Argomenti svolti durante le esercitazioni

Analisi III modulo

a.a. 2003-2004

_[1.10.2003]

Una successione f_k converge uniformemente a f sull'intervallo I se vale

$$\lim_{k \to \infty} \sup_{x \in I} |f_k(x) - f(x)| = 0.$$

Studio della convergenza puntuale e uniforme delle successioni di funzioni x^k , $\arctan(kx)$, $\arctan(x/k)$.

[8.10.2003]

Se $f_k \to f$ e $g_k \to g$ uniformemente, allora, $f_k + g_k \to f + g$ uniformemente.

Studio della convergenza puntuale e uniforme delle successioni di funzioni

$$\frac{kx}{1+k^2k^2}$$
, $\frac{\sin x}{ke^x} + \frac{k}{1+(x-k)^2}$.

Studio della convergenza della serie di funzioni

$$f(x) = \sum_{k=0}^{\infty} \frac{\sin(kx)}{2^k}$$

mostrando in particolare che f è di classe \mathcal{C}^{∞} .

[15.10.2003]

Verifica della convergenza (scambio del limite con la derivata)

$$\sum_{k=1}^{\infty} kx^k = \frac{x}{(1-x)^2}.$$

Verifica dei seguenti limiti (scambio del limite con l'integrale)

$$\lim_{k \to \infty} \int_0^1 \sin^k x \, dx = 1, \quad \lim_{k \to \infty} \int_0^1 \sqrt[k]{\sin x} \, dx = 1.$$

Studio della convergenza puntuale e uniforme delle serie (tratte da Cecconi-Piccinini-Stampacchia)

$$\sum_{n=0}^{\infty}\frac{1}{n}\left(\frac{x+1}{x^2+1}\right)^n,\quad \sum_{n=0}^{\infty}\frac{1}{n^2}\left(\frac{1+\sqrt{x}}{x-2}\right)^n.$$

 $_[22.10.2003]$

La funzione p(x,y)=xy è continua in \mathbb{R}^2 (e anche s(x,y)=x+y lo è).

Se $|f(x)-y_0| \leq g(|x-x_0|)$ $(x,x_0 \in \mathbb{R}^n)$ e se $g(\rho) \to 0$ per $\rho \to 0^+$ $(\rho \in \mathbb{R})$ allora $f(x) \to y_0$ per $x \to x_0$.

Se $f(x) \to y_0$ per $x \to x_0$ $(x, x_0 \in \mathbb{R}^n)$ e se $x_k \to x_0$ allora $f(x_k) \to y_0$ per $k \to \infty$.

Verifica del seguente limite

$$\lim_{(x,y)\to(0,0)} \frac{\sqrt{x^6 + y^8}}{x^2 + y^2} = 0.$$

Verifica che il seguente limite non esiste:

$$\lim_{(x,y)\to(0,0)} \frac{|x|+|y|}{\sqrt{x^2+y^2}}.$$

Studio dei seguenti limiti (per casa)

$$\lim_{(x,y)\to(0,0)} \frac{x^3 + xy^2 + y^3}{x^2 + y^2}, \quad \lim_{(x,y)\to(0,0)} \frac{x^2 + \sqrt{|x|}y + xy}{|x| + 2|y|},$$

$$\lim_{(x,y)\to(0,0)}\frac{x^6+2xy}{x^2+y^2},\quad \lim_{(x,y)\to(0,0)}\frac{x^2+\sqrt{|x|}y+xy}{|x|+y^2}$$

(i primi due limiti valgono zero, i secondi due non esistono).

_[29.10.2003]

Esercizi sui limiti:

$$\lim_{(x,y)\to(0,0)}\frac{x\sqrt{|y|}}{|x|+|y|}=0,\quad \lim_{(x,y)\to(0,0)}\frac{x^{12}}{x+y} \text{ non esiste}.$$

Posto

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{se } |y| \le x^2\\ \frac{x^2}{x^2 + y^2} & \text{se } |y| > x^2 \end{cases}$$

verificare che $\lim_{(x,y)\to(0,0)} f(x,y) = 0$. Verificare che (attenzione al dominio di definizione)

$$\lim_{(x,y)\to(0,0)} \frac{\sqrt{y^2 - |x|}}{\sqrt{|y|}} = 0.$$

Studio della continuità della derivabilità e della differenziabilità nel punto (0,0), al variare del parametro $\alpha > 0$ della seguente funzione (Pagani-Salsa):

$$f(x,y) = \begin{cases} \frac{|y|^{\alpha} \cos x}{\sqrt{x^2 + y^2}} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

e anche la seguente (per casa)

$$f(x,y,z) = \begin{cases} \frac{z^4(x^2+y^2)^{\alpha}}{x^2+y^2+z^2} & \text{se } (x,y,z) \neq (0,0,0) \\ 0 & \text{se } (x,y,z) = (0,0,0). \end{cases}$$

[5.11.2003]

Calcolare derivate prime e seconde della funzione $f(x,y) = xe^{2y}$. Calcolare le derivate seconde miste della funzione

$$f(x,y) = \begin{cases} \frac{x^4 - x^2 y^2}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

e verificare che le derivate seconde non sono continue in (0,0).

Calcolare tutte le derivate direzionali nel punto (0,0) della funzione

$$f(x,y) = \begin{cases} y \sin(2 \arctan \frac{y}{x}) & \text{se } x \neq 0) \\ 0 & \text{se } x = 0 \end{cases}$$

verificando che la funzione non è differenziabile in tale punto. Per casa: mostrare che la funzione f è continua su tutto \mathbb{R}^2 .

Calcolare le derivate direzionali (quando esistono) nel punto (0,0,0) della funzione

$$f(x,y,z) = \begin{cases} z^4 \frac{(x^2 + y^2)^{\alpha}}{x^2 + y^2 + z^2} & \text{se } (x,y,z) \neq (0,0,0) \\ 0 & \text{se } (x,y,z) = (0,0,0) \end{cases}$$

Mostrare che per ogni $\alpha<0$ non esiste il limite

$$\lim_{(x,y,z)\to(0,0,0)} \frac{z^4(x^2+y^2)^{\alpha}}{x^2+y^2+z^2}.$$

Data la funzione $f\colon \mathbb{R}^2 \to \mathbb{R}$ definita da

$$f(x,y) = \begin{cases} \frac{\sin(xy)}{y} & \text{se } y \neq 0\\ x & \text{se } y = 0 \end{cases}$$

dimostrare che f è continua e dire in quali punti è derivabile e in quali punti è differenziabile.

Mostrare che

$$\lim_{(x,y)\to(0,0)}\frac{x^4+y^2}{x^2+|y|}=0.$$

Posto

$$f(x,y) = \frac{x^2y}{x^4 + y^2}$$

verificare che per ogni \boldsymbol{m} si ha

$$\lim_{t \to 0} f(t, mt) = 0$$

ma f(x,y) non ammette limite per $(x,y) \to (0,0)$.

Posto

$$f(x,y) = \frac{y}{e^{-\frac{1}{x^2}} + e^{\frac{1}{x^2}}y^2}$$

verificare che per ogni m e n si ha

$$\lim_{t \to 0} f(t, mt^n) = 0$$

e nonostante questo f(x,y) non ammette limite per $(x,y) \to (0,0)$.

Panoramica su: gradiente, curve di livello, punti critici, matrice hessiana.

Videoproiezione di alcuni grafici di funzioni in due variabili.

__[26.11.2003]

Il teorema di Weierstraß, condizione necessaria verificata dai massimi e minimi relativi.

Trovare massimi e minimi assoluti della funzione f(x,y)=x+y sul dominio $D=\{(x,y)\in\mathbb{R}^2\colon x^2+y^2\leq 1\}.$

Trovare massimi e minimi assoluti della funzione $f(x,y)=2x^2y-x-y$ sul dominio $D=[0,1]\times [0,1].$

[3.12.2003]

Trovare massimi e minimi relativi della funzione $f(x,y)=2x^2y-x-y$ sul dominio $D=[0,1]\times[0,1].$

Determinare i punti critici della funzione $f(x,y)=(x+y)e^{-x^2y}$ e dire se sono massimi o minimi relativi.

[10.12.2003]

Determinare il carattere dei punti critici delle seguenti funzioni:

$$f(x,y) = x^2 + 2xy^3,$$

$$f(x,y) = 2y^4 - 2xy^3 + 5x^2.$$

Trovare tutte le soluzioni dell'equazione differenziale

$$y'(x) = \frac{y(x)}{x} + 1.$$

Soluzione generale dell'equazione lineare omogenea di ordine 2 a coefficienti costanti.