Compito di Analisi Matematica, Prima parte, Tema GIALLO

28 Giugno 2019

- 1) La derivata seconda della funzione $f(x) = e^{-1/|x-1|} |-x+1|^3 \arcsin(x)$ in x=1 A: non esiste; B: vale 1; C: vale e^2 ; D: vale 0; E: N.A.
- 2) La successione $\frac{\sin(\pi n/2) 1}{1 + n^{-1}\ln(|1 n^n|)}$ tende a A: 1; B: ∞ ; C: $-\infty$; D: N.A.; E: 0
- 3) Il numero delle soluzioni di $z^2 + 1 = |z 1|^2$ è uguale a A: 2; B: 3; C: 0; D: infinito; E: N.A.
- 4) La serie $\sum_{n=10}^{\infty} \frac{\cos(n\pi/2)}{n^{\beta}|\sqrt{n}-n|}$ converge A: solo per $\beta \geq -1$; B: mai; C: N.A.; D: solo per $\beta = 1$; E: per ogni β .
- 5) Il valore dell'integrale $\sqrt{5} \int_{-1}^{1} \frac{dx}{(4+x^2)^{3/2}}$ è A: 1; B: 1/4; C: -1; D: 1/2; E: N.A.
- 6) Quanti massimi globali ha la funzione $f(x) = \int_0^x ||t 1/2| 1| dt, x \ge 0.$? A: 0; B: 1; C: N.A. D: 2; E: 3.
- 7) Il numero di soluzioni di xy''(x) = (1-x)y(x), y(0) = 1, y'(0) = 1 è A: 0; B: 1; C: N.A. D: 2; E: 3.
- 8) La funzione $f(x) = (A-2)x^A Ax^{A-1}$ è crescente su $[1, \infty]$ per A: A = 1; B: A = 1/2; C: A = 3; D: A = -3; E: N.A.

	1	2	3	4	5	6	7	8
RISPOSTE	D	Е	Е	С	D	A	A	D

Compito di Analisi Matematica, Prima parte, Tema ARANCIO 28 Giugno 2019

- 1) Il numero di soluzioni di $\sin(\pi x)y''(x) = (2-x)y(x), y(1) = 1, y'(1) = 1$ è A: 1; B: 0; C: ∞ ; D: 2; E: N.A.
- 2) La funzione $f(x) = (A-1)x^{A+1} (A+1)x^{A}$ è crescente su $[1, \infty]$ per A: A=1; B: A=2; C: A=-4; D: A=3; E: N.A.
- 3) La successione $\frac{\cos(\pi n/2) 1}{3 + n^{-1}\ln(|n n^n|)}$ tende a A: 1; B: ∞ ; C: $-\infty$; D: N.A.; E: 0.
- 4) La derivata seconda della funzione $f(x) = e^{-|x-1|} |-x+1|^3$ in x=1 A: non esiste; B: vale e; C: vale 0; D: vale 3; E: N.A.
- 5) Il numero delle soluzioni di $z^2 + 4 = |z 2|^2$ è uguale a A: 2; B: infinito; C: 1; D: 3; E: N.A.
- 6) Il valore dell'integrale $\sqrt{2} \int_{-2}^{2} \frac{dx}{(4+x^2)^{3/2}}$ è A: 1/4; B: 1/2; C: -2; D: -3/4; E: N.A
- 7) La serie $\sum_{n=10}^{\infty} \frac{\cos(n\pi/4)}{|\sqrt{n}-3|^{\beta}|\sqrt{n}-n|}$ converge A: solo per $\beta \geq 0$; B: mai; C: N.A.; D: solo per $\beta > -2$; E: per ogni β .
- 8) Quanti minimi globali ha la funzione $f(x) = \int_1^x (|t-1/2|-1)dt, x \ge 1.$? A: 1; B: 4; C: N.A. D: 2; E: 3.

	1	2	3	4	5	6	7	8
RISPOSTE	В	С	Ε	С	С	В	D	Α

Compito di Analisi Matematica, Prima parte, Tema VERDE 28 Giugno 2019

- 1) La successione $\frac{\sin(\pi n/2) 1}{1 + n^{-2}\ln(|1 n^n|)}$ tende a A: 1; B: ∞ ; C: $-\infty$; D: N.A.; E: 0.
- 2) Il valore dell'integrale $\sqrt{5} \int_{-2}^{2} \frac{dx}{(1+x^{2})^{3/2}}$ è A: 2; B: 1; C: 4; D: 3; E: N.A.
- 3) Il numero di soluzioni di $\sin(x + \pi)y''(x) = \cos(x + \pi)y(x), y(0) = 1, y''(0) = 1$ è A: 2; B: 1; C: ∞ ; D: 0; E: N.A.
- 4) La funzione $f(x) = (A 2)x^A Ax^{A-1}$ è crescente su [1, ∞] per A: A = 1; B: A = 2; C: A = -3; D: A = 3; E: N.A.
- 5) La serie $\sum_{n=10}^{\infty} \frac{\cos(n\pi/2)}{n^{\beta}|\sqrt{n}-3|}$ converge A: solo per $\beta>-1/2$; B: mai; C: N.A.; D: solo per $\beta=1$; E: per ogni β .
- 6) Quanti minimi globali ha la funzione $f(x) = \int_3^x (|t-1|-1)dt, x \ge 3.$? A: 0; B: 4; C: N.A. D: 2; E: 1.
- 7) La derivata seconda della funzione $f(x) = e^{-1/|x+1|} | -x+1|^3 \arcsin(x)$ in x=1 A: non esiste; B: vale 1/2; C: vale -1/2; D: vale 3/2; E: N.A.
- 8) Il numero delle soluzioni di $z^2 + 9 = |z 3|^2$ è uguale a A: 2; B: infinito; C: 0; D: 1; E: N.A.

	1	2	3	4	5	6	7	8
RISPOSTE	D	С	D	С	A	Е	Е	D

Compito di Analisi Matematica, Prima parte, Tema AZZURRO 28 Giugno 2019

- 1) Il numero delle soluzioni di $z^2 + 25 = |z 5|^2$ è uguale a A: 2; B: infinito; C: 0; D: 1; E: N.A.
- 2) La successione $\frac{\cos(\pi n/2)-1}{4+n^{-2}\ln(|n-n^n|)}$ tende a A: 0; B: ∞ ; C: $-\infty$; D: N.A.; E: 1.
- 3) Il valore dell'integrale $\sqrt{2} \int_{-1}^{1} \frac{dx}{(1+x^2)^{3/2}}$ è A: 1; B: 2; C: -2; D: 1/2; E: N.A.
- 4) Il numero di soluzioni dI xy''(x) = xy(x), y(0) = 1, y'(0) = 1 è A: 0; B: 1; C: ∞ ; D: 2; E: N.A.
- 5) La funzione $f(x) = (A-1)x^{A+1} (A+1)x^A$ è crescente su [1, ∞] per A: A = 1/2; B: A = 2; C: A = 3; D: A = 4; E: N.A.
- 6) La serie $\sum_{n=10}^{\infty} \frac{\cos(n\pi/2)}{|\sqrt{n}-n|^{\beta}}$ converge A: solo per $\beta \geq 0$; B: mai; C: N.A.; D: solo per $\beta = 1$; E: per ogni β .
- 7) Quanti minimi globali ha la funzione $f(x) = \int_2^x (|t-1|-1)dt, x \ge 2.$? A: 1 B: 0; C: 2.; D: N.A.; E: 3.
- 8) La derivata seconda della funzione $f(x) = e^{-1/|x-2\cos\pi|}|x+2|^{-3}\arcsin(x+2)$ in x=-2A: vale 1; B: vale -1/2; C: vale 0; D: vale 3/2; E: N.A.

	1	2	3	4	5	6	7	8
RISPOSTE	D	D	В	В	Е	С	A	С

Compito di Analisi Matematica, Prima parte, Tema ROSSO

28 Giugno 2019

COGNOME: NOME: MATR.:

1) Il valore dell'integrale $\sqrt{5} \int_{-1}^{1} \frac{dx}{(4+x^2)^{3/2}}$ è
A: 1; B: 1/4; C: -1; D: 1/2; E: N.A.

2) Quanti massimi globali ha la funzione $f(x) = \int_0^x ||t - 1/2| - 1| dt, x \ge 0.$? A: 0; B: 1; C: N.A. D: 2; E: 3.

3) La derivata seconda della funzione $f(x) = e^{-1/|x-1|} |-x+1|^3 \arcsin(x)$ in x=1 A: non esiste; B: vale 1; C: vale e^2 ; D: vale 0; E: N.A.

4) La successione $\frac{\sin(\pi n/2) - 1}{1 + n^{-1}\ln(|1 - n^n|)}$ tende a A: 1; B: ∞ ; C: $-\infty$; D: N.A.; E: 0.

5) Il numero di soluzioni di xy''(x) = (1-x)y(x), y(0) = 1, y'(0) = 1 è A: 0; B: 1; C: N.A. D: 2; E: 3.

6) La funzione $f(x) = (A-2)x^A - Ax^{A-1}$ è crescente su [1, ∞] per A: A = 1; B: A = 1/2; C: A = 3; D: A = -3; E: N.A.

7) Il numero delle soluzioni di $z^2 + 1 = |z - 1|^2$ è uguale a A: 2; B: 3; C: 0; D: infinito; E: N.A.

8) La serie $\sum_{n=10}^{\infty} \frac{\cos(n\pi/2)}{n^{\beta}|\sqrt{n}-n|}$ converge

A: solo per $\beta \ge -1$; B: mai; C: N.A.; D: solo per $\beta = 1$; E: per ogni β .

	1	2	3	4	5	6	7	8
RISPOSTE	D	A	D	Ε	Α	D	Ε	С

Compito di Analisi Matematica, Prima parte, Tema NERO

28 Giugno 2019

- 1) La funzione $f(x)=(A-1)x^{A+1}-(A+1)x^A$ è crescente su $[1,\infty]$ per A: A=1; B: A=2; C: A=-4; D: A=3; E: N.A.
- 2) Il valore dell'integrale $\sqrt{2} \int_{-2}^{2} \frac{dx}{(4+x^2)^{3/2}}$ è A: 1/4; B: 1/2; C: -2; D: -3/4; E: N.A.
- 3) La serie $\sum_{n=10}^{\infty} \frac{\cos(n\pi/4)}{|\sqrt{n}-3|^{\beta}|\sqrt{n}-n|}$ converge A: solo per $\beta \geq 0$; B: mai; C: N.A.; D: solo per $\beta > -2$; E: per ogni β .
- 4) Quanti minimi globali ha la funzione $f(x)=\int_1^x (|t-1/2|-1)dt, x\geq 1.$? A: 1; B: 4; C: N.A. D: 2; E: 3.
- 5) La successione $\frac{\cos(\pi n/2) 1}{3 + n^{-1}\ln(|n n^n|)}$ tende a A: 1; B: ∞ ; C: $-\infty$; D: N.A.; E: 0.
- 6) La derivata seconda della funzione $f(x) = e^{-|x-1|} |-x+1|^3$ in x=1 A: non esiste; B: vale e; C: vale 0; D: vale 3; E: N.A.
- 7) Il numero delle soluzioni di $z^2 + 4 = |z 2|^2$ è uguale a A: 2; B: infinito; C: 1; D: 3; E: N.A.
- 8) Il numero di soluzioni di $\sin(\pi x)y''(x) = (2-x)y(x), y(1) = 1, y'(1) = 1$ è A: 1; B: 0; C: ∞ ; D: 2; E: N.A.

	1	2	3	4	5	6	7	8
RISPOSTE	С	В	D	A	Ε	С	С	В

Compito di Analisi Matematica, Prima parte, Tema BLU 28 Giugno 2019

- 1) Il numero di soluzioni di $\sin(x+\pi)y''(x) = \cos(x+\pi)y(x), y(0) = 1, y''(0) = 1$ è A: 2; B: 1; C: ∞ ; D: 0; E: N.A.
- 2) La funzione $f(x) = (A-2)x^A Ax^{A-1}$ è crescente su $[1, \infty]$ per A: A = 1; B: A = 2; C: A = -3; D: A = 3; E: N.A.
- 3) La successione $\frac{\sin(\pi n/2)-1}{1+n^{-2}\ln(|1-n^n|)}$ tende a A: 1; B: ∞ ; C: $-\infty$; D: N.A.; E: 0.
- 4) La derivata seconda della funzione $f(x) = e^{-1/|x+1|} | -x+1|^3 \arcsin(x)$ in x=1 A: non esiste; B: vale 1/2; C: vale -1/2; D: vale 3/2; E: N.A.
- 5) Il numero delle soluzioni di $z^2 + 9 = |z 3|^2$ è uguale a A: 2; B: infinito; C: 0; D: 1; E: N.A.
- 6) Il valore dell'integrale $\sqrt{5} \int_{-2}^{2} \frac{dx}{(1+x^2)^{3/2}}$ è A: 2; B: 1; C: 4; D: 3; E: N.A
- 7) La serie $\sum_{n=10}^{\infty} \frac{\cos(n\pi/2)}{n^{\beta}|\sqrt{n}-3|}$ converge A: solo per $\beta > -1/2$; B: mai; C: N.A.; D: solo per $\beta = 1$; E: per ogni β .
- 8) Quanti minimi globali ha la funzione $f(x) = \int_3^x (|t-1|-1)dt, x \ge 3.$? A: 0; B: 4; C: N.A. D: 2; E: 1.

	1	2	3	4	5	6	7	8
RISPOSTE	D	С	D	Е	D	С	A	Е

Compito di Analisi Matematica, Prima parte, Tema VIOLA

28 Giugno 2019

COGNOME: NOME: MATR.:

- 1) La funzione $f(x) = (A-1)x^{A+1} (A+1)x^A$ è crescente su $[1, \infty]$ per A: A = 1/2; B: A = 2; C: A = 3; D: A = 4; E: N.A.
- 2) La serie $\sum_{n=10}^{\infty} \frac{\cos(n\pi/2)}{|\sqrt{n}-n|^{\beta}}$ converge

A: solo per $\beta \geq 0$; B: mai; C: N.A.; D: solo per $\beta = 1$; E: per ogni β .

- 3) Quanti minimi globali ha la funzione $f(x) = \int_2^x (|t-1|-1)dt, x \ge 2.$? A: 1 B: 0; C: 2.; D: N.A.; E: 3.
- 4) La derivata seconda della funzione $f(x)=e^{-1/|x-2\cos\pi|}|x+2|^{-3}\arcsin(x+2)$ in x=-2

A: vale 1; B: vale -1/2; C: vale 0; D: vale 3/2; E: N.A

- 5) Il numero delle soluzioni di $z^2 + 25 = |z 5|^2$ è uguale a A: 2; B: infinito; C: 0; D: 1; E: N.A.
- 6) La successione $\frac{\cos(\pi n/2) 1}{4 + n^{-2}\ln(|n n^n|)}$ tende a A: 0; B: ∞ ; C: $-\infty$; D: N.A.; E: 1.
- 7) Il valore dell'integrale $\sqrt{2} \int_{-1}^{1} \frac{dx}{(1+x^2)^{3/2}}$ è A: 1; B: 2; C: -2; D: 1/2; E: N.A.
- 8) Il numero di soluzioni dI xy''(x) = xy(x), y(0) = 1, y'(0) = 1 è A: 0; B: 1; C: ∞ ; D: 2; E: N.A.

	1	2	3	4	5	6	7	8
RISPOSTE	Е	С	A	С	D	D	В	В