Prova N.3: risposte Matematica e Statistica 2016

Viticoltura ed Enologia

Α

5 giugno 2017

risposte: C

1	7																		VARIANTE: 1
	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
	С	В	В	В	D	С	A	В	A	D	В	С	D	В	A	D	D	A	

Ricordiamo che se Z ha distribuzione normale standard, si ha P(Z > 1.00) = 16%, P(Z > 1.28) = 10%, P(Z > 1.64) = 5%, P(Z > 2.00) = 2.3%, P(Z > 2.33) = 1%, P(Z > 2.58) = 0.5%, P(Z > 3.00) = 0.1%.

- 1. Calcolare $\frac{\ln 100}{\ln 10}$. (A) 1/2 (B) 3 (C) 2 (D) -1
- **2.** Quante soluzioni reali ha l'equazione $2 \arctan x = \pi$. (A) 0 (B) infinite (C) 1 (D) 2
- 3. Quale delle seguenti proposizioni è vera?
- (A) per ogni $x \in \mathbb{R}$ esiste $n \in \mathbb{N}$ tale che $n 10 < x^3$
- (B) per ogni $n \in \mathbb{N}$ esiste $x \in \mathbb{R}$ tale che $x^2 < n 10$
- (C) per ogni $x \in \mathbb{R}$ esiste $n \in \mathbb{N}$ tale che $n 10 \ge x^2$
- (D) per ogni $x \in \mathbb{R}$ esiste $n \in \mathbb{N}$ tale che $n + 10 = x^3$
- **4.** Quanti elementi ha l'insieme $\mathbb{Z} \cap [\pi, 2\pi]$? **(A)** infiniti **(B)** 3 **(C)** 4 **(D)** 5
- **5.** Calcolare $\int_{-\pi}^{\pi} \sin^3 x \, dx$. **(A)** $\sqrt{\pi}$ **(B)** 0 **(C)** π **(D)** 2π
- **6.** Sia $f(x) = x^{\pi}$. Calcolare $f'(\pi)$. (A) $\ln \pi \cdot \pi^{\pi}$ (B) π^{π} (C) $\pi^{\pi-1}$ (D) $\pi^{\pi+1}$
- 7. La variabile aleatoria X ha una distribuzione normale di di media $\mu_X=0$ e varianza $\sigma_X^2=1/4$. Calcolare $P(X^2\leq 1)$. (A) 99.2% (B) 90.5% (C) 85.4% (D) 95.4%
- 8. Calcolare $\int_{1}^{e} \frac{x^{2} + 1}{x} dx$ (A) $\frac{\ln e}{e}$ (B) $2 - \frac{1}{e}$ (C) $\frac{1+e^{2}}{2}$ (D) $\frac{1}{2} \ln(1 + e^{2})$
- $\mathbf{9.}$ Una moneta viene lanciata 5 volte. Qual è la probabilità che esca testa 2 volte?
- (A) $\frac{5}{16}$ (B) $\frac{5}{32}$ (C) $\frac{3}{16}$ (D) $\frac{7}{32}$
- 10. Viene lanciata una coppia di dadi. Quale dei seguenti eventi è il più probabile?
- (A) dadi doppi (B) somma pari (C) entrambi dispari
- (D) somma uguale a 4

11. Determinare il valore minimo assunto dalla funzione

$$f(x) = 3x^4 - 4x^3 + 2$$

- (A) 1 (B) 3 (C) 0 (D) 2
- **12.** L'equazione $4x^3 + 6x^2 + 12x + 1 = 0$ ha una soluzione nell'intervallo
- (A) [0,1] (B) [1,2] (C) [-2,-1] (D) [-1,0]
- 13. Quale delle seguenti serie è convergente?

(A)
$$\sum_{k=0}^{\infty} \frac{k}{1+k^2}$$
 (B) $\sum_{k=0}^{\infty} \frac{1}{(k+1)^2}$ (C) $\sum_{k=0}^{\infty} 2^k$ (D) $\sum_{k=0}^{\infty} \frac{1}{k+7}$

- **14.** Calcolare $\lim_{x \to +\infty} \frac{1 + \ln x}{\ln(1 + x^2)}$.
- **(A)** 1 **(B)** 0 **(C)** $\frac{1}{2}$ **(D)** $+\infty$
- **15.** Siano X e Y variabili normali indipendenti di media $\mu_X = \mu_Y = 2$ e varianza $\sigma_X^2 = \sigma_Y^2 = 3$. Calcolare la varianza di (X Y)/2.
- **(A)** $3\sqrt{2}$ **(B)** 3 **(C)** 2 **(D)** $\frac{3}{2}$
- **16.** La funzione f(x) ha derivata $f'(x) = 3x^2 + 2$. Calcolare f(2) f(1).
- (A) 5 (B) 9 (C) 4 (D) 10
- 17. Sia X una variabile aleatoria discreta con distribuzione di Poisson. Sapendo che P(X=0)=1/2 calcolare la deviazione standard σ_X .
- (A) $\ln 2$ (B) $2 \ln 2$ (C) 2 (D) 1/e
- 18. Una macchina per imbottigliare dovrebbe inserire in ogni bottiglia una quantità di liquido X con media $\mu_X=750cc$ e variazione standard $\sigma_X=4cc$. Da un test fatto su 100 bottiglie risulta invece una quantità media m=752cc. L'ipotesi che la macchina sia difettosa è statisticamente
- (A) significativa (1%) (B) molto significativa (0.1% <math>) (C) non significativa (<math>p > 5%)
- (**D**) altamente significativa (p < 0.1%)
- **19.** Calcolare $\lim_{h\to 0} \int_{-h}^{2h} \frac{\ln(1+e^x)}{h} dx$.
- (A) $5 \ln 2$ (B) $\ln 2$ (C) $2 \ln 2$ (D) $3 \ln 2$
- **20.** Sia f(x) una funzione tale che $f'(x) = f^2(x)$ e f(1) = 1. Quanto vale f(0)?
- **(A)** 1/2 **(B)** 2/e **(C)** $\sqrt{2}$ **(D)** $\ln 2$

Prova N.3: risposte

Matematica e Statistica 2016

Viticoltura ed Enologia

5 giugno 2017

00	,		•																	
		2	-		-	-		-	-	-			-		-	-		_	-	-
risposte:	В	C	С	С	C	D	С	A	C	D	A	D	A	D	A	A	С	D	-	_

Ricordiamo che se Z ha distribuzione normale standard, si ha P(Z > 1.00) = 16%, P(Z > 1.28) = 10%, P(Z > 1.64) = 5%, P(Z > 2.00) = 2.3%, P(Z > 2.33) = 1%, P(Z > 2.58) = 0.5%, P(Z > 3.00) = 0.1%.

- 1. Calcolare $\frac{\ln 27}{\ln 3}$. (A) 1/2 (B) $\frac{1}{3}$ (C) -1 (D) 2
- **2.** Quante soluzioni reali ha l'equazione $2\sqrt{2} x = 0$.
- (A) 2 (B) 0 (C) 1 (D) infinite
- 3. Quale delle seguenti proposizioni è vera?
- (A) per ogni $x \in \mathbb{R}$ esiste $n \in \mathbb{N}$ tale che $n+10=x^3$
- **(B)** per ogni $n \in \mathbb{N}$ esiste $x \in \mathbb{R}$ tale che $x^2 + 10 < n$
- (C) per ogni $x \in \mathbb{R}$ esiste $n \in \mathbb{N}$ tale che $n \geq 10 + x^2$
- (D) per ogni $x \in \mathbb{R}$ esiste $n \in \mathbb{N}$ tale che $n < 10 + x^3$
- **4.** Quanti elementi ha l'insieme $\mathbb{Z} \cap [-e, e]$?
- (A) 4 (B) 3 (C) 5 (D) infiniti
- **5.** Calcolare $\int_{0}^{\pi} \sin^2 x \, dx$.
- (A) $\sqrt{\pi}$ (B) 0 (C) π (D) 2π
- **6.** Sia $f(x) = \pi^x$. Calcolare $f'(\pi)$. (A) $\pi^{\pi-1}$ (B) $\pi^{\pi+1}$ (C) π^{π} (D) $\ln \pi \cdot \pi^{\pi}$
- 7. La variabile aleatoria X ha una distribuzione normale di di media $\mu_X = 0$ e varianza $\sigma_X^2 = 1/9$. Calcolare $P(X^2 \le 1)$. (A) 90.5% (B) 85.4% (C) 99.8% (D) 95.4%
- **8.** Calcolare $\int_1^e \frac{x+1}{x^2} dx$ (A) $2 - \frac{1}{e}$ (B) $\frac{1+e^2}{2}$ (C) $\frac{\ln e}{e}$ (D) $\frac{1}{2} \ln(1+e^2)$
- 9. Una moneta viene lanciata 5 volte. Qual è la probabilità
- che esca testa 3 volte? (A) $\frac{5}{32}$ (B) $\frac{3}{16}$ (C) $\frac{5}{16}$ (D) $\frac{7}{32}$
- 10. Viene lanciata una coppia di dadi. Quale dei seguenti eventi è il meno probabile?
- (A) entrambi dispari (B) somma pari (C) dadi doppi
- (D) somma uguale a 4

11. Determinare il valore massimo assunto dalla funzione

VARIANTE: 2

$$f(x) = 4x^3 - 3x^4 + 2$$

- (A) 3 (B) 0 (C) 1 (D) 2
- **12.** L'equazione $4x^3 + 6x^2 + 12x + 3 = 0$ ha una soluzione nell'intervallo
- (A) [-2,-1] (B) [0,1] (C) [1,2] (D) [-1,0]
- 13. Quale delle seguenti serie è convergente?

(A)
$$\sum_{k=0}^{\infty} \frac{1}{1+k^2}$$
 (B) $\sum_{k=0}^{\infty} 3^k$ (C) $\sum_{k=0}^{\infty} \frac{1}{5+k}$ (D) $\sum_{k=0}^{\infty} \frac{k}{k^2-2}$

- **14.** Calcolare $\lim_{x \to +\infty} \frac{x + \ln x}{\ln(x^2 + 1)}$
- **(A)** 1 **(B)** 0 **(C)** $\frac{1}{2}$ **(D)** $+\infty$
- ${f 15.}$ Siano X e Y variabili normali indipendenti di media $\mu_X = \mu_Y = 3$ e varianza $\sigma_X^2 = \sigma_Y^2 = 2$. Calcolare la varianza di (X - Y)/2.
- **(A)** 1 **(B)** 2 **(C)** 3 **(D)** $2\sqrt{2}$
- **16.** La funzione f(x) ha derivata $f'(x) = 3x^2 2$. Calcolare f(2) - f(1).
- (A) 5 (B) 4 (C) 10 (D) 9
- 17. Sia X una variabile aleatoria discreta con distribuzione di Poisson. Sapendo che $P(X=1)=2/e^2$ calcolare la deviazione standard σ_X .
- (A) $\ln 2$ (B) 1/e (C) 2 (D) $2 \ln 2$
- 18. Una macchina per imbottigliare dovrebbe inserire in ogni bottiglia una quantità di liquido X con media $\mu_X=750cc$ e variazione standard $\sigma_X = 4cc$. Da un test fatto su 100 bottiglie risulta invece una quantità media m = 751.2cc. L'ipotesi che la macchina sia difettosa è statisticamente
- (A) non significativa (p > 5%) (B) significativa (1%5%) (C) altamente significativa (p < 0.1%)
- (D) molto significativa (0.1%
- 19. -
- 20. -

Prova N.3: risposte

Matematica e Statistica 2016

Viticoltura ed Enologia

5 giugno 2017

0 (,																				
	1																				
risposte	: C	A	A	A	-	-	-	D	В	ı	В	В	-	D	C	D	-	С	-	-	ì

Ricordiamo che se Z ha distribuzione normale standard, si ha $P(Z>1.00)=16\%,\ P(Z>1.28)=10\%,\ P(Z>1.64)=5\%,\ P(Z>2.00)=2.3\%,\ P(Z>2.33)=1\%,\ P(Z>2.58)=0.5\%,\ P(Z>3.00)=0.1\%.$

- 1. Calcolare $\frac{\ln 3}{\ln 9}$. (A) -1 (B) 2 (C) 1/2 (D) 3
- **2.** Quante soluzioni reali ha l'equazione |x-1|=1. (A) 2 (B) infinite (C) 1 (D) 0
- 3. Quale delle seguenti proposizioni è vera?
- (A) per ogni $x \in \mathbb{R}$ esiste $n \in \mathbb{N}$ tale che $10 + x^2 \le n$
- (B) per ogni $x \in \mathbb{R}$ esiste $n \in \mathbb{N}$ tale che $x^3 = n + 10$
- (C) per ogni $x \in \mathbb{R}$ esiste $n \in \mathbb{N}$ tale che $10 + x^3 > n$
- (D) per ogni $n \in \mathbb{N}$ esiste $x \in \mathbb{R}$ tale che $n > x^2 + 10$
- **4.** Quanti elementi ha l'insieme $(\mathbb{N} \cup \{0\}) \setminus [\pi, +\infty)$? **(A)** 4 **(B)** infiniti **(C)** 3 **(D)** 5
- _____
- 6.-
- **7.** —
- 8. Calcolare $\int_0^e \frac{x}{1+x^2} dx$ (A) $\frac{\ln e}{e}$ (B) $\frac{1+e^2}{2}$ (C) $2-\frac{1}{e}$ (D) $\frac{1}{2} \ln(1+e^2)$
- ${f 9.}\,$ Una moneta viene lanciata 6 volte. Qual è la probabilità che esca testa 3 volte?
- (A) $\frac{3}{16}$ (B) $\frac{5}{16}$ (C) $\frac{5}{32}$ (D) $\frac{7}{32}$
- 10. -

5. -

11. Determinare il valore minimo assunto dalla funzione

$$f(x) = 3x^4 + 4x^3 + 2$$

VARIANTE: 3

- (A) 3 (B) 1 (C) 2 (D) 0
- 12. L'equazione $4x^3 + 6x^2 + 12x + 5 = 0$ ha una soluzione nell'intervallo
- (A) [0,1] (B) [-1,0] (C) [-2,-1] (D) [1,2]
- 13. -
- **14.** Calcolare $\lim_{x \to +\infty} \frac{1 + \ln x}{\ln^2(1+x)}$.
- **(A)** 1 **(B)** $\frac{1}{2}$ **(C)** $+\infty$ **(D)** 0
- **15.** Siano X e Y variabili normali indipendenti di media $\mu_X = \mu_Y = 2$ e varianza $\sigma_X^2 = \sigma_Y^2 = 1$. Calcolare la varianza di (Y X)/2.
- **(A)** 2 **(B)** $3\sqrt{2}$ **(C)** $\frac{1}{2}$ **(D)** 3
- **16.** La funzione f(x) ha derivata $f'(x) = 3x^2 2$. Calcolare f(2) f(0).
- (A) 10 (B) 9 (C) 5 (D) 4
- 17. -
- 18. Una macchina per imbottigliare dovrebbe inserire in ogni bottiglia una quantità di liquido X con media $\mu_X=750cc$ e variazione standard $\sigma_X=4cc$. Da un test fatto su 100 bottiglie risulta invece una quantità media m=751cc. L'ipotesi che la macchina sia difettosa è statisticamente
- (A) non significativa (p>5%) (B) molto significativa $(0.1\%< p\le 1\%)$ (C) significativa $(1\%< p\le 5\%)$
- (D) altamente significativa (p < 0.1%)
- 19. -
- 20. -

Prova N.3: risposte Matematica e Statistica 2016 Viticoltura ed Enologia 5 giugno 2017

VARIANTE: 4

					-	_	9			12		14	15	10	т.		19	20
risposte: D A	A –	_	-	-	-	-	-	-	D	С	-	_	С	-	1	В	-	-

Ricordiamo che se Z ha distribuzione normale standard, si ha P(Z > 1.00) = 16%, P(Z > 1.28) = 10%, P(Z > 1.64) = 5%, P(Z > 2.00) = 2.3%, P(Z > 2.33) = 1%, P(Z > 2.58) = 0.5%, P(Z > 3.00) = 0.1%.

11. Determinare il valore massimo assunto dalla funzione

1. Calcolare $\frac{\ln 64}{\ln 4}$. (A) -1 (B) 1/2 (C) 2 (D) 3

(A) 2 (B) 1 (C) 0 (D) 3

2. Quante soluzioni reali ha l'equazione $1 - \operatorname{tg} x = 0$.

(A) infinite (B) 1 (C) 0 (D) 2

3. –

4.-

 $\mathbf{5.}-$

 $\mathbf{6.}-$

8. —

9. -

10.-

12. L'equazione $4x^3 + 6x^2 + 12x + 7 = 0$ ha una soluzione nell'intervallo

 $f(x) = 2 - 3x^4 - 4x^3$

(A) [-2, -1] (B) [0, 1] (C) [-1, 0] (D) [1, 2]

13. -

14. -

15. Siano X e Y variabili normali indipendenti di media $\mu_X = \mu_Y = 1$ e varianza $\sigma_X^2 = \sigma_Y^2 = 2$. Calcolare la varianza di (Y - X)/2.

(A) $2\sqrt{2}$ (B) 2 (C) 1 (D) 3

16. -

17. -

18. Una macchina per imbottigliare dovrebbe inserire in ogni bottiglia una quantità di liquido X con media $\mu_X=750cc$ e variazione standard $\sigma_X=4cc$. Da un test fatto su 100 bottiglie risulta invece una quantità media m=750.7cc. L'ipotesi che la macchina sia difettosa è statisticamente

(A) significativa (1% < $p \le 5\%$) (B) non significativa (p > 5%) (C) altamente significativa (p < 0.1%)

(D) molto significativa (0.1%

19. -

20. -