Analisi Matematica B Soluzioni prova scritta parziale n. 2

Corso di laurea in Fisica, 2017-2018

9 febbraio 2018

1. Determinare il numero di soluzioni reali dell'equazione

$$x^4 = \ln(1 + x^3).$$

Svolgimento. Posto

$$f(x) = x^4 - \ln(1 + x^3)$$

la funzione f è definita per x > -1 e si ha

$$\lim_{x \to -1^+} f(x) = +\infty, \qquad \lim_{x \to +\infty} f(x) = +\infty.$$

Calcoliamo la derivata

$$f'(x) = 4x^3 - \frac{3x^2}{1+x^3} = \frac{x^2}{1+x^3} [4x^4 + 4x - 3].$$

Studiamo la funzione

$$g(x) = 4x^4 + 4x - 3.$$

Si ha

$$\lim_{x \to -1} g(x) = g(-1) = -3, \qquad \lim_{x \to +\infty} g(x) = +\infty.$$

La derivata è

$$g'(x) = 16x^3 + 4$$

ed è quindi positiva per $x > -1/\sqrt[3]{4}$. Essendo g(-1) = -3 < 0 si ha che g(x) è negativa per $x \le -1/\sqrt[3]{4}$. Per $x > -1/\sqrt[3]{4}$ la funzione g(x) è strettamente crescente e tende a $+\infty$ per $x \to +\infty$. Dunque esiste un unico punto x_1 tale che $g(x_1) = 0$. Visto che g(0) = -3 e g(1) > 0 si ha inoltre $0 < x_1 < 1$. Dunque abbiamo scoperto che g(x) > 0 se e solo se $x > x_1$. Ma f'(x) ha lo stesso segno di g, dunque f'(x) > 0 se e solo se $x > x_1$. La funzione f(x) ha quindi un punto di minimo in x_1 ma essendo f(0) = 0 e $x_1 > 0$ si deve necessariamente avere $f(x_1) < 0$. Per $x < x_1$ la funzione f è strettamente decrescente ed ha quindi un unico zero (visto che $f(x) \to +\infty$

per $x \to -1^+$) che però abbiamo già identificato: f(0) = 0. Per $x \to +\infty$ si ha $f(x) \to +\infty$ e per $x > x_1$ la funzione f è strettamente crescente. Dunque esiste un unico $x_2 > x_1 > 0$ tale che $f(x_2) = 0$. Nel complesso la funzione f ha due zeri $x_0 = 0$ e $x_2 > 0$ e quindi l'equazione data ha due soluzioni reali.

2. Si consideri la funzione $f: \mathbb{R} \to \mathbb{R}$ definita da

$$f(x) = \sqrt[3]{\sin(x^3)}.$$

- (a) In quali punti la funzione f è continua?
- (b) In quali punti f è derivabile?
- (c) f è lipschitziana?
- (d) f è uniformemente continua?

Dimostrazione. Svolgimento. La funzione f è continua su tutto \mathbb{R} in quanto composizione di funzioni elementari continue.

Le funzioni elementari che compongono f sono anche derivabili tranne che per quanto riguarda la radice cubica che non è derivabile quando il suo argomento è nullo. Dunque per ogni $x \in \mathbb{R}$ tale che sin $x^3 \neq 0$ si ha che f è derivabile nel punto x e in tali punti la derivata si calcola tramite la formula della derivata della funzione composta:

$$f'(x) = \frac{\cos(x^3)3x^2}{3\sqrt[3]{\sin^2(x^3)}}.$$

Rimane il dubbio sui punti del tipo $x_k = \sqrt[3]{k\pi}$ con $k \in \mathbb{Z}$. Osserviamo però che per $x \to x_k$ si ha $\sqrt[3]{\sin^2 x^3} \to 0$ e $3x^2 \cos(x^3) \to \pm 3x_k^2$ e dunque se $k \neq 0$ si ha $|f'(x)| \to +\infty$. Dunque in tali punti la funzione f non può essere derivabile in quanto applicando De l'Hospital osserviamo che il limite del rapporto incrementale tende a $+\infty$, come il limite della derivata.

Per k=0 si ha $x_0=0$. Calcoliamo il limite del rapporto incrementale:

$$\lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{\sqrt[3]{\sin h^3}}{h} = \lim_{h \to 0} \sqrt[3]{\frac{\sin h^3}{h^3}} = 1.$$

Dunque f'(0) = 1 ed f è derivabile in x = 0. Risulta quindi che f è derivabile in tutti i punti di \mathbb{R} tranne che nei punti $x_k = \sqrt[3]{k\pi}$ con $k \in \mathbb{Z}$, $k \neq 0$.

Abbiamo osservato che $f'(x) \to +\infty$ se $x \to x_1 = \sqrt[3]{\pi}$. Dunque f non può essere lipschitziana perché se lo fosse la derivata dovrebbe essere limitata dalla costante di lipschitz, nei punti in cui la funzione è derivabile.

Mostriamo che f non è neanche uniformemente continua. Per fare ciò è sufficiente trovare due successioni y_k e z_k tali che $|y_k - z_k| \to 0$ ma $|f(y_k) - f(z_k)| \to \ell \neq 0$. Prendiamo le seguenti successioni:

$$y_k = x_{2k} = \sqrt[3]{2k\pi}, \qquad z_k = \sqrt[3]{(2k+1/2)\pi}.$$

Le successioni sono state scelte in modo che si abbia $f(y_k) = 0$ e $f(z_k) = 1$ cosicché è verificato che $|f(y_k) - f(z_k)| \to 1 \neq 0$. La dimostrazione si conclude dimostrando che per $k \to +\infty$ si ha

$$|y_k - z_k| = z_k - y_k = \sqrt[3]{2k\pi + \frac{\pi}{2}} - \sqrt[3]{2k\pi}$$

$$= \sqrt[3]{2k\pi} \left[\left(1 + \frac{1}{4k} \right)^{\frac{1}{3}} - 1 \right]$$

$$= \sqrt[3]{2k\pi} \left[1 + \frac{1}{3} \cdot \frac{1}{4k} + o(1/k) - 1 \right]$$

$$= \sqrt[3]{\frac{2\pi}{k^2}} \left[\frac{1}{12} + o(1) \right] \to 0.$$

3. Calcolare

$$\lim_{x \to 0} \frac{\sin \ln(1+2x) - e^{2x} + \cos x + \sin\left(\frac{9}{2}x^2 + x^4\right)}{x(\operatorname{tg} x - x)}.$$

Svolgimento. Si ha

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + o(x^4)$$

$$\sin x = x - \frac{x^3}{6} + o(x^4)$$

$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + o(x^4)$$

$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4)$$

$$\operatorname{tg} x = x + \frac{x^3}{3} + o(x^4).$$

Dunque

$$\ln(1+2x) = 2x - 2x^2 + \frac{8}{3}x^3 - 4x^4 + o(x^4)$$

$$\sin(\ln 1 + 2x) = 2x - 2x^2 + \frac{8}{3}x^3 - 4x^4 + o(x^4) - \frac{1}{6}(2x - 2x^2 + o(x^2))^3$$

$$= 2x - 2x^2 + \frac{8}{3}x^3 - 4x^4 - \frac{1}{6}(8x^3 - 24x^4) + o(x^4)$$

$$= 2x - 2x^2 + \frac{8}{3}x^3 - 4x^4 - \frac{4}{3}x^3 + 4x^4 + o(x^4)$$

$$= 2x - 2x^2 + \frac{4}{3}x^3 + o(x^4)$$

$$= 2x - 2x^2 + \frac{4}{3}x^3 + o(x^4)$$

$$e^{2x} = 1 + 2x + 2x^2 + \frac{4}{3}x^3 + \frac{2}{3}x^4 + o(x^4)$$

$$\sin(\frac{9}{2}x^2 + x^4) = \frac{9}{2}x^2 + x^4 + o(x^4).$$

In conclusione la funzione di cui vogliamo trovare il limite si sviluppa come

$$f(x) = \frac{2x - 2x^2 + \frac{4}{3}x^3 - 1 - 2x - 2x^2 - \frac{4}{3}x^3 - \frac{2}{3}x^4}{\frac{x^4}{5} + o(x^4)} + \frac{1 - \frac{x^2}{2} + \frac{x^4}{24} + \frac{9}{2}x^2 + x^4 + o(x^4)}{\frac{x^4}{5} + o(x^4)}$$
$$= \frac{3}{24} \cdot \frac{-16x^4 + x^4 + 24x^4}{x^4} \to \frac{9}{8}.$$

4. Si consideri la successione per ricorrenza definita da

$$\begin{cases} a_0 = \alpha \\ a_{n+1} = (a_n - 1)^2. \end{cases}$$

- (a) Determinare il limite di a_n nel caso $\alpha = 3$;
- (b) determinare il limite di a_n nel caso $\alpha = -1$;
- (c) mostrare che per $\alpha = -1/2$ la successione a_n è limitata ma non è convergente.

Svolgimento. La ricorrenza è del tipo $a_{n+1} = f(a_n)$ con

$$f(x) = (x-1)^2.$$

Determiniamo i punti fissi di f ovvero le soluzioni di f(x) = x:

$$x = (x - 1)^{2} = x^{2} - 2x + 1$$

$$0 = x^{2} - 3x + 1$$

$$x_{1} = \frac{3 - \sqrt{5}}{2}$$

$$x_{2} = \frac{3 + \sqrt{5}}{2}$$

L'intervallo $I = [x_2, +\infty)$ è invariante in quanto $f(x) \ge x$ su I quindi se $x \ge x_2$ si ha $f(x) \ge x \ge x_2$.

Se $\alpha = 3 > x_2$ risulta quindi $a_n \in I$ per ogni $n \in \mathbb{N}$. Essendo $f(x) \ge x$ su I si ha quindi che a_n è crescente e dunque ammette limite: $a_n \to \ell \in [x_2, +\infty]$. Se fosse $\ell < +\infty$ si avrebbe, per continuità di f, $f(\ell) = \ell$ e quindi $\ell = x_2$. Ma questo è impossibile perché $\ell \ge a_0 = \alpha > x_2$. Dunque in questo caso $a_n \to +\infty$.

Se $\alpha = -1$, $a_0 = -1$, $a_1 = (-1 - 1)^2 = 4 > x_2$ e quindi, analogamente al caso precedente, $a_n \in I$ per ogni n > 0. Anche in questo caso si ha dunque $a_n \to +\infty$ con lo stesso ragionamento di prima.

Se $\alpha = -1/2$ allora $a_0 = -1/2$, $a_1 = (-1/2 - 1)^2 = 9/4$, $a_2 = (9/4 - 2)^2 = 25/16$, $a_4 = (25/16 - 1)^2 = (9/16)^2$. L'intervallo J = [0, 1] è invariante in quanto se $x \in [0, 1]$ allora $1 - x \in [0, 1]$ e dunque $f(x) = (1 - x)^2 \in [0, 1]$. Visto che $a_3 \in J$ dovrà quindi essere $a_n \in J$ per ogni $n \geq 3$. Significa in particolare che la successione a_n è limitata. Se la successione avesse limite allora il limite dovrebbe essere un punto fisso di f in J e quindi l'unica possibilità sarebbe che $a_n \to x_1$. Osserviamo però che $|f'(x_1)| = |2(x_1 - 1)| = \sqrt{5} - 2 < 1$ e dunque il punto fisso x_1 è repulsivo, l'unica possibilità affinche $a_n \to x_1$ è che sia $a_n = x_1$ da un certo n in poi. Ma è facile dimostrare che $a_n \in \mathbb{Q}$ in quanto $\alpha \in \mathbb{Q}$ e f è una funzione razionale. Ma $x_1 \notin \mathbb{Q}$ e dunque si ha l'assurdo. Non è possibile che a_n converga. \square