2, then

√
D < C <

√
2D, thus, by Remark 3.2,

0 <
D −

√
C2 · (2D − C2)

2
<
D

2
,

D

2
<
D +

√
C2 · (2D − C2)

2
< D.

Therefore to prove (3.4), it is enought to show that D−
√
C2·(2D−C2)

2 < D
3

when D > 0 and
√
D < C <

√
D
(
1 + 2

√
2

3

)
. Indeed we have that

D −
√
C2 · (2D − C2)

2
<
D

3

is equivalent to √
C2 · (2D − C2) >

D

3
,

that is same as

C4 + C2(−2D) +

(
D

3

)2

< 0.

The solution of the previous inequality is

D ·
(

1− 2
√

2

3

)
< C2 < D ·

(
1 +

2
√

2

3

)
. (3.5)

By assumption C >
√
D, thus C2 > D > D ·

(
1 − 2

√
2

3

)
. Thus (3.5) is

equivalent to
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−

√
D ·
(

1 +
2
√

2

3

)
< C <

√
D ·
(

1 +
2
√

2

3

)
.

Also by assumption C >
√
D and D > 0, thus C > 0, so the previous

relation is equivalent to

C <

√
D ·
(

1 +
2
√

2

3

)
.

This completes the proof.

Remark 3.4. We explicitly note the following estimate holds on p∗2,N (a)

p∗2,N (a) >
√
π

( N∑
i=1

√
ai +

√
a0

)
, (3.6)

where a0 :=

N∑
i=1

ai.

In particular

p∗2,N (a)−
√
π

(∑
j 6=i

√
aj +

√
a0

)
√
π

>
√
ai, (3.7)

for all i = 1, . . . , N .

Indeed we consider E ∈M∗2,N (a), then, by the isoperimetric inequality,

we get that (note that, by Remark 1.7, E ∈ M2,N (m(E)), thus, by Theorem

1.10, Ei can not be a circle)

P (E) =
1

2

( N∑
i=1

P (Ei) + P (E0)

)
>
√
π

( N∑
i=1

√
ai +

√
a0

)
.

Therefore, we have (3.6).

Given a ∈ RN+ , a = (a1, . . . , aN ), we set a0 :=

N∑
i=1

ai and let i be an index

in {1, . . . , N}, then we place

Φi,a(p) : =

p−
√
π

(
√
a0 +

∑
j 6=i

√
aj

)
√
π

,
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(3.8)

xi,a(p) : =
ai −

√
Φ2
i,a(p) ·

(
2ai − Φ2

i,a(p)
)

2
, ∀p ∈ {p |Φi,a(p) ≤

√
2ai},

where p is the value of the perimeter of E ∈ C∗2,N (a).

Theorem 3.5. Let E ∈ M∗2,N (a) and p be the perimeter of a weak competitor

such that Φi,a(p) <
√

2ai. If E is not standard with disconnected region Ei, then

each disjoint union U of components of Ei, satisfies that 0 < |U | ≤ xi,a(p) or

|U | ≥ ai − xi,a(p).

Proof. By Remark 1.19 we can see Ei as finite disjoint union of its compo-

nents. We suppose by contradiction that there exists one disjoint union U

of components of the region Ei such that xi,a(p) < |U | < ai − xi,a(p). By

(3.7) of Remark 3.4 and by assumption on p we have that

√
ai < Φi,a(p) <

√
2ai. (3.9)

We set D = ai and C = Φi,a(p), then, by (3.9) and by Remark 3.2, we get

that

0 < xi,a(p) =
D −

√
C2 · (2D − C2)

2
<
ai
2
. (3.10)

Thus it follows that, by the minimality of E and by the isoperimetric in-

equality, (note that, by (3.10), |EirU |= |Ei |− |U | ≥ ai−|U |>xi,a(p)>0)

p ≥ P (E) ≥ 1

2

(
P (U) + P (Ei r U) + P (E0) +

∑
j 6=i

P (Ej)

)
(3.11)

≥
√
π

(√
|U |+

√
ai − |U |+

√
a0 +

∑
j 6=i

√
aj

)
.

Let x = |U |, therefore we have the following inequality

√
x+
√
ai − x ≤

p−
√
π

(∑
j 6=i

√
aj +

√
a0

)
√
π

= Φi,a(p),

for xi,a(p) < x < ai − xi,a(p). It contradicts Lemma 3.1, because by (3.9), it

follows that
√
D < C <

√
2D.
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In the following remark we show that, in Theorem 3.5, it is better to

choose a value p of a perimeter of E ∈ C∗2,N (a) ”near” to p∗2,N (a) and such

that Φi,a(p) <
√

2ai.

Remark 3.6. Let q be the value of the perimeter of E ∈ C∗2,N (a) such that

Φi,a(q) <
√

2ai, then the function (the index i is fixed in {1, . . . , N})

xi,a : [p∗2,N (a), q]→ R, xi,a(p) =
ai −

√
Φ2
i,a(p) ·

(
2ai − Φ2

i,a(p)
)

2
,

(3.12)

is strictly increasing. In particular xi,a(p∗2,N (a)) ≤ xi,a(q).

We set I = [p∗2,N (a), q]; the first derivative of Φi,a is Φ
′
i,a(p) = 1√

π
, there-

fore Φi,a is strictly increasing on I . Thus, by (3.7) of Remark 3.4 and by

assumption on q, we have that

√
ai < Φi,a

(
p∗2,N (a)

)
≤ Φi,a(p) ≤ Φi,a(q) <

√
2ai, ∀p ∈ I. (3.13)

Then the function xi,a is well defined on I and xi,a(p) = (F ◦Φi,a)(p), where

F (x) : =
ai−
√
x2·(2ai−x2)

2 , with x ∈ [Φi,a

(
p∗2,N (a)

)
,Φi,a(q)]. By algebraic cal-

culations the first derivative of F is (note that x ≥ Φi,a

(
p∗2,N (a)

)
>
√
ai > 0)

F ′(x) =
x2 − ai√
2ai − x2

. (3.14)

Then the first derivative of xi,a is

x
′
i,a(p) =

F ′
(
Φi,a(p)

)
√
π

=
Φ2
i,a(p)− ai√

π ·
(
2ai − Φ2

i,a(p)
) . (3.15)

From (3.13) the claim follows.

Remark 3.7. By Remark 1.19, given E ∈ M∗2,N (a), each disconnected re-

gion Ei of E can be seen as disjoint union of its components. In the follow-

ing remark we will show, as under specific conditions, there is a particular

decomposition for Ei.

Remark 3.8. Let E ∈M∗2,N (a) and p be the perimeter of a weak competitor

such that Φi,a(p) <

√
ai ·
(

1 + 2
√

2
3

)
. We show that if the region Ei of E is

not connected then
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Ei = E0
i t E1

i t . . . E
M(i)
i , (3.16)

with

a) |E0
i | ≥ |Ei | − xi,a(p) ≥ ai − xi,a(p);

b) 0 <

∣∣∣∣ M(i)⊔
j=1

Eji

∣∣∣∣ ≤ xi,a(p)

where Eji is a component of Ei for any j = 0, . . . ,M(i) (note that M(i) is

finite by Theorem 1.10 and M(i) > 1, because Ei is disconnected). Further-

more it holds that 0 < xi,a(p) < ai
3 , therefore any Eji (j = 1, . . . ,M(i)) is a

small component and E0
i is the big component by Definition 1.18 (note that

E ∈M∗2,N (a), thus |Ei | ≥ ai).
By (3.7) of Remark 3.4 and by assumption on p we have that

√
ai < Φi,a(p) <

√
ai ·
(

1 +
2
√

2

3

)
. (3.17)

We set D = ai and C = Φi,a(p), then, by (3.17) and by Remark 3.3, we get

that

0 < xi,a(p) <
ai
3
. (3.18)

Therefore if we prove (3.16) with the properties a) and b), by Definition

1.18, any Eji is a small component,while E0
i is the big component.

By assumption on p and by Theorem 3.5 (note that 1 + 2
√

2
3 < 2), we

know that 0 < |U | ≤ xi,a(p) or |U | ≥ ai − xi,a(p) for any disjoint union U

of components of Ei (since Ei is not connected, then E is not standard). In

order to prove (3.16), we just show thatEi has one and only one component

C with |C | ≥ ai − xi,a(p). Indeed if it is true, by Theorem 3.5, it follows

that |Ei r C | < xi,a(p), thus |C | = |Ei | − |Ei r C | ≥ |Ei | − xi,a(p).

We explicitly note that the condition

Φi,a(p) <

√
ai ·
(

1 +
2
√

2

3

)
is equivalent to
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√
π

(
√
a0 +

∑
j 6=i

√
aj +

√
ai

(
1 +

2
√

2

3

))
− p > 0. (3.19)

We underline that

2 ·
√

2

3
>

√
1 +

2
√

2

3
. (3.20)

Therefore, if there are at least two components C1
i and C2

i of Ei with

their area greater or equal to ai − xi,a(p), by the isoperimetric inequality

and by the minimality of E, we get that (note that P (Ei) ≥ P (C1
i ) + P (C2

i )

and, by (3.18), ai − xi,a(p) > 2ai
3 )

p ≥ P (E) ≥ 1

2

(
P (E0) +

∑
j 6=i

P (Ej) + P (C1
i ) + P (C2

i )

)

≥
√
π

(
√
a0 +

∑
j 6=i

√
aj + 2

√
2ai
3

)
.

Hence, by (3.19) and (3.20), we obtain that

0 ≥
√
π

(
√
a0 +

∑
j 6=i

√
aj + 2

√
2ai
3

)
− p

≥
√
π

(
√
a0 +

∑
j 6=i

√
aj +

√
ai

(
1 +

2
√

2

3

))
− p > 0.

This is clearly a contradiction.

Now we prove the existence of a component C, which satisfies that

|C | ≥ ai − xi,a(p). We show that if Ei =

M(i)⊔
j=1

Cj , where 0 < |Cj | ≤ xi,a(p)

for all j = 1, . . . ,M(i), then there exists s ∈ {2, . . . ,M(i) − 1} such that

xi,a(p) <
s∑

k=1

|Ck | < ai − xi,a(p). Therefore, if we call E1
i :=

s⊔
j=1

Cj , E

would have a component with area which contradicts Theorem 3.5, given

the condition on p and by the minimality of E. We know that

1)
M(i)∑
j=1

|Cj | ≥ ai,
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2) 0 < xi,a(p) < ai
3 ,

3) 0 < |Cj | ≤ xi,a(p), ∀j = 1 . . . ,M(i).

At the beginning we prove the existence of s ∈ {2, . . . ,M(i) − 1} such

that
s∑
j=1

|Cj | > xi,a(p). We proceed by contradiction, therefore it follows

that ai
1)

≤
M(i)−1∑
j=1

|Cj | + |CM(i) |
3)

≤ 2xi,a(p), finding xi,a(p) ≥ ai
2 , but this

contradicts 2).

We consider

s = min

{
t ∈ {2, . . . ,M(i)− 1}

∣∣∣∣ t∑
j=1

|Cj | > xi,a(p)

}
(3.21)

then
s∑
j=1

|Cj | < ai − xi,a(p). We suppose it is not true, thus we have that

ai − xi,a(p)≤
s∑
j=1

|Cj |=
s−1∑
j=1

|Cj |+ |Cs |
(3.21) and 3)

≤ xi,a(p) + xi,a(p) = 2xi,a(p)

getting xi,a(p) ≥ ai
3 , that is an absurd, because it contradicts 2). This con-

cludes the proof.

3.2 Variations of bubbles

Lemma 3.9. LetA be a positive constant and f(x) = x ·
(√

1 + 2A
x −1

)
, x > 0.

Then f is strictly increasing.

Proof. The first derivative of f is

x+A−
√
x(x+ 2A)√

x(x+ 2A)
.

Now the first derivative is positive because√
x(x+ 2A) < x+A,

is equivalent to

x(x+ 2A) < (x+A)2,
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that is the same as

0 < A2.

Lemma 3.10. Let A be a positive constant and f(x) = x−A ·
(√

1 + 2x
A − 1

)
,

x ≥ 0. Then f is strictly increasing.

Proof. The proof is a direct consequence of the first derivative of f , which

is

f ′(x) =

√
A+ 2x−

√
A√

A+ 2x
.

Lemma 3.11. Let E ∈M∗2,N (a). If E is not standard, then the following inequal-

ities hold:

1) S ≤ |Si |
2(|Ei |−|Si |) · P (E),

2) |Si | ≥ 16π
N2
r
·
(
|Ei |−|Si |
P (E)

)2

,

3) |Si | ≥ |Ei | − (P (E)·Nr)2
32π ·

(√
1 + 64π·|Ei |

(P (E)·Nr)2 − 1

)
,

4) |Si | ≥ ai − (P (E)·Nr)2
32π ·

(√
1 + 64π·ai

(P (E)·Nr)2 − 1

)
,

where Si is a component of some disconnected region Ei, S is the maximum sum

of the lengths of the edges of Si adjacent to the same region and Nr is the number

of adjacent regions to Si.

In particular, for any p, perimeter of a weak competitor, it follows that

|Si | ≥ ai −
(p ·Nr)

2

32π
·

(√
1 +

64π · ai
(p ·Nr)2

− 1

)
, (3.22)

and finally

|Si | ≥ ai −
(p ·N)2

32π
·

(√
1 +

64π · ai
(p ·N)2

− 1

)
. (3.23)

Proof. Wherever Si is (in Figure 3.1, i = 4), we consider a new cluster E′
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Figure 3.1: Cluster E where E4 is the disjoint union between its components B4

and S4. We remove the orange edge of S4 for E3.

Figure 3.2: The new cluster E′.

as follows: remove S, the maximum sum of the lengths of the edges of

Si adjacent to the same region Ej , and give the area of Si to the region Ej
obtaining that E′:=(E′1, . . . , E

′
i, E

′
j , . . . , E

′
N ) with |E′k | = |Ek | for all k 6= i, j

and |E′j | = |Ej | + |Si |, |E′i | = |Ei | − |Si | (see Figure 3.2). From E′ we
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make a weak competitor for the problem (1.10); in order to do this we need

that |E′i | ≥ |Ei | ≥ ai (in fact it would be enough |E′i | ≥ ai), thus we dilate

by a factor λ the cluster E′ obtaining a new cluster E′′ such that E′′ = λE′,

where we impose that |E′′i | = |Ei | (in Figure 3.3 E′′ is the dashed cluster).

Figure 3.3: The weak competitor E′′.

Thus |Ei | = |E′′i | = λ2|E′i | = λ2 · (|Ei | − |Si|), which shows that

λ2 = |Ei |
|Ei |−|Si| = 1 + |Si |

|Ei |−|Si| . Since λ > 1, then E′′ is a weak competitor

for the problem (1.10). Let f(x) =
√

1 + x − 1 − x
2 for x ≥ 0. We have

that f ′(x) = 1
2

(
1√
1+x
− 1

)
≤ 0, namely the function f is decreasing. Then

f(x) ≤ f(0) = 0, so that
√

1 + x ≤ 1 + x
2 for any x ≥ 0. Therefore it holds

that (note that E ∈M∗2,N (a))

P (E) ≤ P (E′′) = P (λE′) = λP (E′)

= λ(P (E)− S) =

√
1 +

| Si |
|Ei | − |Si|

· (P (E)− S)

≤
(

1 +
|Si |

2(|Ei | − |Si |)

)
· (P (E)− S),

obtaining that

S ≤ S ·
(

1 +
|Si |

2(|Ei | − |Si |)

)
≤ |Si |

2(|Ei | − |Si |)
· P (E), (3.24)
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that is 1) of the statement.

LetNr be the number of adjacent regions to Si, then S ≥ P (Si)
Nr

. By (3.24)

and using the isoperimetric inequality, we get that

2
√
π
√
|Si |

Nr
≤ P (Si)

Nr
≤ |Si |

2(|Ei | − |Si |)
· P (E).

Now dividing by
√
|Si | and squaring, we obtain

|Si | ≥
16π

N2
r

·
(
|Ei | − |Si |

P (E)

)2

, (3.25)

that is 2) of the statement.

We set C = N2
r

16π in (3.25), and we underline that the previous inequality

is equivalent to the following inequality in the variable |Si |

|Si |2 + |Si | · (−2|Ei | − C · P (E)2) + |Ei |2 ≤ 0. (3.26)

Placing

s1 :=
(2|Ei |+ C · P (E)2)− C · P (E)2 ·

√
1 + 4|Ei |

C·P (E)2

2
,

s2 :=
(2|Ei |+ C · P (E)2) + C · P (E)2 ·

√
1 + 4|Ei |

C·P (E)2

2
,

the solution of (3.26) is

s1 ≤ |Si | ≤ s2. (3.27)

If we replace C = N2
r

16π , of course we obtain 3)

|Si | ≥ |Ei | −
(P (E) ·Nr)

2

32π

(√
1 +

64π · |Ei |
(P (E) ·Nr)2

− 1

)
. (3.28)

If we set a = (Nr·P (E))2

32π and b = 64π
(Nr·P (E))2

in (3.28), then a · b = 2 and

|Si | ≥ |Ei | − a

(√
1 +

2|Ei |
a
− 1

)
. (3.29)

We call
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f(x) = x− a
(√

1 +
2x

a
− 1

)
,

with x = |Ei | ≥ ai. By Lemma 3.10, we know that f is strictly increasing,

therefore

f(x) ≥ f(ai) = ai − a
(√

1 +
2ai
a
− 1

)
.

By (3.29) and if we replace a = (Nr·P (E))2

32π , of course we obtain 4)

|Si | ≥ ai −
(P (E) ·Nr)

2

32π

(√
1 +

64π · ai
(P (E) ·Nr)2

− 1

)
.

Let p be the perimeter of a weak competitor, then, by Remark 3.4,

√
π

( N∑
i=1

√
ai +

√
a0

)
< P (E) ≤ p,

where a0 =
N∑
i=1

ai. We set a = N2
r

32π and b = 64π·ai
N2
r

in 4), then a · b = 2ai and

|Si | ≥ ai − a · P (E)2

(√
1 +

2ai
a · P (E)2

− 1

)
. (3.30)

We call

f(x) = x ·
(√

1 +
2ai
x
− 1

)
,

with a · π ·
( N∑
i=1

√
ai +

√
a0

)2
< x = a · P (E)2 ≤ a · p2. By Lemma 3.9, we

know that f is strictly increasing, therefore

f(x) ≤ f(a · p2) =
(Nr · p)2

32π
·
(√

1 +
64π · ai
(Nr · p)2

− 1

)
.

By (3.30), we have (3.22)

|Si | ≥ ai −
(p ·Nr)

2

32π

(√
1 +

64π · ai
(p ·Nr)2

− 1

)
.
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Since E is a weak minimum, then there are not redundant edges, there-

fore 2 ≤ Nr ≤ N , where N is the number of the regions of the problem

(1.10). We set a = p2

32π and b = 64π·ai
p2

in (3.22), then a · b = 2ai and

|Si | ≥ ai − a ·N2
r

(√
1 +

2ai
a ·N2

r

− 1

)
. (3.31)

We call

f(x) = x ·
(√

1 +
2ai
x
− 1

)
,

with 4a ≤ x = a · N2
r ≤ a · N2. By Lemma 3.9, we know that f is strictly

increasing, therefore

f(x) ≤ f(a ·N2) =
(N · p)2

32π
·
(√

1 +
64π · ai
(N · p)2

− 1

)
.

By (3.31), we have (3.23)

|Si | ≥ ai −
(N · p)2

32π
·
(√

1 +
64π · ai
(N · p)2

− 1

)
.

Lemma 3.12. Let E ∈ M∗2,N (a). If E is not standard, then for all external and

disconnected regions Ei (i.e. Ei is adjacent to the exterior region E0) we have the

following inequalities:

a) α ≥ 1
NCi
·
√

π
|Ci | · L

i
e − 1;

b) kie ≥ 2
NCi
·
√

π
|Ci | −

2
Lie

,

where Lie represents the external edge of one external component Cie of Ei, kie
is the curvature of Lie (since Lie is external, kie corresponds with the pressure of

Ei), α is the angle between Lie and the segment that links the vertices of Lie, Ci

is another component of Ei and NCi represents the number of regions adjacent to

Ci.
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Proof. We create a weak competitor for the problem (1.10) thanks to the

variation illustrated in Figure 3.4.

Figure 3.4: The variation gives a weak competitor for the problem (1.10) because

the area of Ei remains the same, while the area of the region, that has in common

with Ci the maximum sum of the lengths of the edges, increases of area of Ci.

We want to eliminate the component Ci in favor of Cie acting in the fol-

lowing way: we delete the maximum sum of the lengths of the edges of Ci

adjacent to the same region and we recover the lost area of Ci extending

outside the radius of curvature, Rie, of Lie of a quantity ε and finally by clos-

ing all in the most natural way. Called NCi the number of regions adjacent

to Ci, we have that

P (Ci) ≤ NCi · S, (3.32)

where S denotes the maximum sum of the lengths of the edges of Ci adja-

cent to the same region. Furthermore the following identities hold:

i) Lie = 2Rie α,

ii) L̃ie = 2(Rie + ε)α,

iii) Aie = Rie
2
α,

iv) Ãie = (Rie + ε)2 α,

v) |Ci | = Ãie −Aie = α ε(ε+ 2Rie),
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whereAie and Ãie respectively are the area of circular sector of radiusRie and

amplitude 2α and the area of circular sector of radius Rie+ε and amplitude

2α respectively.

From v), ε satisfies the equation:

αε2 + (2Rie α)ε− |Ci | = 0,

and so, since ε is positive, we get that

ε =
−Rie α+

√
(Rie α)2 + α |Ci |
α

i)
= Rie

(√
1 +

2|Ci |
LieR

i
e

− 1

)
.

Since
√

1 + x ≤ 1 + x
2 for all x ≥ 0, we have that

ε ≤ |C
i |

Lie
. (3.33)

Since E is a weak minimum, then the performed variation gives a non neg-

ative variation of perimeter, that is, by i), ii) and (3.32),

0 ≤ ∆P = L̃ie + 2ε− Lie − S ≤ 2ε(1 + α)− P (Ci)

NCi

(3.33)
≤ 2(1 + α)

|Ci |
Lie
− P (Ci)

NCi
;

from which and by the isoperimetric inequality, it is clear that

2
√
π |Ci |
NCi

≤ P (Ci)

NCi
≤ 2(1 + α)

|Ci |
Lie

.

Thus, simplifying, we obtain a), namely

α ≥ 1

NCi
·
√

π

|Ci |
· Lie − 1.

Now, using a) and kie = 2α
Lie

, we have b), namely

kie ≥
2

NCi
·
√

π

|Ci |
− 2

Lie
.

Remark 3.13. We clearly note that the number of adjacent regions to Ci,

NCi , is less or equal to N , the number of region of problem (1.10).
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Lemma 3.14. Let E ∈M∗2,N (a), then

LC ≤ 2
√
π |C |, (3.34)

for any edge LC of a component C of a region Ei.

Proof. We consider some component C of a region Ei of a weakly mini-

mizing N -cluster E. We take one of its edges LC , then we make a vari-

ation, that produces a weak competitor E′ for the problem (1.10). This

variation consists in eliminating the edge LC in order to donate the area

of C to the region that has LC in common with C and finally recovering

the lost area of C with an external circle, with the same area of C. Hence

P (E′) = P (E)−LC+2
√
π|C |. Since by assumption E is a weak minimum,

the variation of perimeter must be non negative and so we obtain

0 ≤ ∆P = 2
√
π|C | − LC .

3.3 Estimates on pressure in a standard double bubble

Finally we present an interesting and simple lemma, where we deter-

mine an important estimate for the pressures of a standard double bubble.

Before that, we premise a preliminary lemma where we show significant

properties of some functions used in the following.

Lemma 3.15. Consider the following functions

A(x) =
x− sinx cosx

4 sin2(x)
, x ∈]− π, π[

f(x) = 2 sin

(
2π

3
+ x

)√√√√A

(
2π

3
+ x

)
−A(x), x ∈

]
− π

3
,
π

3

[
.

The functions A and f are strictly increasing.

Proof. We consider the function A; first of all we note that A(−x) = −A(x)

for any x ∈] − π, π[. Therefore we can restrict x on interval [0, π[. By direct

computations, we have that
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A′(x) =
sinx− x cosx

2 sin3(x)
.

In order to prove thatA is strictly increasing, it is sufficient to show that

A′(x) is positive for all x ∈ [0, π[. First of all limx→0A
′(x) = 1

6 , thus, since

sinx > 0 for all x ∈]0, π[, it just show that l(x) := sinx − x cosx > 0 for

any x ∈]0, π[. For x = π
2 , l(π2 ) = 1, while for x 6= π

2 , l(x) = cosx(tanx− x);

therefore for 0 < x < π
2 the functions cosx and tanx − x are both positive,

while for π
2 < x < π are both negative. Thus we have the first claim.

Now we prove the monotonicity of the function f . By the monotonicity

ofAwe get thatA(2π
3 +x)−A(x) > 0 for all x ∈]− π

3 ,
π
3 [. Furthermore, since

x ∈]− π
3 ,

π
3 [, π3 <

2π
3 + x < π; thus the function f is positive for x ∈]− π

3 ,
π
3 [.

Since f is positive,we just show that f2 is strictly increasing. With simple

calculations we get that

f2(x) =
2π

3
+ x+

sin (π3 + 2x)

2
−

cos (π3 + 2x) + 1

1− cos (2x)
· 2x− sin (2x)

2
,

(
f2(x)

)′
=

2x− sin (2x)

2 sinx3
·

(
cos

(
π

3
+ x

)
+ cosx

)
.

First of all limx→0

(
f2(x)

)′
= 3

2 ·

(
limx→0

2x−sin (2x)
2 sinx3

)
= 3

2 ·
4
3 = 2. We

call k(x) : = 2x − sin (2x) and k1(x) : = cos (π3 + x) + cosx. It is clear that(
f2(x)

)′
= k(x)·k1(x)

2 sinx3
. The first derivatives of k and k1 are k′(x) = 4 sinx2,

k1(x)′=−
√

3
2 (
√

3 sinx + cosx) respectively. Therefore it follows that k is

strictly increasing for x ∈]− π
3 ,

π
3 [ and k is positive for x ∈]0, π3 [ and negative

for x ∈]− π
3 , 0[. While the function k1 is strictly increasing in ]− π

3 ,−
π
6 [ and

strictly decreasing in [−π
6 ,

π
3 [, then k1(x) > min (k1(−π

3 ), k1(π3 )) = 0 for all

x ∈]− π
3 ,

π
3 [. We note that sinx is positive for x ∈]0, π3 [ and it is negative for

x ∈] − π
3 , 0[, hence by also the previous conclusions, we find that

(
f2(x)

)′
is positive for any x ∈]− π

3 ,
π
3 [, thus f2 is strictly increasing.

Lemma 3.16. Let E = (E1, E2) be a standard planar double bubble of areas

a = (a1, a2) with a1 ≥ a2, then we have that

pE1 =
2 sin (2π

3 + α)
√
A(2π

3 + α)−A(α)
√
a1

,
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pE2 =
2 sin (2π

3 − α)
√
A(2π

3 − α) +A(α)
√
a2

,

where α denotes the angle between the joining line and the joining edge of the ver-

tices A and B (see Figure 3.5), A(α) := α−sinα cosα
4 sinα2 , that represents the area of a

circular segment of amplitude 2α and unit distance between its vertices and finally

pE1 and pE2 are the pressure of the big (E1) and small bubble (E2) respectively or

equivalently the curvature of the external edge of the big and small bubble.

In particular the following estimate hold√
2π
3 +

√
3

4√
a2

≥ pE2 ≥ pE1 ≥

√
2π
3 +

√
3

4√
a1

. (3.35)

Furthermore if pE2 = pE1 , then a1 = a2.

Proof. As shown in Figure 3.5, α ∈ [0, π3 [ (recall that the inner angles of

bubbles are 2π
3 ).

Figure 3.5: A standard double bubble of areas a1 and a2.

Using the formulas of Proposition 5.4 we have that

a1 = y2

[
A

(
2π

3
+ α

)
−A(α)

]
,

(3.36)

a2 = y2

[
A

(
2π

3
− α

)
+A(α)

]
,
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therefore we derive that

y =

√
a1

A(2π
3 + α)−A(α)

,

(3.37)

y =

√
a2

A(2π
3 − α) +A(α)

Again from formulas of Proposition 5.4, we know that for any circular sec-

tor of amplitude 2α, the curvature radius, R, is given by R = y
2 sinα , where

y is the length of the segment connecting its vertices. Thus it is clear that

pE2 =
2 sin (2π

3 − α)

y
,

(3.38)

pE1 =
2 sin (2π

3 + α)

y
.

Now, since α ∈ [0, π3 [, then π
3 < 2π

3 − α ≤
2π
3 ≤

2π
3 + α < π. Therefore we

obtain that 1 ≥ sin (2π
3 − α) ≥

√
3

2 ≥ sin (2π
3 + α) > 0, and so we get that

pE2 ≥ pE1 . (3.39)

From (3.37) and (3.38), it follows that

pE2 =
2 sin (2π

3 − α)
√
A(2π

3 − α) +A(α)
√
a2

,

pE1 =
2 sin (2π

3 + α)
√
A(2π

3 + α)−A(α)
√
a1

.

From Lemma 3.15, we can see that

pE2 =
f(−α)
√
a2

,

pE1 =
f(α)
√
a1
.

Furthermore by Lemma 3.15, we know that f is strictly increasing, there-

fore we get that

pE2 ≤
f(0)
√
a2

=

√
2π
3 +

√
3

4

a2
,
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(3.40)

pE1 ≥
f(0)
√
a1

=

√
2π
3 +

√
3

4

a1
.

Combining (3.39) and (3.40) we have (3.35).

Finally, since α ∈ [0, π3 [ and by (3.38), it follows that if pE2 = pE1 then

α = 0. Therefore by (3.36) we have that a1 = a2.



Chapter 4

Planar double and triple

bubble with equal areas

In this chapter we prove the following theorems with the tools pre-

sented in Chapter 3:

Theorem 4.1. [9] Every E ∈M2,2(a, a) is standard;

Theorem 4.2. [16][17] Every E ∈M2,3(a, a, a) is standard.

Remark 4.3. Up to rescale the area in Theorems 4.1 and 4.2, we can consider

that |Ei | = 1 for all i.

Remark 4.4. From Remark 1.51, in order to prove Theorems 4.1 and 4.2,

it suffices to consider nonstandard clusters with exterior region connected

and with non negative pressures and to prove they are not weakly mini-

mizing.

4.1 Planar double bubble with equal areas

In this first section we prove Theorem 4.1; we will see that it is a di-

rect consequence of Remark 4.7, that describes the composition of a discon-

nected region, and Corollary 4.8, that gives the minimum quantity of area

that a small component must have.

First of all in the next remark we calculate the perimeter of a standard

double bubble with unit areas.

86
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Remark 4.5. By Proposition 5.4, we have that (see also Figure 4.1)

Figure 4.1: A standard double bubble with areas |E1 | = |E2 | = 1 .

1 = |E1 | = |E2 | = A(2π
3 , y) = y2 ·

2π
3

+
√
3

4
3 , therefore, indicating with

PDB the perimeter of a standard double bubble,

PDB = y + 2L

(
2π

3
, y

)
=

√
3

2π
3 +

√
3

4

·
(

1 +
8π

3
√

3

)
≈ 6.35913. (4.1)

Furthermore it holds that (note the definition of Φi,a(p) in (3.8) where the

vector a = (1, 1))

1 < Φi,a(PDB) =
PDB −

√
π(1 +

√
2)√

π
<

√
1 +

2
√

2

3
<
√

2 (4.2)

Thus, by (3.8), we can define

A1,2=xi,a(PDB)=
1−

√
Φ2
i,a(PDB) · (2− Φ2

i,a(PDB))

2
≈ 0.0369337. (4.3)

Theorem 4.6. Let E ∈M∗2,2(1, 1). If E is not standard, then each disjoint union

U of components of a disconnected region Ei satisfies that 0 < |U | ≤ A1,2 or

|U | ≥ 1−A1,2.
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Proof. The proof is based on Theorem 3.5. We explicitly note that ai = 1

for all i = 1, 2, so a0 = a1 + a2 = 2. Finally we see that PDB, by (4.2) of

Remark 4.5, satisfies the condition on the value of the perimeter in Theorem

3.5. This completes the proof.

Remark 4.7. Let E ∈ M∗2,2(1, 1). From (4.2) of Remark 4.5, we see that

PDB satisfies the condition on the value of the perimeter in Remark 3.8.

Therefore it follows that if a region Ei of E is not connected then

Ei = E0
i t E1

i t . . . E
M(i)
i , (4.4)

with

a) |E0
i | ≥ |Ei | −A1,2 ≥ 1−A1,2 >

2
3 ;

b) 0 <

∣∣∣∣ M(i)⊔
j=1

Eji

∣∣∣∣ ≤ A1,2 <
1

3
,

where Eji is a component of Ei for any j = 0, . . . ,M(i) (note that M(i) is

finite by Theorem 1.10 and M(i) > 1, because Ei is disconnected). Fur-

thermore any Eji is a small component and E0
i is the big component by

Definition 1.18.

Now we present a corollary where we find the minimum area that a

small component of a disconnected weak minimizer must have.

Corollary 4.8. Let E ∈ M∗2,2(1, 1). If E is not standard, then the following

inequality holds:

|Si | ≥ 4π ·
(

1−A1,2

PDB

)2

:= A2,2 ≈ 0.288222, (4.5)

where Si is a small component of some disconnected region.

Proof. The proof is based on Lemma 3.11 and Remark 4.7. We note that

|Ei | ≥ 1 for all i = 1, 2 andN = 2, thus the number of regions,Nr, adjacent

to any component is less or equal to 2. By Remark 4.7 the area of a small

component Si is such that |Si | ≤ A1,2 ≈ 0.0369337 (therefore 1− A1,2 > 0)

and finally from the minimality of E we have P (E) ≤ PDB. Linking these

informations with the estimate 2) of Lemma 3.11 we have the claim.
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Theorem 4.9. Let E∈M∗2,2(1, 1).Then E is standard.Moreover if E∈M2,2(1, 1),

then E is standard.

Proof. The proof is based on Remark 4.7 and on Corollary 4.8. We suppose

by contradiction that E is not standard, therefore there exists at least one

disconnected region Ei. From Remark 4.7 and Corollary 4.8, we have that

0.288222 ≈ A2,2 ≤ |Si | ≤ A1,2 ≈ 0.0369337 for any small component Si of

a disconnected region Ei. It is a contradiction and thus E is standard.

By Remark 4.4, we have that if E ∈M2,2(1, 1), then E is standard.

4.2 Planar three bubble with equal areas

In this section we prove Theorem 4.2; Theorem 4.11 and Remark 4.12

will be very important. The first gives some informations on the quantity

of area of a disconnected region and the second describes the composition

of a disconnected weakly minimizer. Another significant result is Corollary

4.15, that gives an estimate for the minimum quantity of area that a small

component of a disconnected weakly minimizing must have. Finally we

also underline Lemma 4.21, that describes a component of a disconnected

region and a component of a connected region.

Figure 4.2: A standard triple bubble with areas |E1 | = |E2 | = |E3 | = 1 .
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First of all in the next remark we calculate the perimeter of a standard

triple bubble with unit areas.

Remark 4.10. By Proposition 5.4, it follows that (see also Figure 4.2) 1 =

|E1 | = |E2 | = |E3 | = A(π2 , y) + y2

4
√

3
= y2

4 ·

(
π
2 + 1√

3

)
, therefore, denoting

by PTB the perimeter of a standard triple bubble,

PTB = 3l + 3L

(
π

2
, y

)
= 6 ·

√
π

2
+

1√
3
≈ 8.79393. (4.6)

Furthermore it holds that (note the definition of Φi,a(p) in (3.8) where the

vector a = (1, 1, 1))

1 < Φi,a(PTB) =
PTB −

√
π(2 +

√
3)√

π
<

√
1 +

2
√

2

3
<
√

2 (4.7)

Thus, by (3.8), we can define

A1,3=xi,a(PTB)=
1−

√
Φ2
i,a(PTB) · (2− Φ2

i,a(PTB))

2
≈ 0.0703324. (4.8)

Theorem 4.11. Let E ∈ M∗2,3(1, 1, 1). If E is not standard, then each disjoint

union U of components of a disconnected region Ei satisfies that 0 < |U | ≤ A1,3

or |U | ≥ 1−A1,3.

Proof. The proof is based on Theorem 3.5. We explicitly note that ai = 1

for all i = 1, 2, 3, so a0 = a1 + a2 + a3 = 3. Finally we see that PTB, by

(4.7) of Remark 4.10, satisfies the condition on the value of the perimeter in

Theorem 3.5. This completes the proof.

Remark 4.12. Let E ∈ M∗2,3(1, 1, 1). From (4.7) of Remark 4.10, we see that

PTB satisfies the condition on the value of the perimeter in Remark 3.8.

Therefore it follows that if a region Ei of E is not connected then

Ei = E0
i t E1

i t . . . E
M(i)
i , (4.9)

with

a) |E0
i | ≥ |Ei | −A1,3 ≥ 1−A1,3 >

2
3 ;



Planar double and triple bubble with equal areas 91

b) 0 <

∣∣∣∣ M(i)⊔
j=1

Eji

∣∣∣∣ ≤ A1,3 <
1

3
,

where Eji is a component of Ei for any j = 0, . . . ,M(i) (note that M(i) is

finite by Theorem 1.10 and M(i) > 1, because Ei is disconnected). Fur-

thermore any Eji is a small component and E0
i is the big component by

Definition 1.18.

Remark 4.13. Let E ∈ M∗2,3(1, 1, 1), then any big component has area at

least as large as 1−A1,3 ≈ 0.929668.

First of all connected regions Ei are big components with |Ei | ≥ 1.

While for all disconnected regions Ei, by Remark 4.12, E0
i is the big

component and |E0
i | ≥ 1−A1,3 ≈ 0.929668.

Corollary 4.14. Let E ∈ M∗2,3(1, 1, 1), then any big component is external (i.e

the component has an edge in common with E0).

Proof. We argue by contradiction and we suppose that there is at least one

big inner component. By Remark 4.13 any big component has area at least

1 − A1,3 ≈ 0.929668. Let Ei be the region with its big component Bi inner

(i.e Bi is disjoint to E0), then by the isoperimetric inequality we have that

P (E) ≥ P (Bi) + P (E0) ≥ 2
√
π
(√

1−A1,3 +
√

3
)
≈ 9.55793.

From the minimality of E, we know that P (E) ≤ PTB ≈ 8.79393. Since it

is a contradiction, the proof is completed.

Now we present a corollary where we find the minimum area that a

small component of a disconnected weak minimizer must have.

Corollary 4.15. Let E ∈ M∗2,3(1, 1, 1). If E is not standard, then the following

inequality holds:

|Si | ≥ 1− 9PTB2

32π

(√
1 +

64π

9PTB2
− 1

)
:= A2,3 ≈ 0.0633589. (4.10)

where Si is a small component of some disconnected region.
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Proof. The proof is based on estimate (3.23) of Lemma 3.11. Let Si be a small

component of some disconnected region Ei (note that Si exists by Remark

4.12), we choose PTB as perimeter of a weak competitor, then, sinceN = 3

and ai = 1 for any i = 1, 2, 3, by estimate (3.23) of Lemma 3.11, we have the

claim.

Proposition 4.16. Let E ∈ M∗2,3(1, 1, 1). Each disconnected region can have at

most one small component.

Proof. Let Ei be a disconnected region. By Remark 4.12

Ei = E0
i t E1

i t . . . t E
M(i)
i , (4.11)

where |E0
i | ≥ 1−A1,3, 0 <

∣∣∣∣ M(i)⊔
j=1

Eji

∣∣∣∣ ≤ A1,3 and M(i) denotes the number

of small components Eji of Ei.

We have that, by Corollary 4.15, |Eji | ≥ A2,3 for all j = 1 . . . ,M(i) and

i = 1, 2, 3. Therefore we get that

M(i) ·A2,3 ≤
M(i)∑
j=1

|Eji | =
∣∣∣∣ M(i)⊔
j=1

Eji

∣∣∣∣ ≤ A1,3,

obtaining that M(i) ≤ A1,3

A2,3
≈ 1.11006. Considering the integer part of

1.11006 we have the claim, M(i) ≤ 1.

Theorem 4.17. Let E ∈M∗2,3(1, 1, 1), then E has at least two connected regions.

Proof. We argue by contradiction and we suppose that there are at least

two disconnected regions. Let Ei and Ej be the disconnected regions. By

Remark 4.12 and Proposition 4.16, it follows that

Ei = Si ∪Bi,

Ej = Sj ∪Bj ,

with Si, Sj , that are the small components and Bi, Bj , instead which are

the big components. Hence, by Remark 4.12 and Corollary 4.15 we have

that min (|Bi |, |Bj |) ≥ 1 − A1,3 and min (|Si |, |Sj |) ≥ A2,3 respectively.
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So, by the isoperimetric inequality, we can give the following estimate for

the perimeter of E:

8.79393 ≈ PTB ≥ P (E)

≥ 1

2
·
( ∑
n=i,j

P (Bn) +
∑
n=i,j

P (Sn) + P (Ek) + P (E0)
)

≥
√
π
(

2 · (
√

1−A1,3 +
√
A2,3) + 1 +

√
3
)
≈ 9.1527,

where k 6= i, j. It is a contradiction, thus the proof is completed.

Remark 4.18. Let E ∈ M∗2,3(1, 1, 1). If E is not standard, then, by Remark

4.12, Corollary 4.15, Proposition 4.16 and Theorem 4.17, E is composed by

one and only disconnected region Ei = Si t Bi with A2,3 ≤ |Si | ≤ A1,3

and |Bi | ≥ 1 − A1,3. Moreover, since each region has unit area (up to

a permutation of regions), E can only have this case of connection type:

IE = (1, 0, 0).

Proposition 4.19. Let E ∈M∗2,3(1, 1, 1), then the total number of bounded com-

ponents is at most four.

Proof. If E is standard then E exactly has three bounded components, in-

stead if E is not standard, then by Remark 4.18 E has four bounded com-

ponents.

Corollary 4.20. Let E ∈M∗2,3(1, 1, 1), then E ∈M2,3(1, 1, 1).

Proof. The proof immediately comes from previous proposition and Theo-

rem 1.50.

We preset a simple lemma, that describes a component of the discon-

nected region and a component of a connected region.

Lemma 4.21. Let E ∈ M∗2,3(1, 1, 1). If E is not standard, then any component

C of a disconnected region is external (i.e C has an edge in common with E0) and

it has three edges, while a connected region is external with at most four edges.

Proof. By Remark 4.18 the connection type of E is IE = (1, 0, 0) up to per-

mutations. First of all we prove that any componentC ofE1 is external. If it
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is inner, then, by Proposition 4.19 and by the fact E can not have redundant

edges, it must have only two edges. But this contradicts Corollary 1.35.

Now we prove that C has three edges. It is clear because Proposition

4.19 applies and E is a minimum, so E can not have redundant edges.

Finally, by Corollary 4.14, we know that each connected region is exter-

nal. By Proposition 4.19, by the minimality of E, and by IE = (1, 0, 0), it

follows that each connected region can have at most four edges.

Remark 4.22. Let E ∈M∗2,3(1, 1, 1). If E is not standard, then from Lemma

4.21 we have that any component of a region of E is external. Therefore the

only possible case of E is represented in Figure 4.3

Figure 4.3: The only possible case of disconnected E ∈M∗2,3(1, 1, 1).

Lemma 4.23. If E has the topology of Figure 4.3, thenE /∈M∗2,3(1, 1, 1).

Proof. We argue by contradiction and we suppose that E is a weak mini-

mum. We recall that, by Corollary 4.20, m(E) = a and E ∈ M2,3(1, 1, 1).

We determine an estimate for the pressure ofE1 and for the lowest pressure

of all regions. So we will be able to give an estimate for the perimeter of E,
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that will be bigger that PTB. We note that, by Remark 4.12, |S1 | ≤ A1,3

and |B1 | ≥ 1−A1,3, where S1 and B1 are the small and the big component

of E1 respectively.

We start to obtain an estimate for the pressure of the disconnected re-

gion E1. Let l1,0, l1,2 and l1,3 be the edges of S1. Since the turning angle of

S1 is π, we have that (recall that pE0 = 0 and each pressure is non negative

by Proposition 1.49)

pE1P (S1) = max
k=0,2,3

(pE1 − pEk)P (S1) ≥
∑

k=0,2,3

l1,k

(
pE1 − pEk

)
= π.

Therefore we obtain that

pE1 ≥
π

P (S1)
.

By the Definition 1.1 and by the isoperimetric inequality, it follows that

P (S1) = 2P (E)−
(
P (B1) + P (E2) + P (E3) + P (E0)

)
≤ 2PTB − 2

√
π(
√

1−A1,3 + 1 + 1 +
√

3).

So we find that

pE1 ≥
π

2PTB − 2
√
π(
√

1−A1,3 + 2 +
√

3)
:= k1 ≈ 3.3417. (4.12)

Certainly E1 is the highest pressure region, indeed if there was another

region with pressure at least k1, then the perimeter of E would be at least

(by Corollary 1.47 and by Proposition 1.49)

8.79393 ≈ PTB ≥ P (E) = 2
3∑
i=1

pEi ≥ 4k1 ≈ 13.3668,

that is a contradiction. So the lowest pressure region is either E2 or E3.

Without loss of generality we can consider that the lowest pressure region

is E3. It has four edges, therefore since its turning angle is 2π
3 , we have the

following estimate for the lowest pressure pE3

pE3 · L3,0 = max
k 6=3

(pE3 − pEk) ≥
∑
k 6=3

Lmin,k(pE3 − pEk) =
2π

3
,
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where L3,k denotes an edge of E3 in common with the region Ek. By

Lemma 3.14, we have that L3,0 ≤ 2
√
π (recall that E ∈M2,3(1, 1, 1), namely

|Ei | = 1 for all i), hence

pE3 ≥
√
π

3
≈ 0.590818 (4.13)

Then, by Corollary 1.47, (4.12) and (4.13),

8.79393 ≈ PTB ≥ P (E) ≥ 2
3∑
i=1

pEi ≥ 2k1 + 4
(√π

3

)
≈ 9.04667.

It is a contradiction; so the proof is completed.

Theorem 4.24. Let E ∈ M∗2,3(1, 1, 1). Then E is standard. In particular if

E ∈M2,3(1, 1, 1), then E is standard.

Proof. The proof is immediate. Let E ∈ M∗2,3(1, 1, 1); we suppose by con-

tradiction that E is not standard, then by Remark 4.22, E has the topology

represented in Figure 4.3. By Lemma 4.23 E /∈ M∗2,4(1, 1, 1, 1); this is a

contradiction, thus E is standard.

By Remark 4.4, we have that if E ∈M2,3(1, 1, 1), then E is standard.



Chapter 5

Planar four bubbles conjecture

with equal area

In this chapter we present the problem, which is the core of the PhD

thesis. It is a particular case of the problem (1.9), indeed it is the following:

min

{
P(E)

∣∣E ∈ E2,4, m(E) = a

}
, (5.1)

where a = (a, a, a, a) with the target to prove the corresponding planar

soap bubble conjecture:

Theorem 5.1. Every E ∈M2,4(a) is standard.

5.1 Necessary conditions on area of different compo-

nents of the same region

Theorem 5.6 and Corollary 5.10 are the most important results in the

first section of this chapter. The first gives some necessary conditions on the

quantity of area that different components of the same region must have,

while the second determines the minimum area that a small component of

a disconnected weakly minimizer E must have.

Remark 5.2. From Remark 1.51, in order to prove Theorem 5.1 we can con-

sider the corresponding weak problem of (5.1)

97
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min

{
P(E)

∣∣E ∈ E2,4, m(E) ≥ a

}
, (5.2)

where we must show that nonstandard 4-clusters with connected exterior

region and with non negative pressures are not weakly minimizing.

Remark 5.3. Up to rescale for awe can consider |Ei | = 1 for all i. Therefore

from now for the problems (5.1) and (5.2) a = (1, 1, 1, 1).

We begin with some basic formulas and omit the easy computations.

Figure 5.1: The circular arc L has radius of curvature R, area A and length l.

Proposition 5.4. Let S be a circular sector. Define y the distance between the

endpoints of the circular edge L of S , with α the angle between L and the line

segment connecting its endpoints (see Figure 5.1). Then the radius of curvature

R of L, the area A of the region between L and the line segment connecting its

endpoints, and the length l of L are given by

R(α, y) =
y

2 sinα
, A(α, y) = y2 · α− sinα cosα

4 sin2 α
, l(α, y) = y · α

sinα
. (5.3)

In this remark we show the construction of a possible connected com-

petitor for the problem (5.1). We denote by p̃ the perimeter value of such

competitor that is called the competitor.
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Remark 5.5. The competitor, as in Figure 5.2,

Figure 5.2: The competitor where |Ei | = 1 for all i = 1, . . . , 4.

is composed by two adjacent regions of four sides and by two disjoint

regions with three sides; each region is adjacent to the exterior region. We

call a and b the following constants: a :=
π
3
−
√
3

4
3 , b :=

√
3

4 and x, h and s as

in Figure 5.2. For the region with three sides the following identities hold:

y = x
√

3 and h = x
2 . Since the area of each region must be unit we have

that the area of the regions with three sides is expressed in the following

way 1 = (y2 )2 · π2 + y·h
2 = x2 · (3π

8 +
√

3
4 ), getting that x = 1√

3π
8

+
√
3

4

. Now,

by the formulas (5.3), the area of each region with four sides is expressed

in the following way

1 = A((x+ s), π/3) +
(x+ 2s) ·

√
3x
2

2

= (x+ s)2 ·
π
3 −

√
3

4

3
+

(x+ 2s) ·
√

3x
2

2

= (x+ s)2 · a+ (x+ 2s) · x · b,

obtaining the next equation of second degree in the variable s

a · s2 + 2s · (ax+ xb) + (x2 · (a+ b)− 1) = 0.
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Since s must be positive, the solution of this equation is:

s =
−(ax+ xb) +

√
(ax+ xb)2 − a · (x2 · (a+ b)− 1)

a
≈ 0.541492.

Considering the relations (5.3) we get that the perimeter of the competitor is

p̃ = 4x+ s+ 2 · l(y, π/2) + 2 · l(x+ s, π/3)

= 4x+ s+ 2 · l(x
√

3, π/2) + 2 · l(x+ s, π/3) ≈ 11.1946. (5.4)

Furthermore it holds that (note the definition of Φi,a(p) in (3.8) where the

vector a = (1, 1, 1, 1))

1 < Φi,a(p̃) =
p̃− 5

√
π√

π
<

√
1 +

2
√

2

3
<
√

2 (5.5)

Thus, by (3.8), we can define

A1,4=xi,a(p̃) =
1−

√
Φ2
i,a(p̃) · (2− Φ2

i,a(p̃))

2
≈ 0.159132. (5.6)

We present the most important Theorem for problem (5.2), that is a di-

rect consequence of Theorem 3.5.

Theorem 5.6. Let E ∈ M∗2,4(1, 1, 1, 1). If E is not standard, then each disjoint

union U of components of a disconnected region Ei satisfies that 0 < |U | ≤ A1,4

or |U | ≥ 1−A1,4.

Proof. The proof is based on Theorem 3.5. We explicitly note that ai = 1 for

all i = 1, . . . , 4, so a0 =

4∑
i=1

ai = 4. Finally we see that p̃, by (5.5) of Remark

5.5, satisfies the condition on the value of the perimeter in Theorem 3.5.

This completes the proof.

Remark 5.7. Let E ∈ M∗2,4(1, 1, 1, 1). From (5.5) of Remark 5.5, we see

that p̃ satisfies the condition on the value of the perimeter in Remark 3.8.

Therefore it follows that if a region Ei of E is not connected then

Ei = E0
i t E1

i t . . . E
M(i)
i , (5.7)

with
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a) |E0
i | ≥ |Ei | −A1,4 ≥ 1−A1,4 >

2
3 ;

b) 0 <

∣∣∣∣ M(i)⊔
j=1

Eji

∣∣∣∣ ≤ A1,4 <
1

3
,

where Eji is a component of Ei for any j = 0, . . . ,M(i) (note that M(i) is

finite by Theorem 1.10 and M(i) > 1, because Ei is disconnected). Fur-

thermore any Eji is a small component and E0
i is the big component by

Definition 1.18.

Remark 5.8. Let E ∈M∗2,4(1, 1, 1, 1), then any big component of E has area

at least 1−A1,4 ≈ 0.840868.

First of all connected regions Ei are big components with |Ei | ≥ 1.

On the other hand for all disconnected regions Ei, by Remark 5.7, E0
i is

the big component and |E0
i | ≥ 1−A1,4 ≈ 0.840868.

Corollary 5.9. Let E ∈ M∗2,4(1, 1, 1, 1), then there is at most one big inner com-

ponent (i.e the component has not an edge in common with E0).

Proof. We argue by contradiction and we suppose that there are at least two

big inner components (see Figure 5.3).

Figure 5.3: E 4-Cluster which have two inner big components.

By Remark 5.8 any big component has area at least 1−A1,4 ≈ 0.840868.

Let Ei and Ej be the regions with their big inner componentsBi and Bj (i.e

Bi and Bj are disjoint to E0, therefore also Bi ∪ Bj is disjoint to E0), then
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by the isoperimetric inequality we have the next estimate for the perimeter

of E:

P (E) ≥ P (Bi ∪Bj) + P (E0) ≥ 2
√
π
(√

2(1−A1,4) + 2
)
≈ 11.6869.

From the minimality of E, we know that P (E) ≤ p̃ ≈ 11.1946. Since this is

a contradiction, the proof is completed.

Now we present a corollary where we find the minimum area that a

small component of a disconnected weak minimizer must have.

Corollary 5.10. Let E ∈M∗2,4(1, 1, 1, 1). If E is not standard, then the following

inequalities apply:

S ≤ |Si |
2(1− |Si |)

· p̃. (5.8)

Furthermore the estimates hold:

|Si | ≥ 1− (p̃ ·Nr)
2

32π
·

(√
1 +

64π

(p̃ ·Nr)2
− 1

)
, (5.9)

and

|Si | ≥ 1− p̃2

2π
·

(√
1 +

4π

p̃2
− 1

)
:= A2,4 ≈ 0.0238853, (5.10)

where Si is a small component of some disconnected region, S is the maximum

sum of the lengths of the edges of Si adjacent to the same region and Nr denotes

the number of regions adjacent to Si.

Proof. The proof is based on estimates 1), (3.22), (3.23) of Lemma 3.11. First

of all, by Remark 5.7, we know that there are small components Si of some

disconnected region Ei. Let Si be a small component of some disconnected

region Ei, we choose p̃ as perimeter of a weak competitor.

Since |Ei | ≥ ai = 1 and by 1) of Lemma 3.11, we find (5.8).

Instead, since ai = 1 for any i = 1, . . . , 4 and by (3.22) of Lemma 3.11,

we have (5.9) and finally, since also N = 4, by estimate (3.23) of Lemma

3.11, we get (5.10).
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5.2 Possible cases of disconnected weakly minimiz-

ing 4-cluster

In this section, exploiting Remark 5.7 and Corollary 5.10, we consider

all possible cases of disconnected weakly minimizing 4-cluster which we

want to exclude in order to prove Theorem 5.1.

Proposition 5.11. Let E ∈ M∗2,4(1, 1, 1, 1). Each disconnected region of E can

have at most two small components.

Proof. Let Ei be a disconnected region. By Remark 5.7

Ei = E0
i t E1

i t . . . E
M(i)
i , (5.11)

where |E0
i | ≥ 1−A1,4, 0 <

∣∣∣∣ M(i)⊔
j=1

Eji

∣∣∣∣ ≤ A1,4 and M(i) denotes the number

of small components of Ei.

We argue by contradiction and we suppose that M(i) ≥ 3. By (5.10)

of Corollary 5.10 we know that |Eji | ≥ A2,4 for all j = 1 . . . ,M(i). There-

fore we get, by the isoperimetric and by the definition of perimeter view in

Definition 1.1, the following estimate for the perimeter of E

P (E) =
1

2

(
P (E0) + P (E0

i ) +

M(i)∑
j=1

P (Eji ) +
∑
k 6=i

P (Ek)

)

≥
√
π

(
2 +

√
1−A1,4 + 3 ·

√
A2,4 + 3

)
≈ 11.3094.

But by the minimality of E, P (E) ≤ p̃ ≈ 11.1946 therefore we come to a

contradiction that concludes the proof.

Remark 5.12. Let E ∈ M∗2,4(1, 1, 1, 1). If E is not standard, then E has at

least one disconnected region Ei, thus, by Remark 5.7 and Proposition 5.11

Ei is so composed:

Ei = E0
i t E1

i t . . . E
M(i)
i ,

whereE0
i is the big component with |E0

i | ≥ 1−A1,4 and
M(i)⊔
j=1

Eji is a disjoint

union of M(i) small components with
∣∣∣∣ M(i)⊔
j=1

Eji

∣∣∣∣ ≤ A1,4 and 1 ≤ M(i) ≤ 2.
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For any connected region Ei of E the number of small components M(i) is

zero. Therefore, since each region has unit area, up to a permutation of the

regions, the only possible connection types IE = (M(1), . . . ,M(4)) for not

standard E are the following: (2, 2, 2, 2), (2, 2, 2, 1), (2, 2, 2, 0), (2, 2, 1, 1),

(2, 2, 1, 0), (2, 2, 0, 0), (2, 1, 1, 1), (2, 1, 1, 0), (2, 1, 0, 0), (1, 1, 1, 1), (1, 1, 1, 0),

(2, 0, 0, 0), (1, 1, 0, 0), (1, 0, 0, 0) and (0, 0, 0, 0).

Lemma 5.13. Let a, b, D be real positive constants with a < b and let

g : I = [a, b]→ R,

be a function such that

1) g is convex,

2) g′(a) > 0,

3)
√
D < g(a) < g(b) <

√
2D.

Then the function

f(x) :=
D −

√
g(x)2 · (2D − g(x)2)

2
, x ∈ I, (5.12)

is strictly increasing and its first derivative is positive and strictly increasing.

In particular if f(I) ⊆ I and f ′(b) < 1, then one and only one fixed point l of

f exists in I . Furthermore if b < D
2 , l is a root of the function

F (x) := g(x)2 ·
(

2D − g(x)2
)
− (D − 2x)2, x ∈ I, (5.13)

where F is strictly increasing.

Proof. We define

T (x) := g(x)2 ·
(

2D − g(x)2
)
, x ∈ I. (5.14)

From the first property of g, we get that g′ is increasing, therefore, by 2), we

have that the function g is strictly increasing. By 3) we initially obtain that g

is positive and finally that T is positive. With simple algebraic calculations

it follows that
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T ′(x) = −4g(x) · g′(x) ·
(
g(x)2 −D

)
.

Therefore by the positivity of g and g′ and by 3) we have that T ′ is nega-

tive. Then T is strictly decreasing. Furthermore we obtain that the second

derivative of T is

T ′′(x) = −4

[
g′(x)2 ·

(
g(x)2−D

)
+g(x)·g′′(x)·

(
g(x)2−D

)
+2g(x)2 ·g′(x)2

]
.

Again, by the positivity of g and g′ and by the property 3) of g, we have

that T ′′ is negative, therefore T is concave. Now we notice that the function

f in (5.12) is equal to

f(x) =
D −

√
T (x)

2
. (5.15)

Thus, since T is strictly decreasing, f is strictly increasing.

Furthermore we can see that

f ′(x) =
g′(x) ·

(
g(x)2 −D

)
√

2D − g(x)2
. (5.16)

We explicitly note that, by 3) and g is strictly increasing,
√

2D − g(x)2 is

positive. Hence by the positivity of g′ and by 3) and g is strictly increasing,

g′(x) · (g(x)2 −D) is positive too. So we get that f ′ is positive.

We set

f1(x) := g′(x) ·
(
g(x)2 −D

)
, x ∈ I;

f2(x) :=
√

2D − g(x)2, x ∈ I.

From what we have seen before we know that f1 and f2 are positive. By the

assumption on the function g and by the monotonicity of g and g′, we re-

spectively deduce that f1 is strictly increasing and f2 is strictly decreasing.

It is clear, by (5.16), that f ′(x) = f1(x)
f2(x) for any x ∈ I . Therefore f ′ is strictly

increasing.
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In particular if we have that f(I) ⊆ I and f ′(b) < 1 (recall that f ′ is

strictly increasing), then, f is a contraction on I . By Banach fixed point

Theorem, the function f has one and only fixed point l in I , namely f(l) = l.

If b < D
2 , then from (5.15) and by the fact f(l) = l, it is clear that l is a

root of the function

F (x) := T (x)− (D − 2x)2, x ∈ I.

By the expression of T in (5.14), F is the same as in (5.13). We calculate the

first and the second derivative of F and we obtain

F ′(x) = T ′(x) + 4(D − 2x);

F ′′(x) = T ′′(x)− 8x.

Since T ′′ is negative and 0 < a ≤ x ≤ b, F ′′ is negative, therefore F ′ is

strictly decreasing. Thus F ′(x) ≥ F ′(b) = T ′(b) + 4(D − 2b). Then, since

b < D
2 and T ′ is positive, we have that F ′ is positive. Hence F is strictly

increasing.

Remark 5.14. Let Ei be a region of E ∈ M∗2,4(1, 1, 1, 1), then, by Remark

5.12, Ei can be decomposed as:

Ei =


Ei, if M(i) = 0

E0
i t E1

i , if M(i) = 1

E0
i t E1

i t E2
i , if M(i) = 2.

By Remark 5.7 we have that |E0
i | ≥ 1 − A1,4, while by (5.10) of Corollary

5.10 we know that it holds that |Eji | ≥ A2,4 for any j 6= 0. Therefore, by

isoperimetric inequality, we get

P (Ei) ≥


2
√
π, if M(i) = 0

2
√
π

(√
1−A1,4 +

√
A2,4

)
, if M(i) = 1

2
√
π

(√
1−A1,4 + 2

√
A2,4

)
, if M(i) = 2,

where 2
√
π(
√

1−A1,4 + 2
√
A2,4) > 2

√
π(
√

1−A1,4 +
√
A2,4) > 2

√
π, be-

cause 1.07154 ≈
√

1−A1,4 +
√
A2,4 > 1.
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Now we present a theorem where we exclude all possible connection

types IE seen in Remark 5.12 except the cases (2, 0, 0, 0), (1, 1, 0, 0), (1, 0, 0, 0)

and of course (0, 0, 0, 0). We denote by n(A) the cardinality of a set A.

Theorem 5.15. Let E ∈M∗2,4(1, 1, 1, 1), then

IE ∈ {(0, 0, 0, 0), (1, 0, 0, 0), (1, 1, 0, 0), (2, 0, 0, 0)}.

Proof. We callP = {(0, 0, 0, 0), (1, 0, 0, 0), (1, 1, 0, 0), (2, 0, 0, 0)}, and we sup-

pose by contradiction that IE /∈ P . Therefore the possible connection types

IE = (M(1), . . . ,M(4)) can be only one of the cases described in Remark

5.12 with the following properties:

1)
4∑
i=1

M(i) ≥ 3;

2) n({j ∈ {1, . . . , 4} |M(j) ≥ 1}) ≥ 2,

namely the possibilities for IE are (2, 2, 2, 2), (2, 2, 2, 1), (2, 2, 2, 0), (2, 2, 1, 1),

(2, 2, 1, 0), (2, 2, 0, 0), (2, 1, 1, 1), (2, 1, 1, 0), (2, 1, 0, 0), (1, 1, 1, 1), (1, 1, 1, 0).

We denote by

Id := {i ∈ {1, . . . , 4} |M(i) ≥ 1};

Ic := {i ∈ {1, . . . , 4} |M(i) = 0};

the sets of indices, that represent the disconnected and connected regions

respectively.

Now we divide the proof in two parts. In the first we determine the

following inequality

√
x+
√

1− x ≤
p̃−
√
π
(

3 + 2
√

1−A1,4 + 2
√
A2,4

)
√
π

, (5.17)

where x represents the area of a disjoint union of small components,
M(j)⊔
i=1

Eij .

By Remark 5.7 and (5.10) of Corollary 5.10 we know that A2,4 ≤ x ≤ A1,4.

Solving (5.17), we find a new estimate for x:

A2,4 ≤ x ≤ f1(A1,4) < A1,4, (5.18)
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where

f1(x) =

1−
√
g1(x)2 ·

(
2− g1(x)2

)
2

, x ∈ I := [A2,4, A1,4],

g1(x) := C1 − 2
√

1− x, x ∈ I, (5.19)

C1 :=
p̃√
π
− 3− 2

√
A2,4

In the second part we see that, for the cases (2, 2, 2, 2), (2, 2, 2, 1), (2, 2, 2, 0),

(2, 2, 1, 1), (2, 2, 1, 0), (2, 2, 0, 0), (2, 1, 1, 1), (2, 1, 1, 0), the new estimate (5.18)

on x is immediately a contradiction, while, for the following connection

types IE, (2, 1, 0, 0), (1, 1, 1, 1), (1, 1, 1, 0), it will allow us to get an estimate

for the perimeter of E greater than p̃. This is still a contradiction, thus the

proof is completed.

Part I. By 2) there are at least two disconnected region. We take j ∈ Id
such that ∑

k∈I−d

M(k) ≥ 2,

where I−d = Id r {j}. We explicitly note that the choice of j ∈ Id is indif-

ferent except in the case IE = (2, 1, 0, 0) where j must be 2 (i.e. the index j

denotes the disconnected region with one and only one small component).

Given j so done, Ej = E0
j

⊔(M(j)⊔
i=1

Eij

)
. Therefore, by the minimality of E,

we get that

p̃ ≥ P (E) ≥ 1

2

(
P (E0) + P (E0

j ) + P

(
M(j)⊔
i=1

Eij

)
+
∑
k∈I−d

P (Ej) +
∑
k∈Ic

P (Ej)

)
,

(5.20)

where the following conditions apply (note that 0 ≤ M(i) ≤ 2 for any i by

Proposition 5.11 and see also the properties 1 and 2))

a) n(I−d ) ≥ 1;

b) n(I−d ) + n(Ic) = 3;
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c)
∑
k∈I−d

M(k) ≥ 2.

By a) b) and c) we get that (n(I−d ),n(Ic)) can be (1, 2), (2, 1) and (3, 0). We

notice that the case (n(I−d ), n(Ic)) = (1, 2) is IE ∈ {(2, 2, 0, 0), (2, 1, 0, 0)},
while if (n(I−d ), n(Ic)) = (2, 1) the possibilities for IE are (2, 2, 2, 0), (2, 2, 1, 0),

(2, 1, 1, 0), (1, 1, 1, 0), and finally if (n(I−d ),n(Ic)) = (3, 0) the set of possible

connection types IE is {(2, 2, 2, 2), (2, 2, 2, 1), (2, 2, 1, 1), (2, 1, 1, 1), (1, 1, 1, 1)}.
We set

S(E) : =
∑
k∈I−d

P (Ek) +
∑
k∈Ic

P (Ek).

We underline that, the condition c) guarantees that in
∑
k∈I−d

P (Ek), there are

disconnected regions such that the total number of their small components

is at least two. Hence by Remark 5.14, we have that

S(E) ≥


2
√
π(
√

1−A1,4 + 2
√
A2,4) + 4

√
π, if (n(I−d ), n(Ic)) = (1, 2)

4
√
π(
√

1−A1,4 +
√
A2,4) + 2

√
π, if (n(I−d ), n(Ic)) = (2, 1)

6
√
π(
√

1−A1,4 +
√
A2,4), if (n(I−d ), n(Ic)) = (3, 0).

By Remark 5.7, 1−A1,4 < 1, thus we observe that

2
√
π(
√

1−A1,4 + 2
√
A2,4) + 4

√
π > 4

√
π(
√

1−A1,4 +
√
A2,4) + 2

√
π.

Since
√

1−A1,4 +
√
A2,4 > 1 (see Remark 5.14), we get that

6
√
π(
√

1−A1,4 +
√
A2,4) > 4

√
π(
√

1−A1,4 +
√
A2,4) + 2

√
π.

Thus we have that

S(E) ≥ 4
√
π(
√

1−A1,4 +
√
A2,4) + 2

√
π, (5.21)

By (5.20), it is clear that

p̃ ≥ P (E) ≥ 1

2

(
P (E0) + P (E0

j ) + P

(
M(j)⊔
i=1

Eij

)
+ S(E)

)
.
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We call x =

∣∣∣∣∣
M(j)⊔
i=1

Eij

∣∣∣∣∣, thus |E0
j | = |Ej | − x ≥ 1 − x > 0 (because, by Re-

mark 5.7, 0 < x =

∣∣∣∣∣
M(j)⊔
i=1

Eij

∣∣∣∣∣ < A1,4 <
1

3
). Therefore, from the isoperimetric

inequality and (5.21), we get that

p̃ ≥ P (E) ≥
√
π

(
2 +
√

1− x+
√
x+ 2

√
1−A1,4 + 2

√
A2,4 + 1

)
, (5.22)

which is equivalent to the inequality in (5.17), namely

√
x+
√

1− x ≤
p̃−
√
π
(

3 + 2
√

1−A1,4 + 2
√
A2,4

)
√
π

, (5.23)

where x represents the area of a disjoint union of small components,
M(j)⊔
i=1

Eij ,

such that A2,4 ≤ x ≤ A1,4, by Remark 5.7 and (5.10) of Corollary 5.10. Let I

be the interval I := [A2,4, A1,4] and let the functions g1 and f1 be as in (5.19).

Therefore we have that

g′1(x) =
1√

1− x
,

g′′1(x) =
1

2(1− x)
3
2

.

Thus it follows that

1) g1 is convex on I;

2) g′1(A2,4) =
1√

1−A2,4

> 0; (5.24)

3) 1 < g1(A2,4) ≈ 1.03083 < g1(A1,4) ≈ 1.17283 <
√

2.

We set D = 1, a = A2,4 and b = A1,4, so by Lemma 5.13, the function f1 in

(5.19) is strictly increasing on I . Furthermore we get that

0.0238853 ≈ A2,4 < f1(A1,4) ≈ 0.0365939 < A1,4 ≈ 0.159132.
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Now it is easy to see that the inequality in (5.23) is

√
x+
√

1− x ≤ g1(A1,4). (5.25)

We setC = g1(A1,4) andD = 1, then by Lemma 3.1, the solution of previous

inequality is

0 < x ≤ f1(A1,4) or (1− f1(A1,4)) ≤ x < 1,

because, by (5.24), we have that 1 < g1(A1,4) <
√

2 (see the condition on

the constants in Lemma 3.1). We recall that A2,4 ≤ x ≤ A1,4, furthermore

A2,4 < f1(A1,4) < A1,4, thus 1 − f1(A1,4) > 1 − A1,4 > A1,4 because, by

Remark 5.7, A1,4 <
1
3 . Then the inequality (5.25) reduce to:

A2,4 ≤ x ≤ f1(A1,4) < A1,4, (5.26)

that is the estimate in (5.18).

Part II. From (5.26) we have that A2,4 < x ≤ f1(A1,4) < A1,4, where

x =

∣∣∣∣∣
M(j)⊔
i=1

Eji

∣∣∣∣∣ and j ∈ Id such that
∑
k∈I−d

M(k) ≥ 2. Therefore we can im-

mediately exclude the following possibilities of connection type:(2, 2, 2, 2),

(2, 2, 2, 1), (2, 2, 2, 0), (2, 2, 1, 1), (2, 2, 1, 0), (2, 2, 0, 0), (2, 1, 1, 1), (2, 1, 1, 0).

In these cases we can choose j such that M(j) = 2, then by (5.10) of Corol-

lary 5.10, |Eij | ≥ A2,4 for any i = 1, 2, therefore by (5.26) it follows that

0.0477706 ≈ 2A2,4 ≤

∣∣∣∣∣
2⊔
i=1

Eji

∣∣∣∣∣ ≤ f1(A1,4) ≈ 0.0365939.

This is a contradiction.

For the other cases of connection type, (2, 1, 0, 0), (1, 1, 1, 0) and (1, 1, 1, 1),

we give an estimate for the perimeter P (E), which will be greater that p̃.

We start with IE ∈ {(1, 1, 1, 0), (1, 1, 1, 1)}. From the first part we can

say that |E1
i | ≤ f1(A1,4) for any small component of a disconnected region,

because it is true that
∑
k∈I−d

M(k) ≥ 2 for any j ∈ Id. Therefore we have that

|E0
i | = |Ei | − |E1

i | ≥ 1− f1(A1,4) > 1−A1,4, (5.27)
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for any big component of a disconnected region. Moreover, by (5.10) of

Corollary 5.10, it holds that

|E1
i | ≥ A2,4, (5.28)

for any small component of a disconnected region. Hence, by (5.27), by

(5.28) and by the isoperimetric inequality, we get the following estimate for

the perimeter of E:

11.1946 ≈ p̃ ≥ P (E) ≥


1
2

(
P (E0) +

3∑
i=1

P (E0
i ) +

3∑
i=1

P (E1
i ) + P (E4)

)
1
2

(
P (E0) +

4∑
i=1

P (E0
i ) +

4∑
i=1

P (E1
i )

)

≥

{ √
π
(
2 + 3

√
1− f1(A1,4) + 3

√
A2,4 + 1

)
≈ 11.3583, if IE = (1, 1, 1, 0),

√
π
(
2 + 4

√
1− f1(A1,4) + 4

√
A2,4

)
≈ 11.5995, if IE = (1, 1, 1, 1).

This is a contradiction.

Finally we consider the case when IE = (2, 1, 0, 0). From the first part

we can say that |E1
2 | ≤ f1(A1,4), because the only choice of j ∈ Id such that∑

k∈Id

M(k) ≥ 2 is j = 2. Therefore we have that

|E0
2 | = |E2 | − |E1

2 | ≥ 1− f1(A1,4) > 1−A1,4, (5.29)

while, by (5.10) of Corollary 5.10, we get that

|E1
2 | ≥ A2,4. (5.30)

By Remark 5.7 and (5.10) of Corollary 5.10 we know that

|E0
1 | ≥ 1−A1,4,

(5.31)

|Ej1 | ≥ A2,4, for any j = 1, 2.

Hence, by (5.29), by (5.30), by (5.31) and by the isoperimetric inequality, we

get the following estimate for the perimeter of E:

p̃ ≥ P (E) ≥ 1

2

(
P (E0) +

4∑
k=3

P (Ek) + P (E0
1) +

2∑
j=1

P (Ej1) + P (E0
2) + P (E1

2)

)
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≥
√
π
(
2 + 2+

√
1−A1,4+2

√
A2,4+

√
1−f1(A1,4)+

√
A2,4

)
≈11.2766

This is a contradiction because p̃ ≈ 11.1946.

Corollary 5.16. Let E ∈ M∗2,4(1, 1, 1, 1), then E has at least two connected re-

gions. Moreover E has at most six bounded components, thus E ∈M2,4(1, 1, 1, 1).

Proof. If E is standard, then any region is connected therefore there are four

bounded components.

If E is not standard, then by Remark 5.12 and Theorem 5.15, we know

that its connection type IE can be only (2, 0, 0, 0), (1, 1, 0, 0) or (1, 0, 0, 0).

Therefore E has two connected regions and it can have at most six bounded

components. Thus, by Theorem 1.50, E ∈M2,4(1, 1, 1, 1).

5.3 The cases (2, 0, 0, 0) and (1, 1, 0, 0)

In this section we consider the cases (2, 0, 0, 0) and (1, 1, 0, 0). The most

important results are Theorem 5.23 and Theorem 5.39, that exclude these

possibilities.

Lemma 5.17. Let f : I → R be an increasing function (i.e. f(x) ≤ f(y) if x ≤ y)

where I is an interval of R and f(I) ⊆ I . Fixed arbitrarily x0 ∈ I , we define the

following recurrence sequence (un)n∈N{
u0 = x0

un+1 = f(un), n ≥ 0.

If u1 > x0 then the sequence (un)n∈N is increasing, while if u1 < x0, then (un)n∈N

is decreasing. In particular the limit of the sequence (un)n∈N exists.

Proof. If x0 = u1 then f(u1) = u1 thus, by induction, the sequence (un)n∈N

is constant and it holds that un = x0 for all n ∈ N, then the existence of the

limit is obvious.

Thus we can consider x0 < u1 or x0 > u1. If x0 < u1, since f is

increasing , it holds u1 = f(x0) ≤ f(u1) = u2; now we prove by in-

duction that the sequence (un)n∈N is increasing. For n = 1 we have that
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u2 = f(u1) ≤ f(u2) = u3, since u1 ≤ u2 and f is increasing. We sup-

pose true un ≤ un+1, then un+1 = f(un) ≤ f(un+1) = un+2, thus we have

un+1 ≤ un+2.

If x0 > u1 we proceed in the same way, and now we obtain that the

sequence (un)n∈N is decreasing.

Since in both cases the sequence (un)n∈N is monotone, then the limit of

the sequence (un)n∈N exists.

Lemma 5.18. Let E ∈ M∗2,4(1, 1, 1, 1). If IE ∈ {(2, 0, 0, 0), (1, 1, 0, 0)}, then E

has ten vertices and fifteen edges.

Proof. Let v, e and c be the numbers of the vertices, of the edges and of the

connected components of E respectively, then, by the Euler’s formula, it

applies that v − e + c = 2. Since E is a minimum, each vertex of E is is a

meeting point of exactly three edges (see Theorem 1.10), thus 3v = 2e (note

that each edge has two vertices). Furthermore, IE ∈ {(2, 0, 0, 0), (1, 1, 0, 0)},
therefore c = 7. Solving the following linear system{

v − e = −5

3v = 2e,

we find the statement.

5.3.1 The case (2, 0, 0, 0)

We begin with the case IE = (2, 0, 0, 0). First of all we present a simple

lemma where we describe a component of the disconnected region and a

component of a connected region.

Lemma 5.19. Let E ∈ M∗2,4(1, 1, 1, 1). If IE = (2, 0, 0, 0), then a component C

of E1 has

i) three edges if it is inner;

ii) at most four edges if it is external.

While a connected region has
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iii) at most five edges if it is inner;

iv) at most six edges if it is external.

Proof. By Corollary 1.35, we know that every component has at least three

edges. Furthermore from Proposition 1.33 we have that any two compo-

nents of E may meet at most once along a single edge. We explicitly note

that E has six bounded components with three connected regions.

We consider a component C of E1; therefore if C is inner, by the mini-

mality of E , C must have three edges.

While if C is external, then it could have one and only one edges in

common with E0, thus C can have at most four edges if it is also adjacent

to the all others connected regions.

The argument is the same in the case that we take a connected region

Ei, finding that Ei has at most five edges and most six edges if Ei is inner

and external respectively.

Lemma 5.20. Let C2 =
p̃−
√
π(5+
√
A2,4)

√
π

and

f2(x) :=

(1− x)−
√
C2

2
·
(

2(1− x)− C2
2

)
2

, x ∈ I := [A2,4, A1,4],

then f2 is strictly increasing on I with f2(I) ⊂ I and f2 is a contraction on I .

Furthermore the unique fixed point l of f2 on I is a root of the function

F3(x) := (3x− 1) +

√
C2

2
·
(

2(1− x)− C2
2

)
,

where F3 is strictly increasing. In particular l is less than 0.042.

Proof. We explicitly note that f2 is well defined because 2(1 − x) − C2
2
> 0

for all x ∈ I , indeed 2(1 − x) ≥ 2(1 − A1,4) ≈ 1.68174 > C2
2
≈ 1.34874. We

initially prove that f2 is strictly increasing and that it is a contraction on I .

With simple algebraic calculations we can see that

f ′2(x) =
1

2
·

[
C2

2√
C2

2
·
(

2(1− x)− C2
2

) − 1

]
.
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Therefore f ′2 is positive if and only if

C2
2
> (1− x).

But x ∈ I , so (1− x) ≤ (1− A2,4) ≈ 0.976115 < C2
2
≈ 1.34874. Thus we get

that f2 is strictly increasing on I . Hence we have that f2(I) ⊂ I , indeed

0.0369618 ≈ f2(A2,4) ≤ f2(x) ≤ f2(A1,4) ≈ 0.0853508,

(5.32)

A2,4 ≈ 0.0238853, A1,4 ≈ 0.159132.

If we set f4(x) := 2(1−x)−C2
2

, with x ∈ I , then f4 is strictly decreasing

on I , thus f4(x) > f4(A1,4) ≈ 0.332994 > 0. It is easy to see that

f ′2(x) =
1

2
·

[
C2

2
−
√
C2

2
· f4(x)√

C2
2
· f4(x)

]
.

Since f4 is strictly decreasing, we have that C2
2
−
√
C2

2
· f4(x) is strictly

increasing on I . Furthermore, since f ′2 and f4 are positive on I , we also get

that C2
2
−
√
C2

2
· f4(x) is positive on I . Therefore f ′2 is strictly increasing on

I . Thus we obtain that

0 < f ′2(x) < f ′2(A1,4) ≈ 0.506274. (5.33)

Hence, by (5.32) and (5.33), we deduce that f2 is a contraction on I .

Then, by Banach fixed point Theorem, we have that there exists one and

only one fixed point l of f2 on I such that f2(l) = l. By f2(l) = l, we deduce

that l is a root of the function

F3(x) := (3x− 1) +

√
C2

2
·
(

2(1− x)− C2
2

)
.

Its first derivative is

F ′3(x) = 3−
C2

2√
C2

2
·
(

2(1− x)− C2
2

) .
Now we can see that F ′3 > 0 it is equivalent to
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(1− x) >
5C2

2

9
.

Since x ∈ I , then (1 − x) ≥ (1 − A1,4) ≈ 0.840868 >
5C2

2
9 ≈ 0.749301, (note

that the denominator of F ′3 is just positive because it is the same denomi-

nator of f ′2). Therefore F ′3 is positive on I and so F3 is strictly increasing.

Since F3(0.042) ≈ 0.000691277 > 0, we have the estimate l < 0.042.

Lemma 5.21. Let E ∈ M∗2,4(1, 1, 1, 1). If IE = (2, 0, 0, 0), then the area of a

small component can be at most the limit of the following sequence:{
a0 = A1,4

an+1 = f(an), n ≥ 0,
(5.34)

where

f2(x) :=

(1− x)−
√
C2

2
·
(

2(1− x)− C2
2

)
2

, x ∈ I := [A2,4, A1,4]

(5.35)

with C2 :=
p̃−
√
π(5 +

√
A2,4)

√
π

.

In such case the limit l is less than 0.042.

Proof. First of all we note that, by Lemma 5.20, f2 is strictly increasing and

f2(I) ⊂ I , in particular f2(A1,4) < A1,4. So by Lemma 5.17, the sequence

(an)n∈N has a finite limit l and it is strictly decreasing. Furthermore, since

by Lemma 5.20, f2 is a contraction on I , then l is the unique fixed point of

f2 in I with l < 0.042. Since IE = (2, 0, 0, 0), then E1 = E0
1 t E1

1 t E2
1 .

In order to show the statement of the Lemma we will prove by induc-

tion the following property:

|Ei1 | ≤ an, ∀n ∈ N, ∀i = 1, 2. (5.36)

The case n = 0 is true since a0 = A1,4 and by Remark 5.7, by (5.10) of

Corollary 5.10, we have that

A2,4 ≤ |Ei1 | ≤ A1,4 <
1

3
, ∀i = 1, 2. (5.37)
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We suppose that (5.36) is true for n and now we prove it for n + 1.

Therefore the following estimates hold (note that a1 = f2(A1,4) < A1,4 = a0

and the sequence (an)n∈N is strictly decreasing, thus an ≤ A1,4 for all n ∈ N)

A2,4 ≤ |Ei1 | ≤ an, ∀i = 1, 2. (5.38)

Let x = |Ei1 | for i = 1, 2, thus |E0
1 |= (|E1 |−|Ej1 |)−|Ei1 |≥ (1− an)−x>0

where j∈{1, 2}r{i}. By the minimality of E, by the isoperimetric inequality

and by (5.38), we get that

p̃ ≥ P (E) =
1

2
·
(
P (E0) + P (Ei1) + P (E0

1) + P (Ej1) +
4∑

k=2

P (Ek)
)

≥
√
π
(

2 +
√
x+

√
(1− an)− x+

√
A2,4 + 3

)
.

We find the following inequality

√
x+

√
(1− an)− x ≤

p̃−
√
π(5 +

√
A2,4)

√
π

= C2 . (5.39)

Since f2(I) ⊂ I and the sequence (an)n∈N is strictly decreasing, therefore

0 < A2,4 < an ≤ A1,4 < 1 for all n ∈ N. Since

1 < C2 ≈ 1.16135 <
√

2(1−A1,4) ≈ 1.29682,

we get that

√
1− an < C2 <

√
2(1− an).

So if we set D = 1− an, by Lemma 3.1, the solution of (5.39) is

0 < x ≤
D −

√
C2

2
(2D − C2

2
)

2
or
D +

√
C2

2
(2D − C2

2
)

2
≤ x < D.

From the expression of f2 in (5.35), it is clear that the solution can be written

as

0 < x ≤ f2(an) or
(

1− an − f2(an)
)
≤ x < (1− an).
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But by (5.38), we know that A2,4 ≤ x ≤ an. The sequence (an)n∈N is

strictly decreasing and the function f2 is strictly increasing with f2(I) ⊂ I ,

therefore A2,4 < f2(an) < an. Moreover it follows that 1 − an − f2(an) >

1− an − an > an, because f2(I) ⊂ I and by Remark 5.7, A1,4 <
1
3 . Thus the

solution of (5.39) is

A2,4 ≤ x ≤ f2(an) = an+1.

So (5.36) is true with n+ 1 in place of n. This completes the proof.

Lemma 5.22. Let E ∈ M∗2,4(1, 1, 1, 1). If IE = (2, 0, 0, 0), then the small com-

ponents of the disconnected region are external with four edges.

Proof. Since IE = (2, 0, 0, 0), it follows that E1 = E0
1 tE1

1 tE2
1 , where E0

1 is

the big component and Ej1 (j 6= 0) are the small components. We argue by

contradiction, thus, by Lemma 5.19, there existsEi1 (i = 1, 2) such that it has

three edges. Without loss of generality we can suppose that E1
1 is a small

three-sided component. Therefore, by (5.9) of Corollary 5.10, we have that

|E1
1 | ≥ 1− 9p̃2

32π
·

(√
1 +

64π

9p̃2
− 1

)
:= A3,4 ≈ 0.0409878.

We summarize the conditions of area of small components of E1; by (5.10)

of Corollary 5.10 and Lemma 5.21 we get that

A3,4 ≤ |E1
1 | ≤ l < 0.042

(5.40)

A2,4 ≤ |E2
1 | ≤ l < 0.042.

We will show that the area of E2
1 is smaller than A2,4; therefore we would

contradict (5.40), so the proof will be completed.

Let x = |E2
1 |, thus |E0

1 | = (|E1 |−|E1
1 |)−|E2

1 | ≥ (1−0.042)−x > 0 by

(5.40). By the minimality of E, by the isoperimetric inequality and (5.40),

we get that
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p̃ ≥ P (E) =
1

2

(
P (E0) + P (E2

1) + P (E0
1) + P (E1

1) +
4∑

k=2

P (Ek)
)

≥
√
π
(

2 +
√
x+

√
(1− 0.042)− x+

√
A3,4 + 3

)
.

We find the following inequality

√
x+

√
(1− 0.042)− x ≤

p̃−
√
π(5 +

√
A3,4)

√
π

. (5.41)

We set C3 =
p̃−
√
π(5+
√
A3,4)

√
π

and D = 1− 0.042, then we can see that

0.978775 ≈
√

1− 0.042 < C3 ≈ 1.11345 <
√

2(1− 0.042) ≈ 1.3842.

So by Lemma 3.1, the solution of (5.41) is

0 < x ≤
D −

√
C2

3
(2D − C2

3
)

2
or
D +

√
C2

3
(2D − C2

3
)

2
≤ x < D, (5.42)

where

D −
√
C2

3
(2D − C2

3
)

2
≈ 0.0211867

D +
√
C2

3
(2D − C2

3
)

2
≈ 0.936813.

But from (5.40), 0.0238853 ≈ A2,4 ≤ x ≤ A1,4 ≈ 0.159132. This contradicts

the solution (5.42) of (5.41).

Now we are ready to eliminate the case IE = (2, 0, 0, 0) of Remark 5.12.

Theorem 5.23. Let E ∈M∗2,4(1, 1, 1, 1), then IE 6= (2, 0, 0, 0).

Proof. We suppose by contradiction that IE = (2, 0, 0, 0), therefore it follows

that E1 = E0
1

⊔
E1

1

⊔
E0

2 where E0
1 is the big component and Ei1 (i = 1, 2)

are the small components. By Lemma 5.22, Ei1 (i = 1, 2) are external with
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four edges, while, by Lemma 5.19, E0
1 has at least three edges and at most

four edges. We denote by v(C) the number of vertices of a component

C of E and v(E) is the number of the vertices of E. Thus, we have that

(v(E0
1), v(E1

1), v(E2
1)) can be (3, 4, 4) or (4, 4, 4). SinceEi1 andEj1 are disjoint

two by two for any i 6= j (i, j ∈ {0, 1, 2}), the vertices of Ei1 and Ej1 are all

distinct (recall that E is a minimizer). Thus, we get that

v(E) ≥
2∑
i=0

v(Ei1) ≥ 11,

but v(E) = 10 by Lemma 5.18. This is a contradiction, so the proof is com-

pleted.

5.3.2 The case (1, 1, 0, 0)

We analyze the case IE = (1, 1, 0, 0) of Remark 5.12; first of all as in the

case IE = (2, 0, 0, 0) of Remark 5.12 we describe a component of a discon-

nected region and a component of a connected region.

Lemma 5.24. Let E ∈ M∗2,4(1, 1, 1, 1). If IE = (1, 1, 0, 0), then a component C

of a disconnected region has

i) at most four edges if it is inner;

ii) at most five edges if it is external.

While a connected region has

iii) at most five edges if it is inner;

iv) at most six edges if it is external.

Proof. By Corollary 1.35 we know that any component C of E has at least

three edges. Let C be a component of a disconnected region. Since E is a

minimum, by Proposition 1.33 and IE = (1, 1, 0, 0), then, C has at most four

edges and at most five edges if C is inner and external respectively.

If Ei is a connected region, arguing as in the case that C is a component

of a disconnected region, then Ei can have at most five edges and six edges

if it is inner and external respectively.
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In the next lemma we determine the new maximum value of the area of

a small component.

Lemma 5.25. Let E ∈ M∗2,4(1, 1, 1, 1). If IE = (1, 1, 0, 0), then the area of a

small component can be at most the limit of the following sequence:{
a0 = A1,4

an+1 = f(an), n ≥ 0,
(5.43)

where

f5(x) :=

1−
√
g2(x)2 ·

(
2− g2(x)2

)
2

,

x ∈ I := [A2,4, A1,4] (5.44)

g2(x) :=

(
p̃√
π
− 4−

√
A2,4

)
−
√

1− x.

In such case the limit l is less than 0.042.

Proof. First of all we consider the function g2 of (5.44), then its first and

second derivatives are respectively

g′2(x) =
1

2
√

1− x
,

g′′2(x) =
1

4(1− x)
3
2

.

Therefore, since g′2 and g′′2 are positive, we get that

1) g2 is convex on I ;

2) g′2 is strictly increasing and g′2(A2,4) ≈ 0.50608 > 0;

3) g2 is strictly increasing and

1 < 1.17337 ≈ g2(A2,4) < g2(A1,4) ≈ 1.24436 <
√

2.

Thus if we set a = A2,4, b = A1,4 andD = 1, by Lemma 5.13, the function f5

of (5.44) is strictly increasing and its first derivative is positive and strictly
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increasing. Furthermore it holds that f5(I) ⊂ I , indeed (A2,4 ≈ 0.0238853

and A1,4 ≈ 0.159132)

0.0368513 ≈ f5(A2,4) < f5(A1,4) ≈ 0.0819064.

So by Lemma 5.17, the sequence (an)n∈N is strictly decreasing with a finite

limit l which is a fixed point of f5 in I . Moreover f ′5(A1,4) ≈ 0.445023 < 1,

thus f5 is a contraction on I , then l is the unique fixed point of f5 on I .

By Remark 5.7 it holds that A1,4 <
1
3 <

1
2 , hence again by Lemma 5.13, we

obtain that l is a root of the function F6(x) = g2(x)2 ·
(

2−g2(x)2
)
−(1−2x)2,

where F6 is strictly increasing on I . Since F6(0.042) ≈ 0.00214782 > 0, then

l < 0.042. (5.45)

Since IE = (1, 1, 0, 0), then E1 = E0
1 t E1

1 and E2 = E0
2 t E1

2 .

In order to show the statement of the Lemma we will prove by induc-

tion the following property:

|E1
i | ≤ an, ∀n ∈ N,∀i = 1, 2. (5.46)

The case n = 0 is true since a0 = A1,4 and by remark 5.7, by (5.10) of

Corollary 5.10, we have that

A2,4 ≤ |E1
i | ≤ A1,4, ∀i = 1, 2,

(5.47)

|E0
i | ≥ 1−A1,4, ∀i = 1, 2.

We suppose that (5.46) is true for n and now we prove it for n + 1.

Therefore the following estimates hold

A2,4 ≤ |E1
i | ≤ an, ∀i = 1, 2,

(5.48)

|E0
i | ≥ 1− an, ∀i = 1, 2.

We explicitly note that, since f5(I) ⊂ I and by the definition of the sequence

(an)n∈N, an ≤ A1,4 < 1
3 for all n ∈ N. Let x = |E1

i | with i = 1, 2, thus
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|E0
i | = |Ei |−|E1

i | ≥ 1−x > 0. By the minimality of E, by the isoperimetric

inequality and (5.48), we get that

p̃ ≥ P (E) =
1

2

(
P (E0) + P (E1

i ) + P (E0
i ) + P (E1

j ) + P (E0
j ) +

4∑
k=3

P (Ek)
)

≥
√
π
(

2 +
√
x+
√

1− x+
√
A2,4 +

√
1− an + 2

)
.

We find the following inequality

√
x+
√

1− x ≤
p̃−
√
π(4 +

√
A2,4 +

√
1− an)

√
π

. (5.49)

By definition of the function g2 view in (5.44), it easy to see that the previous

inequality can be written as

√
x+
√

1− x ≤ g2(an).

The sequence (an)n∈N is strictly decreasing with A2,4 < an ≤ A1,4 for all

n ∈ N , while by 3) the function g2 is strictly increasing with 1 < g2(x) <
√

2

for any x ∈ I = [A2,4, A1,4]. Thus 1 < g2(an) ≤ g2(A1,4) <
√

2; so if we set

D = 1 and C = g2(an), by Lemma 3.1, the solution of (5.49) is

0 < x ≤
D −

√
C2(2D − C2)

2
or
D +

√
C2(2D − C2)

2
≤ x < D.

From the expression of f5 in (5.44), it is clear that this can be written as

0 < x ≤ f5(an) or
(

1− f5(an)
)
≤ x < 1.

The sequence (an)n∈N is strictly decreasing with A2,4 < an ≤ A1,4 for all

n ∈ N , while the function f5 is strictly increasing on I with f5(I) ⊂ I . Thus

A2,4 < f5(an) < an and 1− f5(an) > 1− an > an, because A2,4 < an ≤ A1,4

for all n ∈ N, f5(I) ⊂ I and by Remark 5.7,A1,4 <
1
3 . Furthermore by (5.48),

A2,4 ≤ x = |E1
i | ≤ an, therefore the solution of (5.49) is

A2,4 ≤ x ≤ f5(an) = an+1.
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This solves the case of (5.46) for n+ 1.

In the following lemma we show that each component with three edges

is a big component.

Lemma 5.26. Let E ∈ M∗2,4(1, 1, 1, 1). If IE = (1, 1, 0, 0), then the small com-

ponents of the disconnected regions are surrounded by four different regions. In

particular any three-sided component is a big component and each small compo-

nent of a disconnected region is external.

Proof. Let Si and Bi the small and the big component respectively of a dis-

connected region Ei = Bi
⊔
Si (i = 1, 2). We divide the proof in three steps.

Step I. We prove that the small components of the disconnected regions

are surrounded by four different regions.

We argue by contradiction and we suppose that there exists a small

component Si of a disconnected region Ei such that it is surrounded by

three different regions (note that Si has at least three edges by Corollary

1.35, and recall that E is a minimizer). Without loss of generality we can

assume that it is S1. Hence, by (5.9) of Corollary 5.10, we have that

|S1 | ≥ 1− 9p̃2

32π
·

(√
1 +

64π

9p̃2
− 1

)
:= A3,4 ≈ 0.0409878. (5.50)

We summarize the conditions on area of small components of E; by (5.10)

of Corollary 5.10, by Lemma 5.25 and by (5.50) we get that

A3,4 ≤ |S1 | ≤ l < 0.042

(5.51)

A2,4 ≤ |S2 | ≤ l < 0.042.

We show that the area of S2 is smaller than A2,4; therefore by (5.51) the

proof of Step I is completed.

We call x = |S2 |, thus |B2 | = |E2 | − |S2 | ≥ 1 − x. We note that, by

(5.51), |B1 | = |E1 | − |S1 | ≥ 1 − 0.042. By the minimality of E, by the

isoperimetric inequality and by (5.51), we get that
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p̃ ≥ P (E) =
1

2

(
P (E0) + P (S2) + P (B2) + P (S1) + P (B1) +

4∑
k=3

P (Ek)
)

≥
√
π
(

2 +
√
x+
√

1− x+
√
A3,4 +

√
(1− 0.042) + 2

)
.

We find the following inequality

√
x+
√

1− x ≤
p̃−
√
π

(
4 +

√
A3,4 +

√
(1− 0.042)

)
√
π

. (5.52)

We set C4 =

p̃−
√
π

(
4+
√
A3,4+

√
(1−0.042)

)
√
π

and D = 1, then we can see that

1 < C4 ≈ 1.13467 <
√

2.

So by Lemma 3.1, the solution of (5.52) is

0 < x ≤
D −

√
C2

4
(2D − C2

4
)

2
or
D +

√
C2

4
(2D − C2

4
)

2
≤ x < D, (5.53)

where

D −
√
C2

4
(2D − C2

4
)

2
≈ 0.0211071

D +
√
C2

4
(2D − C2

4
)

2
≈ 0.978893.

But from (5.51), 0.0238853 ≈ A2,4 ≤ x ≤ A1,4 ≈ 0.159132. This contradicts

the solution (5.53) of (5.52).

Step II. We prove that any three-sided component is a big component.

Let C be a three-sided component of E; if C = E3 or C = E4, then

|C | = 1, therefore, by Definition 1.18, C is a big component. While if C is a

three-sided component of the disconnected regions E1 or E2, then, since E

is a minimizer, C is surrounded by three different regions. From Step I, we

get that C is a big component.

Step III. We prove that the small component of the disconnected re-

gions are external. We suppose by contradiction that there exists a inner
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small component Si of a disconnected region Ei (i = 1, 2). By Lemma 5.24

and Step II Si has four edges. Moreover, since E ∈ M∗2,4(1, 1, 1, 1) with

IE = (1, 1, 0, 0) (i.e Si is disjoint to the big component Bi of the discon-

nected region Ei and there are four bounded regions Ei, i = 1, 2, 3, 4) and

Si is inner (i.e Si is disjoint from E0), then Si is surrounded by only three

different regions. This contradicts Step I.

This completes the proof.

Corollary 5.27. Let E ∈ M∗2,4(1, 1, 1, 1). If IE = (1, 1, 0, 0), then there is at

most one inner component and it is big (eventually also a connected region). In

particular 5 ≤ v(E0) ≤ 6 and 5 ≤ e(E0) ≤ 6, where v(E0) and e(E0) denote

the number of the vertices which belong to E0 and the number of the edges of E0

respectively.

Proof. By Lemma 5.26, we know that the small components of the discon-

nected regions Ei (i = 1, 2) are external, thus, only the big components can

be inner. By Corollary 5.9 there is at most one big inner component, so

there are at least five external bounded components. Since IE = (1, 1, 0, 0),

E has six bounded components, therefore, by Proposition 1.33 the proof is

completed.

Lemma 5.28. Let E ∈ M∗2,4(1, 1, 1, 1). If IE = (1, 1, 0, 0), then the following

estimates for pressure pC of each small component C are valid:

1) pC ≥ 2π

3

(
2p̃−2

√
π
(

4+2
√

1−0.042+
√
A2,4

)) := k2 ≈ 2.89895, if C has four

edges;

2) pC ≥ π

3

(
2p̃−2

√
π
(

4+2
√

1−0.042+
√
A2,4

)) = k2
2 , if C has five edges.

Proof. From Lemma 5.24 and Lemma 5.26 any small componentC can have

at least four edges and at most five edges. Furthermore by (5.10) of Corol-

lary 5.10 and from Lemma 5.25 we know that

A2,4 ≤ |C | ≤ 0.042. (5.54)
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Since C is a small component and IE = (1, 1, 0, 0), then C is either a

component of E1 or E2. Without loss of generality we can assume that C

is the small component of E1, otherwise we repeat the same argument if

C is the small component of E2. Since IE = (1, 1, 0, 0), then E1 = B1 t S1

and E2 = B2 t S2, where Bi and Si are respectively the big and the small

component of Ei, i = 1, 2. Therefore C = S1. We note that, by (5.54),

|Bi | = |Ei | − |Si | ≥ 1− 0.042. (5.55)

We start to prove 1); in this case C has four edges therefore its turning

angle is 2π
3 (see Lemma 1.38). Thus the highest turning angle of edges of

C is positive, namely the pressure pC is bigger than the pressure of at least

one of the components adjacent to C (note that the signed curvature of an

edge between C and any other component R is pC − pR). Thus, denoted A,

B, D and F the components adjacent to C (A, B, D and F could be of the

same region, for example if C is inner, since C has four edges and E is a

minimum, then there must be two components of E2) and LA, LB , LD and

LF the lengths corresponding sides in common with C we have (recall that

each pressure is non negative by Proposition 1.49):

pC · P(C) =
∑

R∈{A,B,D,F}

LR · pC ≥
∑

R∈{A,B,D,F}

LR · (pC − pR) =
2π

3
.

then

pC ≥
2π

3
· 1

P (C)
. (5.56)

Moreover, by minimality of E, we obtain that

p̃ ≥ P (E) ≥

(
P (C) + P (B1) + P (B2) + P (S2) +

4∑
k=3

P (Ek) + P (E0)
)

2
.

By (5.54), (5.55) and the isoperimetric inequality, we get the following esti-

mate for P (C)

P (C) ≤ 2p̃−
(
P (B1) + P (B2) + P (S2) +

4∑
k=3

P (Ek) + P (E0)
)
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≤ 2p̃− 2
√
π
(

2
√

1− 0.042 +
√
A2,4 + 2 + 2

)
hence, considering (5.56), we find 1).

The proof is the same for 2), indeed in this case the only change is the

turning angle of C, which is π
3 , because C has five edges (see also Lemma

1.38).

Corollary 5.29. Let E ∈M∗2,4(1, 1, 1, 1). If IE = (1, 1, 0, 0), then both the small

components of E1 and E2 have not four edges.

Proof. Let S1 and S2 be the small component of E1 and E2 respectively.

We suppose by contradiction that S1 and S2 have four edges, therefore,

from Lemma 5.28, we have that pE1 and pE2 are least k2. Thus, since the

pressure of each other region of E is non negative (see Proposition 1.49), by

Corollary 1.47, we have that P (E) ≥ 2

4∑
i=1

pEi ≥ 4k2 ≈ 11.5958. It leads to

a contradiction since P (E) ≤ p̃ ≈ 11.1946. This concludes the proof.

Remark 5.30. Let E ∈ M∗2,4(1, 1, 1, 1) with IE = (1, 1, 0, 0) and let Si, Bi be

the small and the big component of the disconnected region Ei (i = 1, 2)

respectively. By Corollary 5.29, hereafter, we can assume that S2 has five

edges.

Lemma 5.31. Let E ∈ M∗2,4(1, 1, 1, 1). If IE = (1, 1, 0, 0), then the big compo-

nent of the disconnected region E2 is external and it has at most four edges.

Proof. Since IE = (1, 1, 0, 0), then E2 = B2
⊔
S2, where B2 and S2 are the

big and the small component of E2 respectively. We denote by v(C) the

number of the vertices of a subsetC of E and v(E) represents the number of

the vertices of E. By Lemma 5.24, B2 has at least three edges, so v(B2) ≥ 3.

By Remark 5.30, S2 has five edges and it is external, thus, v(S2) = 5 and

v(S2 r E0) = 3. If B2 is inner (i.e B2 is disjoint from E0, so its vertices are

not on E0), then, from the previous considerations, by Lemma 5.18 and by

Corollary 5.27, we get that

10 = v(E) ≥ v(E0) + v(B2) + v(S2 r E0) ≥ 5 + 3 + 3 = 11.
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This is a contradiction, so B2 is external.

If B2 has five edges, then v(B2) = 5 and by Lemma 5.24, B2 is external,

thus v(B2rE0) = 3. By Lemma 5.18 and by Corollary 5.27, we also get that

10 = v(E) ≥ v(E0) + v(S2 r E0) + v(B2 r E0) ≥ 5 + 3 + 3 = 11.

It is a contradiction, so the proof is concluded.

Figure 5.4: The possible topologies of E ∈M∗2,4(1, 1, 1, 1) with IE = (1, 1, 0, 0).

Lemma 5.32. Let E ∈ M∗2,4(1, 1, 1, 1). If IE = (1, 1, 0, 0), then the possible

topologies of E are represented in Figure 5.4.

Proof. By Remark 5.30 we have assumed that S2 has five edges, while, from

Lemma 5.24 and Lemma 5.31, we know that B2 is external with three or

four edges. First of all we explicitly note that the vertices of B2 and S2 are

all distinct because E is a minimizer. Moreover vertices of a same compo-

nent of E are not connected since there are no two-sided components by

Corollary 1.35, thus all leaving edges from vertices of a same component of

E are all different. Finally we recall that each vertex of E must be a meet-

ing point of exactly three edges (E is a minimizer and see Theorem 1.10),

thus we underline that, at the beginning of the creation of the topologies,

each external vertex of S2 andB2 is already a meeting point of exactly three
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edges, while a inner vertex of S2 and B2 can be get another edge. We use

the following notations:

1) v(E) is the number of the vertices of E;

2) v(C) represents the number of the vertices of a component C of E;

3) v(E r C) denotes the number of the vertices which belong to E but

not to the component C of E;

4) v(C1 r C2) denotes the number of the vertices which belong to the

component C1 but not to the component C2, where C1 and C2 are

components of E;

5) v(C1 ∩ C2) denotes the number of the vertices which belong to the

components C1 and C2 of E;

6) e(E) is the number of the edges of E;

7) e(E0) represents the number of the edges of E0;

8) ei(C) denotes the number of the inner edges of a component C of E;

9) el,i(C) denotes the number of the leaving edges from a inner vertex

of a component C of E;

10) el,i(v) is the number of the leaving inner edges from a vertex v of E;

11) el,i(v ∩ C) is the number of the leaving inner edges from a vertex v

which arrive in a vertex of a component C of E.

From the previous notation, it immediately follows that el,i(v) = 1 if the

vertex v is external and el,i(v) = 3 if the vertex v is inner. Furthermore we

also have that 0 ≤ el,i(v ∩ C) ≤ 3. We recall that v(E) = 10 and e(E) = 15

by Lemma 5.18, while v(E0) ≥ 5 and e(E0) ≥ 5 by Corollary 5.27. Now we

divided the proof in two parts depending on B2 has three or four edges.

Part I. B2 has four edges, thus v(B2) = 4, v(B2 r E0) = 2, ei(B2) = 3,

while v(S2) = 5 with v(S2 r E0) = 3, ei(S2) = 4 and el,i(S2) = 3. Since

v(E) = 10 and v(S2) + v(B2) = 9, we must add another vertex v1. First of
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all we say that v1 has to be external (i.e v1 is on E0). Indeed if v1 is inner,

we find that

10 = v(E) ≥ v(E0) + v(S2 r E0) + v(B2 r E0) + v(Er (S2 ∪B2))

≥ 5 + 3 + 2 + 1 = 11.

This is a contradiction, thus v1 is on E0.

Figure 5.5: S2 and B2 have five and four edges respectively and both are external.

Since v(E) = 10, there is another vertex v1, which must be external and it has

to be connected to only one inner vertex of S2. Since the edges of E can not be

intersect, there is only one way to link v1 and the inner vertices of S2 and B2.

Furthermore v1 is linked to only one inner vertex of S2, indeed if it was

false then (v1 is external, thus el,i(v1) = 1 and note that e(E) = 15 and

e(E0) ≥ 5)

15 = e(E) ≥ e(E0) + ei(S2) + ei(B2) + el,i(S2) + el,i(v1)

≥ 5 + 4 + 3 + 3 + 1 = 16.

This is a contradiction, so v1 must be connected with only one inner vertex

of S2. Hence we are in the situation of Figure 5.5 where, since the edges

of E can not intersect (if two arcs intersect, then a vertex would be created

which is a meeting point of four arcs, which contradicts 2. of Theorem 1.10
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since E is a minimizer), we have only one way to link v1 and the inner

vertices of S2 and B2. Thus, we obtain the case A) of Figure 5.4.

Part II.B2 has three edges, so v(B2) = 3, v(B2rE0) = 1, v(B2∩E0) = 2,

ei(B2) = 2, while v(S2) = 5 with v(S2 rE0) = 3, v(S2 ∩E0) = 2, ei(S2) = 4

and el,i(S2) = 3. Since v(E) = 10 and v(S2) + v(B2) = 8, we must add

another two vertices v1 and v2. Certainly one between v1 and v2 must be

on E0, otherwise it follows that

10 = v(E) ≥ v(E0) + v(S2 r E0) + v(B2 r E0) + v(Er (S2 ∪B2))

≥ 5 + 3 + 1 + 2 = 11.

This is impossible, so, without loss of generality, we can assume that v1 is

always external, therefore el,i(v1) = 1 and we can have two cases; the first

is v1 and v2 are external and the second is v1 is external and v2 is inner.

Part IIa. We take the case where v1 and v2 are external, therefore also

el,i(v2) = 1. Furthermore e(E0) = 6 because

v(E0) = v(S2 ∩ E0) + v(B2 ∩ E0) + v(Er (S2 ∪B2)) = 2 + 2 + 2.

There are two possibilities, the first is v1 and v2 are on opposite arcs respect

to S2 and the second is v1 and v2 are on the same arc respect to S2 as rep-

resented in Figure 5.6 and in Figure 5.7 respectively. In both we say that v1

and v2 are connected each to only one inner vertex of S2, indeed if it was

false then one vertex between v1 and v2 would be not related to any inner

vertex of S2. Without loss of generality we can assume that it is v1, so it

would follow that

15 = e(E) ≥ e(E0) + ei(S2) + ei(B2) + el,i(S2) + el,i(v1)

= 6 + 4 + 2 + 3 + 1 = 16.

This is a contradiction.

Whether v1 and v2 are on opposite arcs respect to S2 or they are on the

same arc respect to S2, there is only one way to link v1, v2 and the inner

vertices of B2 and S2, since the edges of E can not intersect.

If v1 and v2 are external and they are on opposite arcs respect to S2 we

are in the situation of Figure 5.6 where we obtain the case B) of Figure 5.4.
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If v1 and v2 are external and they are on the same arc respect to S2 (with

with the convention that v1 is before of v2 coming from S2) we are in the

situation of Figure 5.7 obtaining the case C) of Figure 5.4.

Figure 5.6: S2 andB2 have five and three edges respectively and both are external.

Since v(E) = 10, there are another two vertex v1 and v2 one of which must be

external. Here the vertices v1 and v2 are external and they are on opposite arcs

respect to S2. The vertices v1 and v2 must be connected each to only one inner

vertex of S2.

Figure 5.7: S2 andB2 have five and three edges respectively and both are external.

Since v(E) = 10, there are another two vertex v1 and v2 one of which must be

external. Here the vertices v1 and v2 are external and they are on the same arc

respect to S2. The vertices v1 and v2 must be connected each to only one inner

vertex of S2.

Part IIb. Finally we consider the case where v1 is external and v2 is
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inner, thus ei(v2) = 3. We say that v2 must be linked to at least two inner

vertices of S2 because it is false then we have that el,i(v2∩S2) ≤ 1. Therefore

it follows that

15 = e(E) ≥ e(E0) + ei(S2) + ei(B2) +
(
el,i(S2) + el,i(v2)− el,i(v2 ∩ S2)

)
≥ 5 + 4 + 2 + (3 + 3− 1) = 5 + 4 + 2 + 5 = 16.

This is a contradiction, therefore there are two possibilities depending on

how many inner vertices of S2 are connected with v2, three or two.

Figure 5.8: S2 andB2 have five and three edges respectively and both are external.

Since v(E) = 10, there are another two vertex v1 and v2 one of which must be

external. Here the vertex v1 is external while the vertex v2 is inner connected to

all inner vertices of S2. Since the edges of E can not be intersect, there is only one

way to link the vertices v1, v2 and the inner vertices of S2 and B2.

If v2 is related to all inner vertices of S2, then v1 is connected to the inner

vertex of B2. It is shown in Figure 5.8 from which we obtain the case D) of

Figure 5.4.

While if v2 is connect to only two inner vertices of S2, since the edges

of E can not be intersect, there are two ways to link v1, v2 and the inner

vertices of B2 and S2. They are represented in Figure 5.9 from which we

obtain the case E) and F ) of Figure 5.4.
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Figure 5.9: S2 andB2 have five and three edges respectively and both are external.

Since v(E) = 10, there are another two vertex v1 and v2 one of which must be

external. Here the vertex v1 is external while the vertex v2 is inner connected to

two inner vertices of S2. Since the edges of E can not be intersect, there are two

ways to link the vertices v1, v2 and the inner vertices of S2 and B2.

Lemma 5.33. Let E ∈ M∗2,4(1, 1, 1, 1) with IE = (1, 1, 0, 0), then the big com-

ponents of disconnected regions are adjacent (i.e the big components of the discon-

nected regions have a common edge).

Proof. Let Bi and Si the big and the small component of the disconnected

region Ei (i = 1, 2) respectively. By Lemma 5.25 we know that |Si | ≤ 0.042

for any i = 1, 2, therefore it holds that

|Bi | = |Ei | − |Si | ≥ 1− 0.042, ∀i = 1, 2. (5.57)

We suppose by contradiction that B1 and B2 are disjoint. By Corollary 5.9

we know that there is at most one big inner component, while, by Lemma

5.31, B2 is external. So we have two possibilities depending on B1 is exter-

nal or inner. We prove that the two situations are impossible.

Case I. B2 is external and B1 is external disjoint from B2. Let L1
e and L2

e

be the lengths of the external edges of B1 and B2 respectively, then, by the

minimality of E, we have that

p̃ ≥ P (E) ≥ P (B1) + P (B2) + P (E0)− (L1
e + L1

e).
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So by the isoperimetric inequality and by (5.57), we obtain the following

estimate for the sum of the lengths of the external edges of B1 and B2

L1
e + L2

e ≥ 2
√
π

(
2
√

1− 0.042 + 2

)
− p̃ : = `1, (5.58)

therefore there exists an index i = 1, 2 such that

Lie ≥
`1
2
. (5.59)

A small component Si can have four edges or five edges by Lemma 5.24

and Lemma 5.26. Moreover, again by Lemma 5.26, Si is always surrounded

by four different regions. Therefore, applying Lemma 3.12 to the region Ei
(i = 1, 2) removing Si for Bi, we get this estimate for the its pressure

pEi ≥
1

2

√
π

|Si |
− 2

Lie
≥ 1

2

√
1000π

42
− 4

`1
:= k3 ≈ 2.91316 (5.60)

The regionEi is the highest pressure region, in fact if there was other region

Ej (j 6= i) with pEj ≥ pEi ,then, by Corollary 1.47 and Proposition 1.49,

the perimeter of E would be P (E) ≥ 2

4∑
k=1

pEk ≥ 4k3 ≈ 11.6526. It is a

contradiction because P (E) ≤ p̃ ≈ 11.1946. Now we take Bi; by Corollary

1.35 and Lemma 5.24, Bi has at least three edges and at most five edges, so

its turning angle is at most π (see Lemma 1.38). Furthermore, sinceEi is the

higest pressure region, the turning angle of all edges of Bi is non negative,

thus, by Lemma 1.38, we get that pEi · `12 ≤ pEi · Lie ≤ π, finding, by (5.60),

that

2.91316 ≈ k3 ≤ pEi ≤
2π

`1
≈ 2.21668.

This is a contradiction.

Case II. B2 is external and B1 is inner disjoint from B2. Also this case is

impossible and the proof is the same of the Case I, where the estimate (5.58)

will be the estimate for the length of the external edge L2
e ofB2 (note that in

this case only B2 is external). The considerations, done in the Case I for Si
are true for S2 with the same argument, namely S2 will be surrounded by

four different regions (see Lemma 5.26). Therefore, applying Lemma 3.12

to the regionE2 removing S2 forB2, we get this estimate for the its pressure

pE2 ≥
1

2

√
π

|S2 |
− 2

L1
e

≥ 1

2

√
1000π

42
− 2

`1
= k3 +

2

`1
≈ 3.61875. (5.61)
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Since k3 + 2
`1

is greater than k3 by (5.60) and by (5.61), it is clear that E2

is the highest pressure region (you can reason as in the Case I). Again as

in the Case I the property for Bi are true for B2 with the same argument,

namely the turning angle of B1 is at most π. Therefore, the contradiction is

the following

3.61875 ≈ k3 +
2

`1
≤ pE2 ≤

π

`1
≈ 1.10834.

This completes the proof.

Lemma 5.34. Let E ∈ M∗2,4(1, 1, 1, 1) with IE = (1, 1, 0, 0, ). If a connected

region is inner, then it is adjacent to each big component of a disconnected region.

Proof. LetE3 be the inner connected region. We argue by contradiction and

we suppose that there exists a big componentBi (i = 1, 2) of a disconnected

region disjoint to E3. By Corollary 5.9, Bi is external. This situation is im-

possible and the proof is the same to the Case II of Lemma 5.33, replacing

Bi with B2 and E3 with B1 (note that |E3 | ≥ 1).

Lemma 5.35. Let E ∈ M∗2,4(1, 1, 1, 1). If IE = (1, 1, 0, 0) then the possible

topologies are only the cases A) and C) of Figure 5.4. Moreover E can be the three

clusters of Figure 5.10 (up to the curvature of the edges of E), where the unlabeled

components are the connected regions.

Figure 5.10: E can be these three possible clusters.

Proof. We divide the proof in two parts.
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Part I. By Lemma 5.32 we know that E can have the topologies repre-

sented in Figure 5.4, thus we must exclude the cases B), D) E) and F ) of

Figure 5.4.

Figure 5.11: The cases B), D), E) and F ) of Figure 5.4.

In the possibilities B), D) and E) there are certainly two unlabeled

three-sided component disjoint from B2; by Lemma 5.26 and by Lemma

5.33 they are the connected regions E3 and E4. Thus, we have that, in these

configurations, B1 and S1 are adjacent, but it is impossible since E is a min-

imum.

While in the case F ) there is an unlabeled three-sided component dis-

joint from B2 which must be a connected region by Lemma 5.26 and by

Lemma 5.33. But this is impossible by Lemma 5.34.

Figure 5.12: The topologies A) and C) of Figure 5.4. .
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Part II. We prove that E can be the three clusters represented in Figure

5.10. The topologiesA) and C) are recalled in Figure 5.12. At the beginning

we consider the topology A) of Figure 5.4. The unlabeled three-sided com-

ponent must be a connected region by Lemma 5.26 and by Lemma 5.33. So

we can find the possibilities G) and H), which differ only for the change

between S1 and B1. This change is significant because in G), S1 has four

edges, while in the case H), S1 has five edges. Now we take the topology

C) of Figure 5.4. Again from Lemma 5.26 and by Lemma 5.33 the unla-

beled three-sided component is a connected region. So we determine the

case I).

Lemma 5.36. Let E ∈ M∗2,4(1, 1, 1, 1). If IE = (1, 1, 0, 0), then the following

considerations apply:

i) if Si has four edges, then Ei is the highest pressure region;

ii) if Si has five edges, then Ei is not the lowest pressure region,

where i = 1, 2 and Si is the small component of Ei.

Proof. We show i); since Si has four edges, then the pressure ofEi is at least

k2 by Lemma 5.28. So ifEi was not the highest pressure region, there would

be at least one other region with pressure at least k2. Thus the perimeter of

E would be at least 4k2 ≈ 11.5958 by Corollary 1.47 and by Proposition

1.49. This is a contradiction since P (E) ≤ p̃ ≈ 11.1946.

We prove ii); here Si has five edges, therefore the pressure of Ei is at

least k2
2 by Lemma 5.28. So if Ei was the lowest pressure region, then each

pressure of any region would be at least k2
2 . By Corollary 1.47, we would

have that the perimeter of E would be again at least 4k2 ≈ 11.5958, but this

is a contradiction since P (E) ≤ p̃ ≈ 11.1946.

Lemma 5.37. Let E ∈ M∗2,4(1, 1, 1, 1). If IE = (1, 1, 0, 0) where the small com-

ponents S1 and S2 have four edges and five edges respectively, then the pressure of

the connected regions is less than k2
2 .

Proof. From Remark 5.30 we have assumed that S2 has five edges. We pro-

ceed by contradiction and we suppose that there is at least one connected
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region with its pressure bigger or equal to k2
2 , the lower limit for the pres-

sure of the disconnected region E2 (note that its small component S2 has

five edges). Without loss of generality let E3 which has a pressure that is

bigger or equal to k2
2 . Moreover, by Lemma 5.28, we know that pE1 ≥ k2

and pE2 ≥ k2
2 . Thus, by Corollary 1.47, we have the following estimate for

the perimeter of E (note the each pressure is non negative by Proposition

1.49),

P (E) ≥ 2
4∑
i=1

pEi ≥ 2k2 + 4

(
k2

2

)
≈ 11.5958.

This contradicts the minimality of E, which gives that P (E) ≤ p̃ ≈ 11.1946.

Proposition 5.38. Let E ∈ M∗2,4(1, 1, 1, 1). If IE = (1, 1, 0, 0), then E can be

the clusters H) and I) of Figure 5.10.

Proof. By Lemma 5.35, we know that E can be the three clusters of Fig-

ure 5.10, therefore, in order to prove the statement of the lemma, we just

exclude the cluster G), which is recalled in Figure 5.13.

Figure 5.13: The cluster G) of Figure 5.10. .

In this case S1 and S2 have four and five edges respectively. Thus, by

Lemma 5.37, E1 is the highest pressure region and E2 is the second region

with higher pressure. Furthermore the inner four-sided connected region
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Ei (i = 3, 4) is surrounded only by components of E1 and E2, thus the

signed curvature of all its edges are non positive. This contradicts that

the turning angle of Ei is 2π
3 (note that Ei has four edges and see Lemma

1.38).

Theorem 5.39. Let E ∈M∗2,4(1, 1, 1, 1), then IE 6= (1, 1, 0, 0).

Proof. We suppose by contradiction that IE = (1, 1, 0, 0), then, by Propo-

sition 5.38, E can be the clusters H) and I) of Figure 5.10. We prove that

these two possibilities are impossible.

Figure 5.14: The cases H) and I) of Figure 5.10.

Part I. First of all, we exclude the case H). Let Si and Bi be the small

and the big component respectively of the disconnected regionEi (i = 1, 2).

Here S1 and S2 have both five edges and there is a inner connected region

surrounded only by components of the disconnected regions E1 and E2.

Without loss of generality we can assume that the inner connected region

is E3 and the remaining unlabeled three-sided component is the connected

region E4. By Corollary 5.16, E ∈ M2,4(1, 1, 1, 1), thus m(E) = (1, 1, 1, 1).

From Lemma 5.25 we know that |Si | ≤ 0.042, therefore, it follows that

|Bi | = |Ei | − |Si | = 1− 0.042. Let L1
e and L2

e be the lengths of the external

edges of B1 and B2 respectively, by the minimality of E, we have that

p̃ ≥ P (E) ≥ P (B1 ∪B2 ∪ E3) + P (E0)− (L1
e + L2

e).

So by the isoperimetric inequality, we obtain the following estimate for the
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sum of the lengths of external edges of B1 and B2

L1
e + L2

e ≥ 2
√
π

(√
2(1− 0.042) + 1 + 2

)
− p̃ : = `2 ≈ 1.94856.

Hence there exists an index i = 1, 2 such that

Lie ≥
`2
2
.

Thus, applying Lemma 3.12 to the region Ei removing Si for Bi (note that

Si is surrounded by four different regions by Lemma 5.26), we get this es-

timate for its pressure

pEi ≥
1

2

√
π

|Si |
− 2

Lie
≥ 1

2

√
1000π

42
− 4

`2
:= k4 ≈ 2.27155.

Thus we have that max (pE1 , pE2) ≥ k4, while, by Lemma 5.28, we get that

min (pE1 , pE2) ≥ k2
2 (notice that Si has five edges independently from i = 1

or i = 2). From Lemma 1.38,E3 has turning angle 2π
3 , so the highest turning

angle of edges of E3 is positive, namely the pressure pE3 is bigger than the

pressure of at least one of the components adjacent to E3 (note that the

signed curvature of an edge between E3 and any other component C is

pE3 − pC). Thus, by E3 is inner and it is surrounded by only components

of E1 and E2, it follows that pE3 ≥ min (pE1 , pE2) ≥ k2
2 . Furthermore we

claim that pE4 < min (pE1 , pE2), because if pE4 ≥ min (pE1 , pE2), then, by

Corollary 1.47, the perimeter of E would be at least

P (E) = 2pE1 + 2pE2 + 2pE3 + 2pE4 ≥ 2k4 + 6

(
k2

2

)
≈ 13.2400;

this contradicts the minimality of E, in fact P (E) ≤ p̃ ≈ 11.1946. Thus,

denote by L4, L4,1 and L4,2 the edges of E4 in common with E0, S1 and S2

respectively, by Lemma 1.38, we have that (note that the turning angle of

E4 is π)

L4 pE4 ≥ L4 pE4 + L4,1 (pE4 − pE1) + L4,2 (pE4 − pE2) = π.

Hence we obtain, by Lemma 3.14, the following estimate for the pressure

pE4 (note that |E4 | = 1):



Planar four bubbles conjecture with equal area 144

pE4 ≥
π

L4
≥
√
π

2
.

Then, by Corollary 1.47, we can estimate the perimeter of E, obtaining

P (E) = 2pE1 + 2pE2 + 2pE3 + 2pE4 ≥ 2k4 + 4

(
k2

2

)
+
√
π ≈ 12.1135.

But for the minimality of E, P (E) ≤ p̃ ≈ 11.1946, thus we get a contradic-

tion.

Part II. Finally we eliminate the case I). We note again that, by Corol-

lary 5.16, E ∈ M2,4(1, 1, 1, 1), thus m(E) = (1, 1, 1, 1). In this configuration

S1 has four edges and S2 has five edges, thus, by Lemma 5.36 and Lemma

5.37 we know that E1 is the highest pressure region and E2 is the second

region of higher pressure with pE1 ≥ k2 and pE2 ≥ k2
2 . We can assume

that the unlabeled region with three edges is E3 and the other is E4; from

Lemma 1.38, the turning angle of E3 and E4 are π and π
3 respectively. We

set L3, l3,1 and l3,2 the lengths of the edges of E3 in common respectively

with E0, S1 and S2, thus we have that

L3 pE3 ≥ L3 pE3 + l3,1 (pE3 − pE1) + l3,2 (pE3 − pE2) = π.

Then, by Lemma 3.14, we obtain the following estimate for pE3 (recall that

|E3 | = 1)

pE3 ≥
√
π

2
:= p′3. (5.62)

We repeat the same steps for E4 (note that the turning angle of E4 is π
3 and

|E4 | = 1) and so we have

pE4 ≥
√
π

6
.

Thus we get that

min (pE3 , pE4) ≥
√
π

6
≈ 0.295409 := p′min. (5.63)

Now we find a new estimate for pE1 and pE2 , using (5.63) and Lemma

5.10. We show in detail only the case for pE1 ; the case for pE2 is the same

except that S2 has five edges and so its turning angle is π
3 . From (5.10) of

Corollary 5.10 and Lemma 5.25 we know that A2,4 ≤ |Si | ≤ 0.042, where
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Si is the small component of Ei with i = 1, 2. Therefore, for any big com-

ponent Bi of a disconnecter region it follows that |Bi | = |Ei | − |Si | =

1 − 0.042 (i = 1, 2). Furthermore, by (5.8) of Corollary 5.10 we know that

the length of each edge of Si is less than

42

2000(1− 0.042)
p̃ := `3. (5.64)

We denote by l1, l1,4, l1,2 and l1,3 the lengths of the the edges of S1 in com-

mon respectively with E0, E4, E2 and E3, thus we know that

l1 pE1 + l1,4 (pE1 − pE4) + l1,2 (pE1 − pE2) + l1,3 (pE1 − pE3) =
2π

3
;

so we find that

pE1 P (S1) =
2π

3
+ l1,4 pE4 + l1,2 pE2 + l1,3 pE3

≥ 2π

3
+ (l1,4 + l1,2 + l1,3) min (pE4 , pE2 , pE3)

=
2π

3
+ (P (S1)− l1)

√
π

6
.

Hence we obtain that

pE1 ≥
2π

3

1

P (S1)
+

(
1− l1

P (S1)

)√
π

6
. (5.65)

Now, since |S1 | ≥ A2,4 and by the isoperimetric inequality, it applies that

P (S1) ≥ 2
√
π A2,4. Furthermore, by the minimality of E and by the isoperi-

metric inequality we have that

P (S1) ≤ 2P (E)−
(
P (B1) + P (B2) + P (S2) + P (E3) + P (E4) + P (E0)

)
≤ 2p̃− 2

√
π
(

2
√

1− 0.042 +
√
A2,4 + 1 + 1 + 2

)
:= `4.

So, by (5.64) and by (5.65), we obtain the following estimate for pE1 :

pE1 ≥
2π

3

1

`4
+

(
1− `3

2
√
π A2,4

)√
π

6
:= k5 ≈ 3.06204. (5.66)

While, repeating the same argument for S2, we get that

pE2 ≥
π

3

1

`4
+

(
1− `3

2
√
π A2,4

)√
π

6
:= k6 ≈ 1.61257. (5.67)
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Then, by Corollary 1.47, by (5.62) , (5.63), (5.66) and (5.67) we have

P (E) = 2

4∑
i=1

pEi ≥ 2k5 + 2k6 +
√
π +

√
π

3
≈ 11.7125.

This contradicts the minimality of E (indeed P (E) ≤ p̃ ≈ 11.1946), so the

proof is completed.

Furthermore we have the following corollary.

Corollary 5.40. Let E ∈ M∗2,4(1, 1, 1, 1), then E has at least three connected re-

gions. Moreover E has at most five bounded components, thus E ∈M2,4(1, 1, 1, 1).

Proof. If E is standard, then any region is connected therefore there are four

bounded components.

If E is not standard, then by Remark 5.12, Theorem 5.15, Theorem 5.23

and Theorem 5.39, its connection type can be only IE = (1, 0, 0, 0). There-

fore E can have at most five bounded components. Thus, by Theorem 1.50,

E ∈M2,4(1, 1, 1, 1).

5.4 The case (1, 0, 0, 0)

In this last section, we will exclude the case (1, 0, 0, 0); so we will com-

plete the proof of Theorem 5.1. Initially we present a simple lemma, that

describes a component of the disconnected region and a component of con-

nected region.

Lemma 5.41. Let E ∈ M∗2,4(1, 1, 1, 1). If IE = (1, 0, 0, 0), then a component C

of a disconnected region has

i) three edges if it is inner;

ii) at most four edges if it is external.

While a connected region has

iii) at most four edges if it is inner;

iv) at most five edges if it is external.
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Proof. By Corollary 1.35 we know that any component C of E has at least

three edges. Let C be a component of E1. Since E is a minimum, by Propo-

sition 1.33 and IE = (1, 0, 0, 0), then, if C is inner it has three edges, while

if C is external it can have at most four edges.

If Ei is a connected region, arguing as in the case that C is a component

of E1, then Ei can have at most four edges and five edges if it is inner and

external respectively.

Lemma 5.42. Let E ∈ M∗2,4(1, 1, 1, 1). If IE = (1, 0, 0, 0), then E has eight

vertices and twelve edges.

Proof. Let v, e and c be the numbers of the vertices, of the edges and of the

connected components of E respectively, then, by the Euler’s formula, it

applies that v − e + c = 2. Since E is a minimum, each vertex of E is is a

meeting point of exactly three edges (see Theorem 1.10), thus 3v = 2e (note

that each edge has two vertices). Since IE = (1, 0, 0, 0), it follows c = 6.

Solving the following linear system{
v − e = −4

3v = 2e,

we find the claim.

Lemma 5.43. Let E ∈ M∗2,4(1, 1, 1, 1). If IE = (1, 0, 0, 0), then 3 ≤ v(E0) ≤ 5

and 3 ≤ e(E0) ≤ 5, where v(E0) and e(E0) denote the number of the vertices

which belong to E0 and the number of the edges of E0 respectively.

Proof. By Corollary 5.9 we know that there is at most one inner big com-

ponent, thus, since IE = (1, 0, 0, 0) (i.e there is only one small component),

there are at most two inner components, so there are at least three external

bounded components. Since IE = (1, 0, 0, 0), E has five bounded compo-

nents, therefore, by Proposition 1.33 the proof is completed.

Lemma 5.44. Let E ∈ M∗2,4(1, 1, 1, 1). If IE = (1, 0, 0, 0), then E can be the

clusters of the Figure 5.15, up to rigid motion and curvature of the edges.
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Figure 5.15: The possible clusters for E ∈ M∗2,4(1, 1, 1, 1) with IE = (1, 1, 0, 0).

We label with 1 the components of the disconnected region E1, while the unlabeled

components represent the connected regions.

Proof. By Lemma 5.41 we know that the components of the disconnected

region E1 can have three or four edges and if someone has four edges then

it is external. We denote by S1 and B1 the components of E1 where the

names S1, B1 have not a link with the area quantity which own. First of

all we explicitly note that the vertices of B1 and S1 are all distinct because

E is a minimizer. Moreover vertices of a same component of E are not

connected since there are no two-sided components by Corollary 1.35, thus

all leaving edges from vertices of a same component of E are all different.

Finally we recall that each vertex of E must be a meeting point of exactly

three edges (E is a minimizer and see Theorem 1.10), thus we underline

that, at the beginning of the creation of the clusters, each external vertex

of S1 and B1 is already a meeting point of exactly three edges, while a

inner vertex of S1 and B1 can be get another edge. We use the following

notations:

1) v(E) is the number of the vertices of E;

2) v(C) represents the number of the vertices of a component C of E;

3) v(E r C) denotes the number of the vertices which belong to E but
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not to the component C of E;

4) v(C1 r C2) denotes the number of the vertices which belong to the

component C1 but not to the component C2, where C1 and C2 are

components of E;

5) v(C1 ∩ C2) denotes the number of the vertices which belong to the

components C1 and C2 of E;

6) e(E) is the number of the edges of E;

7) e(E0) represents the number of the edges of E0;

8) e(C) represents the number of the edges of a component C of E;

9) ei(C) denotes the number of the inner edges of a component C of E;

10) el,i(C) denotes the number of the leaving edges from a inner vertex

of a component C of E;

11) el,i(v) is the number of the leaving inner edges from a vertex v of E;

12) el,i(v ∩ C) is the number of the leaving inner edges from a vertex v

which arrive in a vertex of a component C of E.

From the previous notation, it immediately follows that, less than to ex-

change S1 and B1, (e(S1), e(B1)) can be (4, 4), (4, 3) and (3, 3). Further-

more, el,i(v) = 1 if the vertex v is external and el,i(v) = 3 if the vertex v is

inner. Finally we also have that 0 ≤ el,i(v ∩ C) ≤ 3. We recall that v(E) = 8

and e(E) = 12 by Lemma 5.42, while 3 ≤ v(E0) ≤ 5 and 3 ≤ e(E0) ≤ 5

by Lemma 5.43. Now we divided the proof in three parts depending on

(e(S1), e(B1)) is (4, 4), (4, 3) and (3, 3).

Part I. Let (e(S1), e(B1)) = (4, 4), then B1 and S1 are external; moreover

v(B1) = v(S1) = 4, thus, since v(E) = 8, there are all the vertices of E.

Hence we are in the situation of Figure 5.16 where, since the edges of E can

not intersect (if two arcs intersected, then a vertex would be created which

is a meeting point of four arcs, which contradicts 2. of Theorem 1.10 since

E is a minimizer), we have only one way to link the inner vertices of S1 and

B1. So, we obtain the case A) of Figure 5.15.
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Figure 5.16: S1 and B1 have four edges and they are external. Since v(E) = 8,

there are all vertices of E, thus, since the edges of E can not be intersect, there is

only one way to link the inner vertices of S1 and B1.

Part II. Let (e(S1), e(B1)) = (4, 3), then S1 is external while B1 can be

inner or external. Furthermore we have that v(S1) = 4 and v(B1) = 3, thus,

since v(E) = 8, we must add another vertex v1.

Part IIa. We consider the case where B1 is inner. We know that ei(S1) =

3, ei(B1) = 3, el,i(B1) = 3. First of all the vertex v1 is external because

v(S1 rE0) = 2 and v(E0) ≥ 3, thus el,i(v1) = 1. Furthermore v1 is linked to

only one inner vertex of B1, indeed if it was false we would get that

12 = e(E) ≥ e(E0) + ei(S1) + ei(B1) + el,i(B1) + el,i(v1)

≥ 3 + 3 + 3 + 3 + 1 = 13.

This is a contradiction, so, we are in the situation of Figure 5.17 where, since

the edges of E can not intersect and up to rotation of the inner component

B1, we have only one way to link v1 and the inner vertices of S1 and B1.

So, we obtain the case B) of Figure 5.15.
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Figure 5.17: S1 and B1 have four and three edges respectively and S1 is certainly

external. Since v(E) = 8, there is another vertex v1. Here B1 is inner, thus v1

must be external and it has to be connected to only one inner vertex of B1. Since

the edges of E can not be intersect and up to rotate B1, there is only one way to

link v1 and the inner vertices of S1 and B1.

Part IIb. We consider the case whereB1 is external, therefore ei(B1) = 2

and v(B1 rE0) = 1. In this situation it can happen that the vertex v1 can be

inner or external.

If v1 is inner, then e(E0) = 4 because v(E0) = 4, since S1 and B1 are

external. We say that v1 must be related to the inner vertices of S1, indeed

if it was false then el,i(v1 ∩ S1) ≤ 1, thus

12 = e(E) ≥ e(E0) + ei(S1) + ei(B1) + (el,i(S1) + el,i(v1)− εl,i(v1) ∩ S1)

≥ 4 + 3 + 2 + (2 + 3− 1) = 13.

It is an absurd. Furthermore v1 is connected with the inner vertex of B1,

too, indeed it is false then

12 = e(E) ≥ e(E0) + ei(S1) + ei(B1) + el,i(B1) + el,i(v1)

≥ 4 + 3 + 2 + 1 + 3 = 13.

This is a contradiction, so we are in the situation of Figure 5.18 where we

have only one way to link v1 and the inner vertices of S1 and B1. So, we

obtain the case C) of Figure 5.15.
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Figure 5.18: S1 and B1 have four and three edges respectively and both are ex-

ternal. Since v(E) = 8, there is another vertex v1. If v1 is inner, then it must be

connected to the inner vertices of S1 and to the inner vertex of B1.

If v1 is external, then el,i(v1) = 1 and e(E0) = 5 because v(E0) = 5, since

S1 and B1 are external (i.e v(E0 r S1) = v(E0 r B1) = 2). We say that v1

must be related to one inner vertex of S1, indeed if it was false then

12 = e(E) ≥ e(E0) + ei(S1) + ei(B1) + el,i(S1) + el,i(v1)

≥ 5 + 3 + 2 + 2 + 1 = 13.

It is a contradiction, so we are in the situation of Figure 5.19 where, since

the edges of E can not intersect, we have only one way to link v1 and the

inner vertices of S1 and B1. So, we obtain the case D) of Figure 5.15.

Figure 5.19: S1 and B1 have four and three edges respectively and both are exter-

nal. Since v(E) = 8, there is another vertex v1. If v1 is external, then it must be

connected to one inner vertex of S1.
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Part III. Let (e(S1), e(B1)) = (3, 3), thus v(S1) = v(B1) = 3, so, since

v(E) = 8, we must add another two vertices v1 and v2. Moreover one

between S1 and B1 must be external, otherwise v(E0) = 2, since v(S1 r
E0) = v(S1 r E0) = 3 and v(E) = 8, while we know that v(E0) ≥ 3 by

Lemma 5.43. Without loss of generality we can assume that S1 is always

external, while B1 can be external or inner.

Part IIIa. S1 and B1 are external, thus v(S1 ∩E0) = v(B1 ∩E0) = 2 and

e(E0) = 4. So, since v(E0) ≤ 5, only one vertex between v1 and v2 can be

external.

Actually one vertex between v1 and v2 must be external, indeed if it was

false then v1 and v2 would be inner. In this situation we say that v1 and v2

must be connected with two edges; if we prove it, we come a contradiction

because there is two-sided component, which is impossible by Corollary

1.35.

Again we argue by contradiction, thus if v1 and v2 were inner, they

would be linked with at most one edge, namely el,i(v1 ∩ v2) ≤ 1, therefore

we would obtain that

12 = e(E) ≥ e(E0) + ei(S1) + ei(B1) + (el,i(v1) + el,i(v2)− el,i(v1 ∩ v2))

≥ 4 + 2 + 2 + (3 + 3− 1) = 13.

It is a contradiction, thus one vertex between v1 and v2 must be external

and the other is inner.

Without loss of generality we can assume that v1 is external while v2

is inner, thus el,i(v1) = 1, el,i(v2) = 3 and e(E0) = 5 . We say that v1 is

connected to v2, indeed if it was false then

12 = e(E) ≥ e(E0) + ei(S1) + ei(B1) + el,i(v1) + el,i(v2)

≥ 5 + 2 + 2 + 1 + 3 = 13.

This is a contradiction.

We recall that each vertex of E must be a meeting point of exactly three

edges, therefore v2 must be linked to the inner vertices of S1 andB1. So, we

are in the situation of Figure 5.20, obtaining the case E) of Figure 5.15.
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Figure 5.20: S1 and B1 have three edges and they are external. Since v(E) = 8,

there are another two vertices v1 and v2. Only one vertex between v1 and v2 is

external. Here v1 is external and v2 is inner and they must be linked. Thus, there

is only one way to link v1, v2 and the inner vertices of S1 and B1.

Part IIIb. S1 is external and B1 is inner, thus v(S1 ∩ E0) = 2, v(B1) = 3.

So, since v(E0) ≥ 3, one vertex between v1 and v2 must be external. Without

loss of generality we can assume that v1 is external while v2 can be external

or inner.

If v2 is external, therefore e(E0) = 4. Furthermore we say that v1 and v2

are linked each to one inner vertex of B1.

In fact if was false, then at least one vertex between v1 and v2 would be

not connected to any inner vertex of S1 obtaining that (let v1 be not related

to any inner vertex of S1)

12 = e(E) ≥ e(E0) + ei(S1) + ei(B1) + el,i(S1) + el,i(v1)

≥ 4 + 2 + 3 + 1 + 3 = 13.

This is a contradiction, so, up to rotate the inner component B1, we are in

the situation of Figure 5.21, obtaining the case F ) of Figure 5.15.
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Figure 5.21: S1 and B1 have three edges where S1 is external and B1 is inner.

Since v(E) = 8, there are another two vertices v1 and v2 of which one must be

external. Here v1 and v2 are external and they have to linked each to one inner

vertex of B1.

If v2 is inner, therefore e(E0) = 3 and el,i(v2) = 3. Furthermore we say

that v2 is linked at least two inner vertices ofB1, otherwise ei,l(v2∩B1) ≤ 1,

thus we would have that

12 = e(E) ≥ e(E0) + ei(S1) + ei(B1) + (el,i(v2) + el,i(B1)− el,i(v2 ∩B1)−)

≥ 3 + 2 + 3 + (3 + 3− 1) = 13.

This is a contradiction, so, v2 can related with three or two inner vertices of

B1. If v2 is linked to all vertices of B1 we have the situation represented in

Figure 5.22.

Figure 5.22: S1 and B1 have three edges where S1 is external and B1 is inner.

Since v(E) = 8, there are another two vertices v1 and v2 of which one must be

external. Here v1 is external and v2 is inner where v2 is connected to all inner

vertices of B1.
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This possibility is not a cluster because there are two components such

that the area of their intersection is not zero (see Definition 1.1). If v2 is

connected to two inner vertices of B1 we have two possibility given if v2 is

related or not related with v1. So, since the edges of E can not intersect, we

are in the situation of Figure 5.23, obtaining the cases G) and H) of Figure

5.15.

Figure 5.23: S1 and B1 have three edges where S1 is external and B1 is inner.

Since v(E) = 8, there are another two vertices v1 and v2 of which one must be

external. Here v1 is external and v2 is inner where v2 is connected to two inner

vertices of B1. So, there are two possibility given if v2 is linked or not linked to v1.

Remark 5.45. We explicitly note that in the cases B), G) and H) of Figure

5.15, there are two inner bounded components of which one is a connected

region. Thus, by Corollary 5.9, the inner component of the disconnected

region is a small component.

Proposition 5.46. Let E ∈ M∗2,4(1, 1, 1, 1). If IE = (1, 0, 0, 0), then E can not

be the clusters G) and H) of Figure 5.15.

Proof. The proof immediately comes from Lemma 5.41 because in these

configurations there is a six-sided connected region.
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We show some important estimates for the pressure of the disconnected

region before excluding the cases A), B), C), D), E), F ) of Figure 5.15.

Lemma 5.47. Let E ∈M∗2,4(1, 1, 1, 1). If IE = (1, 0, 0, 0), then the pressure pE1

is

1) pE1 ≥ π

2p̃−2
√
π(5+
√

1−|S1 |)
+ min

j∈J
pEj , if S1 is inner;

2) pE1 ≥ π

2p̃−2
√
π(5+
√

1−|S1 |)
+

(
1− p̃

4
√
π
·
√
|S1 |

(1−|S1 |)

)
·min
j∈J

pEj , if S1 is external

with three edges;

3) pE1 ≥ 2π

3

(
2p̃−2

√
π(5+
√

1−|S1 |)
) +

(
1 − p̃

4
√
π
·
√
|S1 |

(1−|S1 |)

)
·min
j∈J

pEj , if S1 is

external with four edges;

where S1 is the small component of E1 and

J :=
{
j > 1

∣∣∣H1(∂∗S1 ∩ ∂∗Ej) > 0
}
.

In particular, since |S1 | ≤ A1,4 and denoting by k7 := π

2p̃−2
√
π(5+
√

1−A1,4)
,

4) pE1 ≥ k7 + min
j∈J

pEj , if S1 is inner;

5) pE1 ≥ k7 +

(
1 − p̃

4
√
π
·
√
A1,4

(1−A1,4)

)
· min
j∈J

pEj , if S1 is external with three

edges;

6) pE1 ≥ 2k7
3 +

(
1 − p̃

4
√
π
·
√
A1,4

(1−A1,4)

)
· min
j∈J

pEj , if S1 is external with four

edges;

Proof. First of all, by assumption E ∈ M∗2,4(1, 1, 1, 1), therefore, by Corol-

lary 5.40, E ∈ M2,4(1, 1, 1, 1) and in particular m(E) = (1, 1, 1, 1). We re-

mind that, by Remark 5.7 and (5.10) of Corollary 5.10,

A2,4 ≤ |S1 | ≤ A1,4 <
1

3
, (5.68)

thus |B1 | = |E1 | − |S1 | ≥ 1− A1,4 > 0, where B1 denotes the big compo-

nent of E1. The regions surrounding S1 are Ej with j ∈ J . We denote by

l1,j the lengths of the edges of S1 with j ∈ J .
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First we prove 1). In this case S1 is inner, therefore, by Lemma 5.41, S1

has three edges. From Lemma 1.38, the turning angle of S1 is π. Therefore

we obtain that

π =
∑
j∈J

(pE1 − pEj )l1,j = pE1 ·
∑
j∈J

l1,j −
∑
j∈J

pEj l1,j .

It follows that

pE1 · P (S1) ≥ π + P (S1) ·
(

min
j∈J

pEj

)
,

namely

pE1 ≥
π

P (S1)
+ min

j∈J
pEj . (5.69)

Now, by the minimality of E, (5.68) and the isoperimetric inequality it fol-

lows that

P (S1) = 2P (E)−
(
P (B1) + P (E0) +

4∑
k=2

P (Ek)
)

≤ 2p̃− 2
√
π(
√

1− |S1 |+ 2 + 3).

So, by (5.69), we get

pE1 ≥
π

2p̃− 2
√
π(
√

1− |S1 |+ 5)
+ min

j∈J
pEj ,

that is 1).

Now we prove 2) and 3). In these cases S1 is external, therefore, by

Lemma 5.41, S1 can have three or four edges. We show only 2), because in

the case 3) the only difference is the turning angle of S1, which is π in 2),

while in 3) it is 2π
3 . Since S1 is external, we obtain that (note that pE0 = 0)

π =
∑

j∈J∪{0}

(pE1 − pEj )l1,j = pE1 · P (S1)−
∑
j∈J

pEj l1,j .

We find that
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pE1 · P (S1) = π +
∑
j∈J

pEj l1,j ≥ π + min
j∈J

pEj ·
(
P (S1)− l1,0

)
;

therefore it follows that

pE1 ≥
π

P (S1)
+

(
1− l1,0

P (S1)

)
·min
j∈J

pEj . (5.70)

From (5.8) of Corollary 5.10, we know that

l1,0 ≤
|S1 |

2(1− |S1 |)
· p̃. (5.71)

Furthermore by the minimality of E and the isoperimetric inequality we

get the following estimates for P (S1) (note that P (S1) = 2P (E)− P (B1)−

P (E0)−
4∑

k=2

P (Ek) and |B1 | = |E1 | − |S1 | = 1− |S1 |):

2
√
π |S1 | ≤ P (S1) ≤ 2p̃− 2

√
π(
√

1− |S1 |+ 2 + 3). (5.72)

We recall that the each pressure is non negative by Proposition 1.49, thus,

by (5.70), (5.71) and (5.72) we obtain that

pE1 ≥
π

2p̃− 2
√
π(5 +

√
1− |S1 |)

+

(
1− p̃

4
√
π
·
√
|S1 |

(1− |S1 |)

)
min
j∈J

pEj . (5.73)

This is 2).

From (5.68) we know that A2,4 ≤ |S1 | ≤ A1,4, therefore, denoting by

k7 := π

2p̃−2
√
π(5+
√

1−A1,4)
, by 1), 2) and 3) we find 4), 5) and 6) respectively.

Remark 5.48. We explicitly note that the quantity (1− p̃
4
√
π

√
A1,4

1−A1,4
), view in

Lemma 5.47, is positive, in fact (1− p̃
4
√
π

√
A1,4

1−A1,4
) ≈ 0.250923 > 0.

We eliminate the case A) of Figure 5.15. It depends by Corollary 2.16,

Lemma 2.17, Lemma 2.18, Lemma 2.19.

Proposition 5.49. Let E ∈ M∗2,4(1, 1, 1, 1), then E is not as in the case A) of

Figure 5.15.
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Proof. We suppose by contradiction that E is as in the caseA). By Corollary

5.40 E ∈ M2,4(1, 1, 1, 1) and in particular m(E) = (1, 1, 1, 1). We respec-

tively denote by S1 andB1 the small and the big component ofE1. Without

loss of generality we can assume that we are in the situation described in

Figure 5.24.

Figure 5.24: The case A).

By Remark 5.7, it follows that |S1 | ≤ A1,4, thus |B1 | = |E1 | − |S1 | ≥
1 − A1,4. Furthermore, the connected region E3 is not the lowest pressure

region, because it is inner and it has four edges, then its turning angle is 2π
3

(recall that the lowest pressure inner region has all concave edges, namely

each edge has non positive signed curvature). Moreover, since S1 is exter-

nal with four edges, by Proposition 1.49, by 6) of Lemma 5.47 and Remark

5.48 it follows that pE1 ≥ 2k7
3 . Therefore E1 is not the lowest pressure re-

gion, because otherwise, by Corollary 1.47, the perimeter of E would be at

least (each other region would have a pressure at least 2k7
3 )

P (E) = 2

4∑
i=1

pEi ≥
16k7

3
≈ 11.8485,

and this is a contradiction, since P (E) ≤ p̃ ≈ 11.1946.

Hence the lowest pressure region is either E2 or E4. Furthermore B1

must have at least one strictly convex inner side (i.e. the edge has positive
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signed curvature). Then we can have the following cases, given by the

relations between pressures of the regions adjacent to B1:

1)pE1 > pE2 , pE1 > pE3 , pE1 > pE4 ;

2)pE1 > pE2 , pE1 > pE3 , pE1 ≤ pE4 ;

3)pE1 > pE2 , pE1 ≤ pE3 , pE1 > pE4 ;

4)pE1 > pE2 , pE1 ≤ pE3 , pE1 ≤ pE4 ;

5)pE1 ≤ pE2 , pE1 > pE3 , pE1 > pE4 ;

6)pE1 ≤ pE2 , pE1 > pE3 , pE1 ≤ pE4 ;

7)pE1 ≤ pE2 , pE1 ≤ pE3 , pE1 > pE4 .

(5.74)

We immediately can eliminate the sixth case, because E3 would be the

lowest pressure region which is a contradiction. Furthermore we can see

that the cases 2) and 5) are the same, it is sufficient to exchange the role of

E2 and E4, and also the case 4) and 7) are the same for the same reason.

Therefore we just need to exclude the cases 1), 3), 5) and 7) of (5.74). The

idea is to prove that E is vertically symmetric, as illustrated in Figure 5.25.

Figure 5.25: The cluster E is vertically symmetric respect to the axes a.

We start with the case 1) of (5.74). In this situation the disconnected re-

gion E1 is the highest pressure region. The situation is illustrated in Figure
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5.26 (the dashed sides are edges, of which we do not know exactly signed

curvature).

Figure 5.26: The case 1) of (5.74).

First we claim that pE3 > pE2 and pE3 > pE4 , since otherwise pE2 ≥ pE3 or

pE4 ≥ pE3 , therefore either the region E2 or E4 would be as in Figure 5.27.

Figure 5.27: If pE2 ≥ pE3 or pE4 ≥ pE3 , then one between E2 and E4 would have

the bottom edge straight of strictly convex.

By Lemma 2.17, either E2 or E4 will not have cocircular lateral edges,
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therefore by Lemma 2.18, all other lateral edges of the connected region

would be not cocircular. Thus, by Corollary 2.16 E2, E3 and E4 are ver-

tically symmetric. Since E2, E3 and E4 are in sequence and the axes of a

segment is unique, E is vertically symmetric. So it follows that

0.159132 ≈ A1,4 ≥ |S1 | = |B1 | ≥ 1−A1,4 ≈ 0.840868.

This is an absurd, hence pE3 > pE2 and pE3 > pE4 as claimed. Hence we are

in this situation represented in Figure 5.28

Figure 5.28: pE1 > pE3 > pE2 and pE1 > pE3 > pE4 are the relations between

the pressures in the case 1).

We consider the inner regionE3: by Lemma 2.17 its lateral edges are not

cocircular, hence by Lemma 2.18 each other lateral edge of E2 and E4 is not

cocircular. Thus, by Corollary 2.16, E2, E3 and E4 are vertically symmetric.

Since E2, E3 and E4 are in sequence and the axes of a segment is unique, E

is vertically symmetric. Then

0.159132 ≈ A1,4 ≥ |S1 | = |B1 | ≥ 1−A1,4 ≈ 0.840868.

This is a contradiction, then the case 1) is excluded.

We consider the case 3) of (5.74). The situation is represented in Figure

5.29 (the dashed sides are edges, of which we do not know exactly signed

curvature).
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Figure 5.29: The case 3) of (5.74).

We note that E3 is the highest pressure region, since pE3 ≥ pE1 >

max (pE2 , pE4). We consider the external region E2, as shown in Figure

5.30 and we suppose that the lateral edges (the sides adjacent to E1) of E2

are cocircular. The radius of the circle containing the lateral edges of E2 is

R = 1
pE1
−pE2

. Since the lateral edges of E2 are cocircular and concave, then,

by Lemma 2.17, the shape of E2 is unique and it is represent in Figure 5.31.

Figure 5.30: The external region E2 of case 3).
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Figure 5.31: The unique shape of E2 if its lateral edges belong to the circle C.

We denote by L the bottom edge of E2. We call P and Q the meeting points

of the bottom edge of E2 with the circle C and we respectively denote by α

and θ, the angle between L and the chord line for its vertices P and Q and

the angle determined by P on the circle (see Figure 5.32).

Figure 5.32: The bottom edge L of E2 when the opposite and concave adjacent

edges to E1 are cocircular.

Since the bottom edge of E2 is external to the circle, by Lemma 2.19, its
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curvature is given by the following function (see (2.16))

keL(θ) = (pE1 − pE2) ·
sin
(

5π
6 − θ

)
cos θ

, θ ∈]− π

2
,
π

2
[.

Moreover since the inner angles between E2 and the circumference are 2π
3

(see Figure 5.32), then the external angles are 4π
3 , thus there is the following

relation between α and θ:

α =
5π

6
− θ. (5.75)

Hence, by (5.79), α ≥ π
3 . The bottom edge of E2 is the top edge of E3,

which is the highest pressure region and its turning angle is 2π
3 (in the case

A), each component has four edges and the turning angle of L is 2α), hence

α ≤ π
3 . Thus α = π

3 . Therefore the other sides of E3 should be straight, then

pE3 = pE4 , but pE3 ≥ pE1 > pE4 . This is a contradiction. Hence the lateral

edges of E2 are not cocircular, so, by Lemma 2.18 the other lateral sides of

E3 and E4 are not cocircular. Thus, by Corollary 2.16 E2, E3 and E4 are

vertically symmetric. Since E2, E3 and E4 are in sequence and the axes of a

segment is unique, then E is vertically symmetric. So

0.159132 ≈ A1,4 ≥ |S1 | = |B1 | ≥ 1−A1,4 ≈ 0.840868.

This is a contradiction, so the case 3) of (5.74) is excluded.

Figure 5.33: The case 5) of (5.74).
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We consider the case 5) of (5.74). Since E3 is not the lowest pressure

region, we are in this situation pE2 ≥ pE1 > pE3 > pE4 and it is represented

in Figure 5.33 (the dashed sides are edges, of which we do not know exactly

the signed curvature). We consider the inner region E3, as shown in Figure

5.34 and we suppose that the lateral edges (the sides adjacent to E1) of E3

are cocircular.

Figure 5.34: The inner region E3 of case 5).

Figure 5.35: The unique shape of E3 if its lateral edges belong to the circle C.
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The radius of the circle containing the lateral edges ofE3 isR = 1
pE1
−pE3

.

Since the lateral edges of E3 are cocircular and concave, then, by Lemma

2.17, the shape of E3 is unique and it is represent in Figure 5.35. We denote

by L the bottom edge of E3. We call P and Q the meeting points of the

bottom edge of E3 with the circle C and we respectively denote by α and θ,

the angle between L and the chord line for its vertices P and Q and the an-

gle determined by P on the circle (see Figure 5.36). Since the bottom edge

of E3 is external to the circle, by Lemma 2.19, its curvature is given by the

following function (see (2.16))

keL(θ) = (pE1 − pE3) ·
sin
(

5π
6 − θ

)
cos θ

, θ ∈]− π

2
,
π

2
[.

Figure 5.36: The bottom edge L of E3 when the opposite and concave adjacent

edges to E1 are cocircular.

Moreover since the inner angles between E3 and the circumference are
2π
3 (see Figure 5.36), then the external angles are 4π

3 , thus there is the fol-

lowing relation between α and θ:

α =
5π

6
− θ. (5.76)

Hence, by (5.79), α ≥ π
3 . The bottom edge of E3 is the top edge of E2,

which is the highest pressure region and its turning angle is 2π
3 (in the case
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A), each component has four edges and the turning angle of L is 2α), then

α ≤ π
3 . Thus α = π

3 . Therefore the other sides of E2 should be straight, then

pE2 = 0, but pE2 ≥ pE1 ≥ 2k7
3 > 0. This is a contradiction. Hence the lateral

edges of E3 are not cocircular, then, by Lemma 2.18 the other lateral sides

of E2 and E4 are not cocircular. Thus, by Corollary 2.16 E2, E3 and E4 are

vertically symmetric. Since E2, E3 and E4 are in sequence and the axes of a

segment is unique, then E is vertically symmetric. So

0.159132 ≈ A1,4 ≥ |S1 | = |B1 | ≥ 1−A1,4 ≈ 0.840868.

This is a contradiction, so the case 5) of (5.74) is excluded.

Finally we consider the case 7) of (5.74). We are in the situation de-

scribed in Figure 5.37 (the dashed sides are edges, of which we do not know

exactly signed curvature).

Figure 5.37: The case 7) of (5.74).

We first claim that pE2 > pE3 , otherwise pE3 ≥ pE2 , therefore we have the

following relations between the pressures pE3 ≥ pE2 ≥ pE1 > pE4 . We note

that E3 is the highest pressure region. We consider the external region E4,

as shown in Figure 5.38 and we suppose that the lateral edges (the sides

adjacent to E1) of E4 are cocircular. The radius of the circle containing

the lateral edges of E4 is R = 1
pE1
−pE4

. Since the lateral edges of E4 are
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cocircular and concave, by Lemma 2.17, the shape of E4 is unique and it is

represented in Figure 5.39.

Figure 5.38: The external region E4 of case 7).

Figure 5.39: The unique shape of E4 if its lateral edges belong to the circle C.

We denote by L the bottom edge of E4. We call P and Q the meeting

points of the bottom edge ofE4 with the circle C and we respectively denote

by α and θ, the angle between L and the chord line of its vertices P and Q

and the angle determined by P on the circle (see Figure 5.40).
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Figure 5.40: The bottom edge L of E4 when the opposite and concave adjacent

edges to E1 are cocircular.

Since the bottom edge of E4 is external to the circle, by Lemma 2.19, its

curvature is given by the following function (see (2.16))

keL(θ) = (pE1 − pE4) ·
sin
(

5π
6 − θ

)
cos θ

, θ ∈]− π

2
,
π

2
[, (5.77)

where the function

θ 7→ g(θ) :=
sin
(

5π
6 − θ

)
cos θ

, (5.78)

is strictly increasing with g
(
π
6

)
= 1. Moreover since the inner angles be-

tween E4 and the circumference are 2π
3 (see Figure 5.40), then the external

angles are 4π
3 , thus there is the following relation between α and θ:

α =
5π

6
− θ. (5.79)

Hence, by (5.79), α ≥ π
3 . The bottom edge of E4 is the top edge of E3,

which is the highest pressure region and its turning angle is 2π
3 (in the case

A), each component has four edges and the turning angle of L is 2α), then

α ≤ π
3 . Thus α = π

3 . Therefore the other sides of E3 should be straight,

hence pE3 = pE2 = pE1 . From (5.77) and (5.78), we find that θ = π
6 , thus,
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by (5.79), α = 2π
3 . This is a contradiction, because E3 has four edges (then,

note that its turning angle is 2π
3 ) and it is the highest pressure region (so

each its edges is convex, thus 2α ≤ 2π
3 ).

Hence the lateral edges of E4 are not cocircular, then, by Lemma 2.18

the other lateral sides of E2 and E3 are not cocircular. Thus, by Corollary

2.16 E2, E3 and E4 are vertically symmetric. Since E2, E3 and E4 are in

sequence and the axes of a segment is unique, E is vertically symmetric.

Then

0.159132 ≈ A1,4 ≥ |S1 | = |B1 | ≥ 1−A1,4 ≈ 0.840868.

This is a contradiction, so pE2 > pE3 as claimed.

Thus the relations between the pressures are pE2 > pE3 ≥ pE1 > pE4 .

The situation is described in Figure 5.41.

Figure 5.41: pE2 > pE3 ≥ pE1 > pE4 are the relations between the pressures in

the case 7).

We consider the external regionE2 and we suppose that its lateral edges

(the sides adjacent to E1) are cocircular. We prove that we do not have

enough circle length to make E2. The radius of the circle containing the

lateral edges of E2 is R = 1
pE2
−pE1

. The top and the bottom edge of E2 meet

the circle inside; their curvature are respectively given by the following

functions (we respectively denote with T and B, the top and the bottom
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edge of E2):

keT (θ1) = (pE2 − pE1) ·
sin
(
π
6 − θ1

)
cos θ1

,

(5.80)

keB(θ2) = (pE2 − pE1) ·
sin
(
π
6 − θ2

)
cos θ2

,

where θ1, θ2 ∈]− π
2 ,

π
2 [. Let g(θ) :=

sin

(
π
6
−θ
)

cos θ . Now the curvature of the top

edge is

pE2 > pE2 − pE1 ,

while the curvature of the bottom edge is

pE2 − pE3 ≤ p2 − pE1 .

Then we respectively get that g(θ1) > 1 and g(θ2) ≤ 1 for the top and the

bottom edge. The function g, by Lemma 2.19 and Remark 2.20, is strictly

decreasing and g
(
− π

6

)
= 1, thus we obtain that

i) θ1 ∈]− π

2
,−π

6
[

(5.81)

ii) θ2 ∈ [−π
6
,
π

2
[.

Therefore, by in order to draw the top edge, we must cut a center angle of

at least

π − 2θ1

i)
>

4π

3
,

while to draw the bottom edge, we must cut a center angle at most of

π − 2θ2

ii)

≤ 4π

3
.

So we do not have enough circle length to make E2 with the lateral edges

cocircular. Thus the lateral sides of E2 are not cocircular, then, by Lemma

2.18 the other lateral sides of E3 and E4 are not cocircular. Thus, by Corol-

lary 2.16 E2, E3 and E4 are vertically symmetric. Since E2, E3 and E4 are
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in sequence and the axes of a segment is unique, E is vertically symmetric

too. So

0.159132 ≈ A1,4 ≥ |S1 | = |B1 | ≥ 1−A1,4 ≈ 0.840868.

This is a contradiction, so also the case 7) is excluded.

Hence the case A) of Figure 5.15 is excluded, so the proof is concluded.

Proposition 5.50. Let E ∈ M∗2,4(1, 1, 1, 1), then E is not as in the case B) of

Figure 5.15.

Proof. We suppose by contradiction that E is as in the caseB). By Corollary

5.40 E ∈ M2,4(1, 1, 1, 1), in particular m(E) = (1, 1, 1, 1). We respectively

call S1 and B1 the small and the big component of E1. In this configuration

the inner three-sided component of E1 is its small component, because, by

Corollary 5.9, there can be at most one big inner component. Without loss

of generality we label the inner connected region with E2. Furthermore

immediately we have that E2 and E1 are not the lower pressure regions,

because E2 and S1 are inner and their turning angle are respectively 2π
3

and π (see Lemma 1.38). Therefore the lower pressure region is E3 or E4.

We take the lower pressure region; it has five edges (so its turning angle is
π
3 ) and each inner side is concave or straight (i.e the signed curvature of the

edge is non positive), therefore by Lemma 1.38 one concludes that

Le,min · pmin ≥
π

3
,

where we denote by Le,min and pmin the length of the external edge and the

pressure of the lower pressure region. So by Lemma 3.14 we establish the

following estimate for the lower pressure

pmin ≥
√
π

6
≈ 0.295409. (5.82)

Since S1 is inner, by 4) of Lemma 5.47 and by (5.82), we get that

pE1 ≥ k7 +

√
π

6
≈ 2.51701. (5.83)
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So E1 is the highest pressure region; indeed if it was false then we would

have another region Ej (j 6= 1), such that pEj ≥ k7 and then, by Corollary

1.47 and by (5.82), the perimeter of E would be at least

P (E) = 2
4∑
i=1

pEi ≥ 4k7 + 4

(√
π

6

)
≈ 11.2497.

This is a contradiction, since P (E) ≤ p̃ ≈ 11.1946, by the minimality of E.

Now we reduce E by applying Lemma 2.22 until we come to a standard

double bubble, which, by Lemma 3.16, will allow us to determine an up-

per limit for the highest pressure, that will be smaller than k7. We proceed

with the reduction method (reduction of three-sided component), seen in

Lemma 2.22 and described in Figure 5.42. The different steps of the reduc-

tion in Figure 5.42 are given by the arrows. At the beginning we reduce S1,

then we obtain that

E4 ⊆ E′4. (5.84)

Figure 5.42: Through the reduction of three-sided component of E, we come to a

standard double bubble, that allow us to determine an upper limit for the highest

pressure.

In the second step we reduce E′2, so we have that

E′4 ⊆ E′′4 ,

(5.85)
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B1 ⊆ B′1.

In the last step we reduce E′′3 , having that

E′′4 ⊆ E′′′4 ,

(5.86)

B′1 ⊆ B′′1 .

At the end of these steps we have a standard double bubble of areas

|B′′1 | and |E′′′4 |. We note explicitly that this method of reduction does not

change the curvatures, because each side is only extended following its

curvature and primarily, as shown in Lemma 2.22, the extended edges meet

in an inner point satisfying the cocycle condition; therefore, at each step

we create a planar regular cluster. Hence, since pE1 ≥ pE4 , we have that

|E′′′4 | ≥ |B′′1 |. From (5.84), (5.85) and (5.86), we determine that (recall that

|S1 | ≤ A1,4 by Remark 5.7, thus |B1 | = |E1 | − |S1 | ≥ 1−A1,4)

|B′′1 | ≥ |B′1 | ≥ |B1 | ≥ 1−A1,4.

By estimate (3.35) in Lemma 3.16, we have that

pE1 ≤

√
2π
3 +

√
3

4

|B′′1 |
≤

√
2π
3 +

√
3

4

1−A1,4
≈ 1.7337.

This contradicts (5.83), so the proof is concluded.

Proposition 5.51. Let E ∈ M∗2,4(1, 1, 1, 1), then E is not as in the case C) of

Figure 5.15.

Proof. We suppose by contradiction that E is as in the case C). By Corollary

5.40 E ∈ M2,4(1, 1, 1, 1), in particular m(E) = (1, 1, 1, 1). Let S1 and B1 be

the small and the big component of E1 respectively. By Remark 5.7 and

(5.10) of Corollary 5.10, we know that

0 < A2,4 ≤ |S1 | ≤ A1,4 <
1

3
. (5.87)

Thus |B1 | = |E1 | − |S1 | ≥ 1 − A1,4. Certainly in this configuration, the

connected inner region is not the lowest pressure region, because it has

three edges (so its turning angle, by Lemma 1.38 is π) and it is inner.
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First we suppose that S1 has three edges and without loss of generality

we can assume that E is as in Figure 5.43.

Figure 5.43: The case C) when S1 has three edges.

Since S1 is external, by Proposition 1.49, by 5) of Lemma 5.47 and Re-

mark 5.48, it follows that

pE1 ≥ k7 ≈ 2.22160. (5.88)

Now we will determine an upper limit for the maxk=1,4 pEk ; we will

find that it is less than k7, thus we will get a contradiction. In order to do

this, we reduce E through the reduction method of three-sided component,

described in Lemma 2.22. The reduction is represented in Figure 5.44. The

different steps of the reduction in Figure 5.44 are given by the arrows.

Figure 5.44: This reduction determines an upper limit for the highest pressure

between pEj with j = 1, 4.
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At the beginning we reduce S1 and E2 then we obtain that

E4 ⊆ E′4,

(5.89)

B1 ⊆ B′1.

In the second step we reduce E′3, so we have that

E′4 ⊆ E′′4 ,

(5.90)

B′1 ⊆ B′′1 .

At the end of these steps we have a standard double bubble of areas

|B′′1 | and |E′′4 |. By (5.89) and (5.90), it follows that

a) if pE4 ≥ pE1 , then |B′′1 | ≥ |E′′4 | ≥ |E′4 | ≥ |E4 | = 1;

b) if pE1 ≥ pE4 , then |E′′4 | ≥ |B′′1 | ≥ |B′1 | ≥ |B1 | = 1−A1,4.

Therefore, by Lemma 3.16, max (pE4 , pE1) ≤
√

2π
3

+
√
3

4
1−A1,4

≈ 1.7337. This is in

contradiction with (5.88), thus S1 has four edges and B1 three edges.

Now we do a reduction of E until we come to a standard double bub-

ble, that will allow us to determine a lower limit for mink=3,4 pEk . It is

illustrated in Figure 5.45.

Figure 5.45: This reduction determines a lower limit for the lowest pressure be-

tween pEj with j = 3, 4.
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The different steps of the reduction in Figure 5.45 are given by the ar-

rows; at the beginning we reduce E2 and B1, then we obtain that

E′3 ∪ S′1 ⊆ E3 ∪ S1 ∪B1 ∪ E2,

(5.91)

E′4 ∪ S′1 ⊆ E4 ∪ S1 ∪B1 ∪ E2.

In the second step we reduce S′1, so we have that

E′′3 ⊆ E′3 ∪ S′1,

(5.92)

E′′4 ⊆ E′4 ∪ S′1.

At the end of these steps we have a standard double bubble of areas

|E′′3 | and |E′′4 |. By (5.91) and (5.92), it follows that

c) if pE4 ≥ pE3 , then

|E′′4 | ≤ |E′′3 | ≤ |E′3 |+ |S′1 | ≤ |E3 |+ |S1 |+ |B1 |+ |E2 |

≤ |E3 |+ |E1 |+ |E2 | ≤ 3;

d) if pE3 ≥ pE4 , then

|E′′3 | ≤ |E′′4 | ≤ |E′4 |+ |S′1 | ≤ |E4 |+ |S1 |+ |B1 |+ |E2 |

≤ |E4 |+ |E1 |+ |E2 | ≤ 3.

Therefore, by Lemma 3.16, we can say that

min
k=3,4

pEk ≥

√
2π
3 +

√
3

4

3
:= k8 ≈ 0.917861 (5.93)

Now S1 is external, therefore, by 6) of Lemma 5.47, by Remark 5.48 and

(5.93) (recall that the inner connected region can not be the lowest pressure

region because it is inner and its turning angle is π),

pE1 ≥
2k7

3
+

(
1− p̃

4
√
π
·
√
A1,4

(1−A1,4)

)
k8 := k9 ≈1.71138. (5.94)

We claim that

max
k=3,4

pEk ≥ pE1 . (5.95)
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Indeed if we suppose that the contrary holds; since B1 is disjoint from

E2, by the minimality of E, by (5.87) and the isoperimetric inequality, we

would get that

p̃ ≥ P (E) ≥P (B1)+P (E2)+P (E0)−L1,e≥2
√
π
(√

1−A1,4+1+2
)
− L1,e,

where L1,e is the length of the external edge of B1. Therefore we have the

following estimate for L1,e:

L1,e ≥ 2
√
π
(√

1−A1,4 + 3
)
− p̃ := `5 ≈ 2.69072. (5.96)

Since pE1 > maxk=3,4 pEk , then the edges of B1 are convex (namely the

signed curvature of its edges is non negative). By Lemma 1.38, the turning

angle of B1 is π, thus we have that

pE1 · `5 ≤ pE1 · L1,e ≤ π;

therefore, by (5.94), 1.71138 ≈ k9 ≤ pE1 ≤ π
`5
≈ 1.16757. It is a contradic-

tion, hence (5.95) holds.

Finally we determine an estimate for the pressure of the inner connected

region E2. It has three edges and it is inner, therefore it is not the lowest

pressure region, so at least one of its edges is convex (i.e the signed cur-

vature of the edge is non negative). Hence, if L2,3, L2,4 and L2,1 are the

lengths of the sides of E2 in common with E3, E4 and S1 respectively, we

have that(
pE2 − min

k=1,3,4
pEk

)
P (E2) ≥ max

k=1,3,4

(
pE2 − pEk

)
P (E2)

≥
∑

k=1,3,4

L2,k

(
pE2 − pEk

)
= π.

Thus it follows that

pE2 ≥
π

P (E2)
+ min
k=1,3,4

pEk . (5.97)

By (5.87), by the isoperimetric inequality and the minimality of E, we know

that

P (E2) = 2P (E)− P (B1)− P (S1)− P (E3)− P (E4)− P (E0)

≤ 2p̃− 2
√
π
(√

1−A1,4 +
√
A2,4 + 1 + 1 + 2

)
:= `6 ≈ 4.41116.
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By (5.93) and (5.94), we have that mink=1,3,4 pEk ≥ k8. So, by (5.97), we get

that

pE2 ≥
π

`6
+ k8 := k10 ≈ 1.63005. (5.98)

Therefore the perimeter of E is at least, by (5.93), (5.94), (5.95) (5.98) and

Corollary 1.47,

P (E)=2
4∑
i=1

pEi≥2(pE1+pE2+max
k=3,4

pEk+ min
k=3,4

pEk)≥4k9+2k10+2k8≈11.9413.

It is a contradiction, because P (E) ≤ p̃ ≈ 11.1946, so the proof is concluded.

Proposition 5.52. Let E ∈ M∗2,4(1, 1, 1, 1), then E is not as in the case D) of

Figure 5.15.

Proof. We suppose by contradiction that E is as in the caseD). By Corollary

5.40 E ∈ M2,4(1, 1, 1, 1), thus m(E) = (1, 1, 1, 1). We respectively denote

with S1 and B1 the small and the big component of E1. By Remark 5.7 and

by (5.10) of Corollary 5.10, we know that

A2,4 ≤ |S1 | ≤ A1,4 <
1

3
. (5.99)

Thus |B1 | = |E1 | − |S1 | ≥ 1−A1,4.

First we suppose that S1 has three edges and without loss of generality

we can assume that E is as in Figure 5.46.

Figure 5.46: The case D).

Since S1 is external with three edges, then, by Proposition 1.49, by 5) of

Lemma 5.47 and Remark 5.48, we have that
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pE1 ≥ k7 ≈ 2.22160. (5.100)

Now we reduce E by applying the reduction method of three-sided

components described in Lemma 2.22. We reduce E until we come to a

standard double bubble, which, by Lemma 3.16, will allow us to determine

an upper limit for max
k=1,3

pEk , that will be smaller than k7. We proceed with

the reduction, represented in Figure 5.47.

Figure 5.47: This reduction determines an upper limit for max
k=1,3

pEk .

At the beginning we reduce only S1, then we obtain that

E3 ⊆ E′3. (5.101)

In the second step we reduce E4, so we have that

B1 ⊆ B′1. (5.102)

In the last step we reduce E′′2 having that

B′1 ⊆ B′′1 ,

(5.103)

E′3 ⊆ E′′3 .
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At the end of these steps we have a standard double bubble of areas

|B′′1 | and |E′′3 |. By (5.101), (5.102) and (5.103) it follows that

a) if pE3 ≥ pE1 , then |B′′1 | ≥ |E′′3 | ≥ |E′3 | ≥ |E3 | = 1;

b) if pE1 ≥ pE3 , then |E′′3 | ≥ |B′′1 | ≥ |B′1 | ≥ |B1 | = 1−A1,4.

Therefore, by Lemma 3.16, max (pE3 , pE1) ≤
√

2π
3

+
√
3

4
1−A1,4

≈ 1.7337. This is in

contradiction with (5.100), thus S1 has four edges and B1 three edges.

Initially we determine an estimate for mink=2,4 pEk . In order to do this,

we reduce E as showed in Figure 5.48, through the reduction method of

three-sided component, seen in Lemma 2.22.

Figure 5.48: This reduction determines an estimate for mink=2,4 pEk .

The different steps of the reduction in Figure 5.48 are given by the ar-

rows; at the beginning we reduce only B1, then we obtain that

E′2 ⊆ E2 ∪B1,

E′3 ⊆ E3 ∪B1 (5.104)

E′2 ∪ E′3 ⊆ E2 ∪ E3 ∪B1.

In the second step we reduce E′3, so we have that

E′′2 ⊆ E′2 ∪ E′3,

(5.105)
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S′1 ⊆ S1 ∪ E′3.

In the last step we reduce S′1 having that

E′′′2 ⊆ E′′2 ∪ S′1,

(5.106)

E′4 ⊆ E4 ∪ S′1.

At the end of these steps we have a standard double bubble of areas

|E′′′2 | and |E′4 |. By (5.104), (5.105) and (5.106) it follows that

c) if pE2 ≥ pE4 , then

|E′′′2 | ≤ |E′4 | ≤ |E4 |+ |S′1 | ≤ |E4 |+ |S1 |+ |E′3 |

≤ |E4 |+ |S1 |+ |B1 |+ |E3 |

≤ |E4 |+ |E1 |+ |E3 | ≤ 3;

d) if pE4 ≥ pE2 , then

|E′4 | ≤ |E′′′2 | ≤ |E′′2 |+ |S′1 | ≤ |E′2 |+ |E′3 |+ |S1 |

≤ |E2 |+ |E3 |+ |B1 |+ |S1 |

≤ |E2 |+ |E3 |+ |E1 | ≤ 3.

Therefore, by Lemma 3.16, we can say that

min
k=2,4

pEk ≥

√
2π
3 +

√
3

4

3
:= k8 ≈ 0.917861. (5.107)

Now we do two reductions of E through the reduction method of three-

sided component, seen in Lemma 2.22; in the first we reduce E until we

come to a standard double bubble, that, by Lemma 3.16, will allow us to de-

termine an upper limit for the highest pressure between pEj with j = 1, 2, 3.

Later we do the second reduction of E until we come to a standard double

bubble, that will allow us to determine a lower limit for mink=2,3 pEk . We

begin with the first reduction; it is described in Figure 5.49. The different

steps of the reduction in Figure 5.49 are given by the arrows; at the begin-

ning we reduce only E4, then we obtain that

E2 ⊆ E′2,
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(5.108)

S1 ⊆ S′1.

Figure 5.49: This reduction determines an upper limit for the highest pressure

between pEj with j = 1, 2, 3.

In the second step we reduce S′1, so we have that

E′2 ⊆ E′′2 ,

(5.109)

E3 ⊆ E′3.

In the last step we reduce E′′2 or E′3, so we reduce E′′2 we have that

B1 ⊆ B′1,

(5.110)

E′3 ⊆ E′′3 .

while if we reduce E′3 we find that

E′′2 ⊆ E′′′2 ,

(5.111)

B1 ⊆ B′1.

If in the last step we reduce E′′2 , at the end, we have a standard double

bubble of areas |B′1 | and |E′′3 |. By (5.108), (5.109) and (5.110) it follows that
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c) if pE1 ≥ pE3 , then

|E′′3 | ≥ |B′1 | ≥ |B1 | ≥ 1− |S1 |;

d) if pE3 ≥ pE1 , then

|B′1 | ≥ |E′′3 | ≥ |E′3 | ≥ |E3 | ≥ 1.

Therefore, by Lemma 3.16, we can say that

max
k=1,3

pEk ≤

√
2π
3 +

√
3

4

1− |S1 |
. (5.112)

If in the last step we instead reduce E′3, at the end of these steps we get

a standard double bubble of areas |B′1 | and |E′′′2 |. By (5.108), (5.109) and

(5.111) it follows that

c) if pE1 ≥ pE2 , then

|E′′′2 | ≥ |B′1 | ≥ |B1 | ≥ 1− |S1 |;

d) if pE2 ≥ pE1 , then

|B′1 | ≥ |E′′′2 | ≥ |E′′2 | ≥ |E′2 | ≥ |E2 | ≥ 1.

Therefore, by Lemma 3.16, we can say that

max
k=1,2

pEk ≤

√
2π
3 +

√
3

4

1− |S1 |
. (5.113)

So, by (5.112) and (5.113) we have that

max
k=1,2,3

pEk ≤

√
2π
3 +

√
3

4

1− |S1 |
. (5.114)

We call

f7(x) :=

√
2π
3 +

√
3

4

1− x
, x ∈ [A2,4, A1,4], (5.115)

then, by (5.114), max
1≤k≤3

pEk ≤ f7(|S1 |). The function f7 is strictly increasing,

indeed its first derivative is f ′7(x) =

√
2π
3

+
√
3

4

2 · 1

(1−x)
3
2

.
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We present the second reduction; it is illustrated in Figure 5.50.

Figure 5.50: This reduction determines a lower limit for the lowest pressure be-

tween pEj with j = 2, 3.

The different steps of the reduction in Figure 5.50 are given by the ar-

rows; at the beginning we reduce E4 and B1, then we obtain that

E′2 ∪ S′1 ⊆ E2 ∪ S1 ∪B1 ∪ E4,

E′2 ⊆ E2 ∪ E4 ∪B1,

(5.116)

E′3 ⊆ E3 ∪B1,

S′1 ⊆ S1 ∪ E4.

In the second step we reduce S′1, so we have that

E′′2 ⊆ E′2 ∪ S′1,

(5.117)

E′′3 ⊆ E′3 ∪ S′1.

At the end of these steps we have a standard double bubble of areas

|E′′3 | and |E′′2 |. By (5.116) and (5.117), it follows that

c) if pE2 ≥ pE3 , then

|E′′2 | ≤ |E′′3 | ≤ |E′3 |+ |S′1 | ≤ |E3 |+ |S1 |+ |B1 |+ |E4 |

≤ |E3 |+ |E1 |+ |E4 | ≤ 3;
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d) if pE3 ≥ pE2 , then

|E′′3 | ≤ |E′′2 | ≤ |E′2 |+ |S′1 | ≤ |E4 |+ |S1 |+ |B1 |+ |E2 |

≤ |E4 |+ |E1 |+ |E2 | ≤ 3.

Therefore, by Lemma 3.16, we can say that

min
k=2,3

pEk ≥

√
2π
3 +

√
3

4

3
:= k8 ≈ 0.917861. (5.118)

Therefore, from (5.107), we have that

min
2≤k≤4

pEk ≥ k8. (5.119)

Now S1 is external with four edges, then, by 3) of Lemma 5.47, the

pressure of E1 satisfies

pE1 ≥
2π

3 ·
(

2p̃− 2
√
π · (5 +

√
1− |S1 |)

) +

(
1− p̃

4
√
π
·
√
|S1 |

(1− |S1 |)

)
k8,

(5.120)

because the function

f8(x) := 1− p̃

4
√
π
·
√
x

1− x
, x ∈ [A2,4, A1,4]

is positive. Indeed its first derivative is

f ′8(x) = − p̃

8
√
π
· 1 + x√

x(1− x)2
,

therefore f8 is strictly decreasing, thus f8(x) > f8(A1,4) ≈ 0.250923 > 0. We

set

f9(x) :=
2π

3 ·
(

2p̃− 2
√
π · (5 +

√
1− x)

) + f8(x) · k8, x ∈ [A2,4, A1,4].

(5.121)

It is clear, by (5.120), that pE1 ≥ f9(|S1 |). Furthermore f9 is strictly decreas-

ing, because its first derivative is

f ′9(x) = −

(
2(π)

3
2

3
√

1− x ·
(

2p̃− 2
√
π(5 +

√
1− x)

)2 +
p̃ · k8

8
√
π
· 1 + x√

x · (1− x)2

)
.
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We note that, by (5.114), (5.115), (5.120) and (5.121),

f9(|S1 |) ≤ pE1 ≤ f7(|S1 |), |S1 | ∈ [A2,4, A1,4], (5.122)

where f7 and f9 are strictly increasing and strictly decreasing respectively.

Furthermore, by (5.122), we have that

|S1 | > 0.15, (5.123)

otherwise

1.75724 ≈ f9(0.15) ≤ pE1 ≤ f7(0.15) ≈ 1.72436

We derive an important upper limit for the sum of the lengths of inner

edges of S1. We have called with l1,0, l1,2, l1,3, and l1,4 the lengths of the

edges of S1 in common with E0, E2, E3, and E4 respectively, therefore,

since the turning angle of S1 is 2π
3 , we get that

pE1P (S1)− l1,2pE2 − l1,3pE3 − l1,4pE4 =
∑

k=0,2,3,4

l1,i(pE1 − pEi) =
2π

3
.

It follows that

l1,2pE2 + l1,3pE3 + l1,4pE4 = pE1P (S1)− 2π

3
. (5.124)

We respectively note that, by (5.122), by the fact that f7 is strictly increasing

and (5.119), pE1 ≤ f7(A1,4) and min
2≤k≤4

pEk ≥ k8. Furthermore by the mini-

mality of E and the isoperimetric inequality, we get the following estimate

for P (S1) (note that P (S1) = 2P (E) − P (B1) − P (E2) − P (E3) − P (E4) −
P (E0) and |B1 | ≥ 1−A1,4, by (5.99)):

P (S1) ≤ 2p̃− 2
√
π(5 +

√
1−A1,4).

Thus, by (5.124), we have that

l1,2+l1,3+l1,4 ≤
f7(A1,4) ·

(
2p̃− 2

√
π(5 +

√
1−A1,4)

)
− 2π

3

k8
:= `7 ≈ 0.389221.

(5.125)

So, recalling that |S1 | > 0.15 by (5.123) and using the isoperimetric in-

equality we can obtain an estimate for the length of the external edge of

S1

l1,0 = P (S1)− (l1,2 + l1,3 + l1,4) ≥ 2
√
π · 0.15− `7 := `8 ≈ 0.983716. (5.126)
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The configuration and the minimality of E, we allow to say that (note that

|B1 | ≥ 1−A1,4 by (5.99), and |S1 | > 0.15 by (5.123))

p̃ ≥ P (E) ≥
4∑

k=2

P (Ek) + P (B1) + P (S1)− I(E)

≥ 2
√
π
(

3 +
√

1−A1,4 +
√

0.15
)
− I(E),

where I(E) denotes the sum of the lengths of the inner edges of E. So we

get the following estimate for the sum of the lengths of the inner edges of

E:

I(E) ≥ 2
√
π
(

3 +
√

1−A1,4 +
√

0.15
)
− p̃ := `9 ≈ 4.06365. (5.127)

Therefore, the sum of the lengths of the inner sides of E minus the inner

edges of S1 (we denote them with I(E r S1)) must be at least, by (5.125)

and (5.127)

I(Er S1) = I(E)− (l1,2 + l1,3 + l1,4) ≥ `9 − `7 := `10 ≈ 3.67443. (5.128)

Finally we can conclude, because we able to give an estimate for P (E);

considering the configuration of E, we get that

11.1946 ≈ p̃ ≥ P (E) ≥ P (B1 ∪ E3 ∪ E4 ∪ E2) + I(Er S1) + l1,0

(5.126),(5.128)
≥ 2

√
π
(√

(1−A1,4) + 3
)

+ `10 + `8 ≈ 11.6055.

It is a contradiction, so the proof is completed.

Proposition 5.53. Let E ∈ M∗2,4(1, 1, 1, 1), then E is not as in the case E) of

Figure 5.15.

Proof. We suppose by contradiction that E is as in the caseE). By Corollary

5.40, E ∈ M2,4(1, 1, 1, 1) thus m(E) = (1, 1, 1, 1). Certainly in this configu-

ration, the small component has three edges and without loss of generality

we can assume that E is as in Figure 5.51.
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Figure 5.51: The case E).

Since S1 is external, by Proposition 1.49, by 5) of Lemma 5.47, and Re-

mark 5.48 we have that

pE1 ≥ k7. (5.129)

Figure 5.52: This reduction determines an upper limit for maxk=1,2 pEk .

Now we do a reduction of E until we come to a standard double bubble,

that will allow us to determine an upper limit for maxk=1,2 pEk , that will be

smaller than k7. The different steps of the reduction in Figure 5.52 are given

by the arrows. First we reduce only S1, then we obtain that

E2 ⊆ E′2. (5.130)

In the second step we reduce E′4, so we have that

E′2 ⊆ E′′2 . (5.131)
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In the last step we reduce E′3, having that

B1 ⊆ B′1,

(5.132)

E′′2 ⊆ E′′′2 .

At the end of these steps we have a standard double bubble of areas

|B′1 | and |E′′′2 |. By (5.130), (5.131) and (5.132) it follows that

i) if pE1 ≥ pE2 , then |E′′′2 | ≥ |B′1 | ≥ |B1 | ≥ 1−A1,4;

ii) if pE2 ≥ pE1 , then |B′1 | ≥ |E′′′2 | ≥ |E′′2 | ≥ |E′2 | ≥ |E2 | = 1.

Therefore, by Lemma 3.16,

max (pE1 , pE2) ≤

√
2π
3 +

√
3

4

1−A1,4
≈ 1.7337. (5.133)

By (5.129) and (5.133) we obtain that

2.2216 ≈ k7 ≤ pE1 ≤ max
k=1,2

pEk ≤

√
2π
3 +

√
3

4

1−A1,4
≈ 1.7337.

It is a contradiction, so the proof is completed.

Proposition 5.54. Let E ∈ M∗2,4(1, 1, 1, 1), then E is not as in the case F ) of

Figure 5.15.

Proof. We suppose by contradiction that E is as in the case F ). By Corollary

5.40, E ∈ M2,4(1, 1, 1, 1), thus m(E) = (1, 1, 1, 1). We respectively call S1

and B1 the small and the big component of E1. We remind that, by Remark

5.7 and (5.10) of Corollary 5.10,

A2,4 ≤ |S1 | ≤ A1,4 <
1

3
. (5.134)

First we determine the lower limit for the lowest pressure between pE2 , pE3

and pE4 . In order to do this, we use the reduction method of three sided-

component, described in Lemma 2.22. We proceed with the reduction, rep-

resented in Figure 5.53. The different steps of the reduction in Figure 5.53

are given by the arrows.
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Figure 5.53: This reduction determines a lower limit for the lowest pressure be-

tween pEj with j = 2, 3, 4.

At the beginning we reduce the two components of E1, S1 and B1, then

we obtain that

E′2 ∪ E′3 ⊆ E2 ∪ E3 ∪ S1 ∪B1,

E′4 ∪ E′3 ⊆ E4 ∪ E3 ∪ S1 ∪B1, (5.135)

E′2 ∪ E′4 ⊆ E2 ∪ E4 ∪ S1 ∪B1.

In the second step we reduce E′3 or E′4, so if we reduce E′3 we have that

E′′2 ⊆ E′2 ∪ E′3,

(5.136)

E′′4 ⊆ E′4 ∪ E′3.

while if we reduce E′4 we find that

E′′2 ⊆ E′2 ∪ E′4,

(5.137)

E′′3 ⊆ E′3 ∪ E′4.
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If in the second step we reduce E′3, at the end of these steps we have a

standard double bubble of areas |E′′2 | and |E′′4 |. By (5.135) and (5.136), it

follows that

c) if pE4 ≥ pE2 , then

|E′′4 | ≤ |E′′2 | ≤ |E′2 |+ |E′3 | ≤ |E2 |+ |E3 |+ |S1 |+ |B1 |

≤ |E2 |+ |E3 |+ |E1 | ≤ 3;

d) if pE2 ≥ pE4 , then

|E′′2 | ≤ |E′′4 | ≤ |E′4 |+ |E′3 | ≤ |E4 |+ |E3 |+ |S1 |+ |B1 |

≤ |E4 |+ |E3 |+ |E1 | ≤ 3.

Therefore, by Lemma 3.16, we can say that

min
k=2,4

pEk ≥

√
2π
3 +

√
3

4

3
:= k8 ≈ 0.917861. (5.138)

If in the second step we instead reduce E′4, at the end of these steps

we get a standard double bubble of areas |E′′2 | and |E′′3 |. By (5.135) and

(5.137), it follows that

c) if pE3 ≥ pE2 , then

|E′′3 | ≤ |E′′2 | ≤ |E′2 |+ |E′4 | ≤ |E2 |+ |E4 |+ |S1 |+ |B1 |

≤ |E2 |+ |E4 |+ |E1 | ≤ 3;

d) if pE2 ≥ pE3 , then

|E′′2 | ≤ |E′′3 | ≤ |E′3 |+ |E′4 | ≤ |E3 |+ |E4 |+ |S1 |+ |B1 |

≤ |E3 |+ |E4 |+ |E1 | ≤ 3.

Therefore, by Lemma 3.16, we can say that

min
k=2,3

pEk ≥

√
2π
3 +

√
3

4

3
k8 ≈ 0.917861. (5.139)
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So, by (5.138) and (5.139) we have that

min
k=2,3,4

pEk ≥ k8. (5.140)

Now we will find an estimate for the pressure of E1. If S1 is inner, then

from 4) of Lemma 5.47 and by (5.140), we get that

pE1 ≥ k7 + k8 ≈ 3.13946. (5.141)

Therefore, by Corollary 1.47, we have that the perimeter of E is at least

P (E) = 2
4∑

k=1

pEk ≥ 2(k7 + k8) + 6k8 ≈ 11.7861.

This is a contradiction, since P (E) ≤ p̃ ≈ 11.1946.

Therefore S1 is external and B1 is inner. Thus, by 5) of Lemma 5.47, by

Remark 5.48 and (5.140), we have the following estimate for pE1

pE1 ≥ k7 +

(
1− p̃

4
√
π
·
√
A1,4

(1−A1,4)

)
k8 := k11 ≈ 2.45191. (5.142)

We find an estimate for max
k>1

pEk ; in order to do this we use the fact that E1

has two three-sided components (so note that their turning angle is π), one

small and the other big. Therefore, denoted by L1,2, L1,3, L1,4 the lengths

of the edges of B1 in common with E2, E3 and E4 respectively and let l1,2,

l1,3 and l1,0 be the lengths of the edges of S1 respectively in common with

E2, E3 and E0, we have that∑
k=0,2,3

l1,k(pE1−pEk) = π =
∑

k=2,3,4

L1,k(pE1−pEk) ≥ (pE1−max
k>1

pEk)P (B1).

Thus we obtain that (by Proposition 1.49 each pressure is non negative)

pE1P (S1) ≥ (pE1 −max
k>1

pEk)P (B1) + l1,2pE2 + l1,3pE3

≥ (pE1 −max
k>1

pEk)P (B1).

Dividing by pE1 and P (B1) (recall that pE1 is positive by (5.142)), we obtain

that

max
k>1

pEk ≥ pE1

(
1− P (S1)

P (B1)

)
. (5.143)
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By (5.134), by the isoperimetric inequality and by the minimality of E we

get that (remind that P (S1) ≤ 2P (E)− (P (B1) +P (E2) +P (E3) +P (E4) +

P (E0)) and 1−A1,4 > 0 by (5.134)) P (S1) ≤ 2p̃− 2
√
π · (5 +

√
1−A1,4) and

P (B1) ≥ 2
√
π(1−A1,4). Thus by (5.143), we find that

max
k>1

pEk ≥ pE1

(
1−

2p̃− 2
√
π · (5 +

√
1−A1,4)

2
√
π(1−A1,4)

)
.

The quantity 1− 2p̃−2
√
π·(5+
√

1−A1,4)

2
√
π(1−A1,4)

≈ 0.564974 is positive, therefore, since

pE1 ≥ k1

max
k>1

pEk ≥ k11 ·
(

1−
2p̃− 2

√
π · (5 +

√
1−A1,4)

2
√
π(1−A1,4)

)
:= k12 ≈ 1.38527.

(5.144)

So, by (5.140), (5.142) and (5.144) and Corollary 1.47, we have the following

estimate for P (E):

P (E) = 2
4∑
i=1

pEi ≥ 2
(
pE1+max

k>1
pEk+2 min

k>1
pEk
)
≥ 2k11+2k12+4k8 ≈ 11.3458.

This contradicts the minimality of E, since P (E) ≤ p̃ ≈ 11.1946.

Theorem 5.55. Let E ∈M∗2,4(1, 1, 1, 1), then IE is not (1, 0, 0, 0).

Proof. We proceed by contradiction and we suppose that IE = (1, 0, 0, 0),

then by Propositions 5.46, 5.49, 5.50, 5.51, 5.52, 5.53 and 5.54 we come a

contradiction, so the statement is true.

Theorem 5.56. Let E ∈ M∗2,4(1, 1, 1, 1). Then E is standard. In particular if

E ∈M2,4(1, 1, 1, 1), then E is standard.

Proof. The proof is immediate. Let E ∈ M∗2,4(1, 1, 1, 1); we suppose by

contradiction that E is not standard. Its possible connection types IE are

illustrated in Remark 5.12. By Theorems 5.15, 5.23, 5.39 and 5.55 we come

to contradict that E ∈M∗2,4(1, 1, 1, 1), thus E is standard.

By Remark Remark 5.2, we have that if E ∈ M2,4(1, 1, 1, 1), then E is

standard.
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Remark 5.57. E ∈ M∗2,4(1, 1, 1, 1) if and only if E ∈ M2,4(1, 1, 1, 1), indeed

if E ∈M∗2,4(1, 1, 1, 1), then E ∈M2,4(1, 1, 1, 1), by Corollary 5.16.

If E ∈ M2,4(1, 1, 1, 1), then E ∈ M∗2,4(1, 1, 1, 1) by Remark 1.8 and by

Corollary 5.16 (recall thatM∗2,4(1, 1, 1, 1) 6= ∅ by Corollary 1.13).

Remark 5.58. We explicitly note that the exterior regionE0 of E ∈M2,4(1, 1, 1, 1)

is connected by Proposition 1.49 and by Remark 5.57.

Now let us investigate the possible topologies of E ∈M2,4(1, 1, 1, 1).

Lemma 5.59. Let E ∈M2,4(1, 1, 1, 1), then a region Ei (i = 1, . . . , 4) has:

i) three edges if it is inner;

ii) at most four edges if it is external.

Proof. First of all, we know that any region Ei (i = 1, . . . , 4) of E has at

least three edges and it is connected by Corollary 1.35 and by Theorem 5.56

respectively. Since E is a minimum, by Proposition 1.33 and E is standard

(see Theorem 5.56), then, C has three edges and at most four edges if Ei is

inner and external respectively.

Lemma 5.60. Let E ∈M2,4(1, 1, 1, 1), then E has six vertices and nine edges.

Proof. Let v, e and c be the numbers of the vertices, of the edges and of the

connected components of E respectively, then, by the Euler’s formula, one

has that v−e+c = 2. Since E is a minimum, each vertex of E is is a meeting

point of exactly three edges (see Theorem 1.10), thus 3v = 2e (note that

each edge has two vertices). Furthermore, by Theorem 5.56 E is standard

(i.e each region is connected), therefore c = 5. Solving the following linear

system {
v − e = −3

3v = 2e,

we find the statement.

Lemma 5.61. Let E ∈M2,4(1, 1, 1, 1), then 3 ≤ v(E0) ≤ 4 and 3 ≤ e(E0) ≤ 4,

where v(E0) and e(E0) denote the number of the vertices which belong to E0 and

the number of the edges of E0 respectively.
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Proof. By Corollary 5.9 and Remark 5.57 we know that there is at most one

inner big component. Moreover, by Theorem 5.56, IE = (0, 0, 0, 0), so there

are at least three external bounded components. Since E is a minimum, by

Proposition 1.33, the result follows.

Theorem 5.62. Let E ∈ M2,4(1, 1, 1, 1), then the topology E is one of the two

topologies represented in Figure 5.54.

Figure 5.54: The possible topologies for E ∈M2,4(1, 1, 1, 1).

Proof. By Corollary 5.9, Theorem 5.56 and by Remark 5.57, there is at most

one inner connected region Ei, thus, we divide the proof in two parts: in

the first there is a inner connected regionEi and in the second all connected

regions are external.

Part I. There is a inner connected region Ei, therefore, by Lemma 5.59,

Ej has three internal vertices. Denoting by v(E) and v(E0) the number of

the vertices of E and of E0 respectively, since v(E) = 6 and v(E0) ≥ 3 (see

Lemma 5.60 and Lemma 5.43 respectively), there are other three external

vertices v1, v2 and v3 and there are no other internal vertices. So, we are in

the situation of Figure 5.55. Since an edge leaving the internal region can

not go to another vertex of the internal region, each internal vertex must be
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linked to one external vertex v1, v2 and v3. So, we obtain the topology A)

of Figure 5.54.

Figure 5.55: E has one inner connected region Ej , thus Ej has three edges. So,

since v(E) = 6 and v(E0) ≥ 3, there are only other three external vertices v1, v2

and v3. Since an edge leaving the internal region can not go to another vertex of

the internal region, each internal vertex must be linked to one external vertex v1,

v2 and v3.

Part II. Here all the connected regionsEi are external, therefore, v(E0) ≥
4. So, since v(E) = 6 and v(E0) ≤ 4, there are other two inner vertices v1

and v2. Furthermore e(E0) = 4 because, by Lemma 5.61 e(E0) ≤ 4 and,

since each connected region Ej is external, e(E0) ≥ 4.

First of all we say that v1 and v2 are linked, otherwise we would have at

least 3 + 3 = 6 internal edges (they are the leaving edges from the vertices

v1 and v2 respectively) and 4 external edges (they are the edges of E0). But

we know that the number of the edges of E is 9 by Lemma 5.60, thus, we

obtain a contraction.

So, we are in the situation of Figure 5.56 where, since the edges of E can

not intersect and up to rotate the edge which links the vertices v1 and v2,

we have only one way to link the inner vertices v1 and v2 with the external
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vertices. Therefore, we obtain the topology B) of Figure 5.54.

Figure 5.56: Each connected region Ej is external, then e(E0) = v(E0) = 4.

So, since v(E) = 6, there are another two inner vertices v1 and v2, which must

be connected. Since the edges of E can not be intersect and up to rotate the edge

which links the inner vertices v1 and v2, there is only one way to link the vertices

v1 and v2 with the external vertices.
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