Integrali di funzioni discontinue

28 marzo 2003

Ricordiamo i seguenti risultati:

Teorema 1 Sia $f:[a,b] \to \mathbb{R}$ una funzione limitata e integrabile. Posto

$$F(x) = \int_{a}^{x} f(t) dt$$

allora risulta F'(x) = f(x) per ogni punto x in cui f è continua.

Teorema 2 Sia $f:[a,b] \to \mathbb{R}$ una funzione limitata. Se per ogni $\varepsilon > 0$ la funzione f ristretta all'intervallo $[a+\varepsilon,b-\varepsilon]$ è integrabile, allora la funzione f è integrabile su tutto [a,b].

Teorema 3 Sia $f:[a,b] \to \mathbb{R}$ una funzione limitata con un numero finito di punti di discontinuità. Allora f è integrabile.

Esercizi.

1. Data $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} 1 & \text{se } x \in \mathbb{Z} \\ 0 & \text{altrimenti} \end{cases}$$

mostrare che la funzione integrale

$$F(x) = \int_0^x f(t) \, dt$$

è ben definita per ogni $x \in \mathbb{R}$. Calcolare F(x).

2. Data $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = |x|$$

determinare la funzione integrale

$$F(x) = \int_0^x f(t) \, dt.$$

3. Data $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = x - \lfloor x \rfloor$$

determinare la funzione integrale

$$F(x) = \int_0^x f(t) \, dt.$$

4. Data $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} 1 & \text{se } 1/x \in \mathbb{Z} \\ 0 & \text{altrimenti} \end{cases}$$

dimostrare che f è integrabile.

5. Data $f:[0,1] \to \mathbb{R}$

$$f(x) = \begin{cases} \sin(1/x) & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$$

verificare che f è integrabile.

6. Data $F: [0,1] \to \mathbb{R}$

$$F(x) = \begin{cases} x^2 \sin(1/x) & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$$

verificare che F è derivabile ma che F' non è continua. Mostrare altresì che F' è integrabile e che vale

$$\int_0^1 F'(x) \, dx = F(1) - F(0).$$