link to
Orcid number https://orcid.org/0000-0001-6796-7644
PUBLICATIONS:
[1] Inverse scattering problem for symmetric strictly hyprbolic systems, Compt. Rend. Acad.
Bulg. Sci. 35(5), 1982, 593 - 596.
[2] Disappearing solutions of symmetric strictly hyperbolic systems, Compt. Rend. Acad.
Bulg. Sci. 36(2), 1983, 323 - 324.
[3] A uniqueness theorem of Holmgren's type for first order systems, Compt. Rend. Acad.
Bulg. Sci. 37(6), 1984, 733 - 736.
[4] Construction of smooth basis depending on a parameter, Higher School Appl.Math. 20(2),
1984, 27 - 30 (with Ja. Arnaoudov).
[5] Construction of a real analytic basis for matrices with real analytic elements, Higher
School Appl. Math. 20(2), 1984, 32 - 35 (with Ja. Arnaoudov).
[6] Wave fronts of solutions to boundary problems for symmetric dissipative systems, Serdica,
10, 1984, 41 - 48.
[7] Existence and completeness of the wave operators fot dissipative hyperbolic systems of
constant multiplicity, Compt. Rend. Acad. Bulg. Sci. 38(6), 1985, 667 - 670.
[8] High frequency asymptotics of the filterred scattering amplitudes and the inverse scattering
problem for dissipative hyperbolic systems, I part, Math. Nachr., 117, 1985, 111 - 128, II
part, Math. Nachr., 122, 1985, 267 - 275.
[9] The Kreiss condition for disipative hyperbolic systems of constant multiplicity, Boll. Un.
Math. It., (6) 3 - B, 1984, 383 - 395.
[10] Controllability of the scattering operator for dissipative hyperbolic systems, Math.
Nachr., 122, 1985, 339 - 346.
[11] Interior solution of Einstein's equations for hydrogen atom, Diff. eq. and applications,
Ruse 1985, p. 635 - 638, Angel Kanchev Tech. Univ, Ruse 1987.
[12] Existence and completeness of the wave operators for dissipative hyperbolic systems, J.
Operator Theory, 14, 1985, 291 - 310.
[13] Disappearing solutions for dissipative hyperbolic systems of constant multiplicity, Hokkaido
Math. J., 15(3), 1986, 357 - 385.
[14] Existence of the scattering operator for dissipative hyperbolic systems with variable
multiplicity, J. Operator Theory, 19, 1988, 217 - 241 (with P. Stefanov).
[15] Leading singularity of the scattering kernel for the Maxwell equations outside moving
obstacles, Compt. Rend. Acad. Bulg. Sci. 41(10), 1988, 17 - 20.
[16] Global existence of solution to the semilinear heat equation, Compt. Rend. Acad. Bulg.
Sci., 42(6), 1989, 21 - 24.(with M.Marinov)
[17] Global solution to the Maxwell - Dirac equations, Compt. Rend. Acad. Bulg. Sci.,
42(6), 1989, 17-20.
[18] Leading term of the solution to the Klein - Gordon equation, Compt. Rend. Acad.
Bulg. Sci., 42(12), 1989, 25 - 28.
[19] A weighted estimate of the solution to the wave equation, Compt. Rend. Acad. Sci.
Bulg. 42(11), 1989, 17 - 20 (with V.Covachev).
[20] Theoreme de type RAGE pour des ope'rateurs a' puissances bornees, Compt. Rend.
Acad. Sci. Paris, 303, Se'rie I, No. 13, 1986, 605 - 608 (with V.Petkov).
[21] Local energy decay for the wave equation and hyperbolic systems, Publ. of Patras Univ.,
Patras, 1986, 31 - 54.
[22] Inverse scattering problem for the Maxwell equations outside moving body, Ann. Inst.
H.Poincare', (Physique The'orique), 50(1), 1988, 1 - 34.
[23] RAGE theorem for power bounded operators and local energy decay for moving obstacles,
Ann. Inst. H.Poincare', (Physique The'orique), 51(2), 1989, 155 -185 (with V.Petkov).
[24] Inverse scattering problem for dissipative wave equation, Integral equations and inverse
problems (Varna, 1989) p.86 - 89, (Pitman Res. Notes Math. Ser.) v. 235 , Longman Sci.
Tech. Harlow, 1992.
[25] Global solution of the system of wave and Klein - Gordon equations, Math. Zeit. 203,
1990, 683 - 698.
[26] L'existence des solutions globales pour des syst`emes nonline'aires avec champs massifs
et sans masse, Compt. Rend. Acad. Sci. Paris, Se'rie I, 308, 1989, 529 - 532.
[27] Existence des solutions globales pour le syst`eme de Maxwell-Dirac, Compt. Rend. Acad.
Sci. Paris, Se'rie I, 310, 1990, 569 - 572.
[28] Gauge invariant Maxwell-Dirac equations and their global solutions, Comp. Rend. Acad.
Bulg. Sci., 43(9), 1990, 17 - 20 (with E. Evtimova).
[29] Weighted decay estimates for the wave equation, Proc. Amer. Math. Soc., 112, 1991 ,
393 - 402 (with V.Covachev).
[30] A counterpart of the Poincare' group for pseudodifferential
operators,
Acad. Bulg. Sci., 44(2), 1991, 17 - 20 (with V.Covachev)
[31] Global solutions to the nonlinear equaions in relativistic quantum mechanics , Surveys
on Geometry, Analysis and Math. Physics, 1990, Band 17, 54 - 138, Teubner Text, Berlin (with
V. Covachev).
[32] Inverse scattering problem for dissipative wave equation, Mat. Aplicada e Comp., 9(1),
1990, p. 59 - 78 (with Ja. Arnaoudov).
[33] Global solutions to the two dimensional Klein - Gordon equation, Compt. Rend. Acad.
Sci. Paris, Se'rie I, 311, 1990, 87 - 90.(with P. Popivanov)
[34] Existence of global solution of a nonlinear wave equation with short-range potential,
Part. Diff. Equations, Part 1,2 Warsaw 1990, Banach Center Publ. 27, Part 1, v. 2, p. 163 -
167, Polish Acad. Sci., Warsaw.
[35] Global solution to the two dimensional Klein - Gordon equation, Comm. Part. Diff.
Eq.,16 (6,7) 1991, 941 - 995 (with P.Popivanov).
[36] Small amplitude solutions of the Maxwell - Dirac equations, Indiana Univ. Math.
Journal, 40 (3) 1991, 845 - 883.
[37] Existence of solution of the wave equation with nonlinear damping and source terms,
C.R.Acad. Sci. Paris, t.314, Ser. I, 1992, 205 - 209. (with. G.Todorova)
[38] Developing the solution of Stefan’s problem, C.R.Acad. Sci. Bulg. 47 (1994)No. 3 p.
9-12 ( with S.Bushev)
[39] The asymptotic behaviour of Yang - Mills fields in the large, Preprint No. 170 of
Rheinische - Friedrich - Wilhelms - Univ, 1991 and Comm. Math. Phys. 148, 1992, 425 - 444
(with P.Schirmer).
[40] Decay estimates for the Klein - Gordon equation, Comm. Part. Diff. Eq. 17( 7 and 8),
1992, 1111 - 1139.
[41] Critical point of the "entropy" - like functional for the quantum distribution functions,
Helv. Phys. Acta, 65, 1992, 596 - 610. (with. E.Evtimova)
[42] Numerical algorithm for the dynamic analysis of base-isolated structures with dry friction,
Natural Hazards, 6, 1992, 71 - 86, (with S.Dimova).
[43] A method for generating exact solutions of the nonlinear Klein-Gordon equation, Canad.
J. Phys. 70 (1992) No. 6 , p. 467 - 469 (with A.Grigorov, N.Martinov, D Orushev)
[44] High-frequency asymptotics in inverse scattering by ellipsoids, Math. Meth. in Appl.
Sciences, 16, 1993, 1-12 (with Y. Arnaoudov, G.Dassios)
[45] Existence of solution of the wave equation with nonlinear damping and source terms,
Journal Diff. Equations 109(2), 1994, 295 - 308. (with. G.Todorova).
[46] Global existence of low regularity solutions of non-linear wave equations, Math. Zeitschrift,219,
1995, p.1-19. (with P.P.Schirmer)
[47] Space time estimates for compatible forms associated with first order hyperbolic systems,
Compt. Rend. Acad. Sci. Paris, 318, Serie I, 1994, 1109 - 1114.(with P.Schirmer)
[48] Solitary solutions of the Maxwell-Dirac and Klein-Gordon-Dirac equations, preprint
CEREMADE 9514(1995) and Calculus of Variations and Part. Diff. Eq. 4, 1996, p.265-281.(con
M.Esteban, E.Sere)
[49] Solitary-wave solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac systems,
preprint CEREMADE 9524(1995) and Letters Math. Phys 1996, v.38(2) p.217-220 .(con M.Esteban,
E.Sere)
[50] Weighted decay estimates for the wave equation, Comp. Rend. Acad. Sci. Paris,t.322,
1996, p. 829-834.
[51] Existence of global solutions to supercritical semilinear wave quations, Serdica, 22,
1996, 2, p. 125 - 164.
[52] Weighted Strichartz estimates and global existence for semilinear wave equation, Amer.
J. Math. vol. 119(6), 1997, p.1291-1319. (with H.Linblad and C. Sogge)
[53] Global existence of solutions and formation of singularities for a class of hyperbolic
systems, Geometric optics and related topics, F.Colombini, N.Lerner, Ed, Progress in Nonlinear
Differential Equations and Their Applications, 1997, p.117-140.
[54] Weighted estimate for the wave equation, Gakuto Int. Series, Mathematical Sciences
and Applications, vol.10 (1997), 75-83.
[55] On the asymptotic behaviour of semilinear wave equations with degenerate dissipation
and source terms, Preprint ICTP IC/96/96, 1996. NoDEA Nonlinear Diff. Equations Appl.
1998, 5(1) p. 53-68 (con A.Milani)
[56] Weighted Sobolev spaces applied to nonlinear Klein-Gordon equation Compt. Rend.
Acad. Sci. Paris, 1999 (con S.Lucente)t. 329, Serie I, p.21-26.
[57] P.D'Ancona, V.Georgiev, H.Kubo, Weighted decay estimates for the wave equation and
low regularity solutions, Rendiconti dell'Ist. Mat. dell'Univ. Trieste vol 31, 2000, supl. 2,
p.51-62.
[58] V.Georgiev, C.Heiming, H.Kubo, Critical exponent for wave equation with potential,
Rendiconti dell'Ist. Mat. dell'Univ. Trieste vol 31, 2000, supl. 2, p.103-128.
[59] V.Georgiev, S. Di Pomponio, Life-span of subcritical semilinear wave equation, Asymptotic
Analysis, : Volume 28, 2,2001, p. 91 - 114.
[60] C.Heimig, V.Georgiev, H.Kubo, Supercritical semilinear wave equation witn non-negative
potential, Comm. Part. Diff. Equations , V. 26 , Issue 11,12, 2001.
[61] P.D'Ancona, V.Georgiev, H.Kubo, Weighted decay estimates for the wave equation,
Journal Diff. Equations, Vol. 177, No. 1, November 20, 2001, p. 146-208
[62] V.Georgiev, Nonlinear hyperbolic equations in mathematical physics, Japanese Math.
Society, 2000, 255p.
[63] V.Georgiev, S. Di Pomponio, Lower bound for the life - span of higher dimensional wave
equation, Compt. Rend. Acad. Bulg. Sci. 2001, v. 54, No. 3, 11-14.
[64] V.Georgiev and P. D'Ancona , On Lipschitz continuity of the solution map for twodimensional
wave maps, Banach Center Publ. 2003, vol. 60, p. 95 - 103. EVOLUTION
EQUATIONS Propagation Phenomena - Global Existence - Influence of Non-Linearities, Rainer
Picard, Michael Reissig, Wojciech Zajaczkowski (eds.) Warszawa 2003
[65] V.Georgiev, N.Visciglia, Dispersive estimates for the wave equation with potential, Rendiconti
Lincei Matematica e Applicazioni, 2003, v. 14, s. 9 p. 109 - 135.
[66] V.Georgiev , N.Visciglia, Decay estimates for the wave equation with potential, Comm.
Part. Diff. Eq. vol.28 No. 7,8 (2003) p. 1325 - 1369.
[67] D'Ancona, Piero; Georgiev, Vladimir Recent ill-posedness results for the wave map
system in critical spaces. Hyperbolic problems and related topics, 137-146, Grad. Ser. Anal.,
Int. Press, Somerville, MA, 2003.
[68] V.Georgiev, Sandra Lucente, Decay for nonlinear Klein - Gordon equations, NoDEA,
2004, Volume 11, Number 4, 529 - 555
[69] Vladimir Georgiev, Sandra Lucente, Guido Ziliotti, Decay estimates for hyperbolic systems,
Hokkaido Math. Journal 2004, vol. 33, p.83-113.
[70] V.Georgiev, P.D'Ancona, Low regularity solutions for the wave map equation into the
2-D sphere, Math. Zetschrift, Volume 248, Number 2 ( 2004) p. 227-266 .
[71] V.Georgiev, P.D'Ancona, On the continuity of the solution operator to the wave map
system, CPAM. 57 (2004), no. 3, 357-383.
[72] V.Georgiev, G.M. Coclite, Solitary waves for Maxwell -
Schroedinger equations, Electron.
J. Differential Equations 2004, No. 94, 1 - 31 pp. (electronic).
[73] V.Georgiev, A.Ivanov, Concentration of local energy for two-dimensional wave maps,
Rend. Istit. Mat. Univ. Trieste, vol. 35, p.195-235 (2003)
[74] Georgiev, Vladimir; Karadzhov, Georgi; Visciglia, Nicola Endpoint Strichartz estimates
for the wave equation in the critical case. Phase space analysis of partial differential equations.
Vol. I, 225-233, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa, 2004.
[75] D.Catania, V.Georgiev, Semilinear wave equation in Schwarzschild metric. Nuovo Cimento
Soc. Ital. Fis. B 119 (2004), no. 7-9, 661-683.
[76] V.Georgiev, B.Rubino, R.Sampalmieri, Global existence for elastic waves with memory,
Arcive Rat. Mech. Anal. 176 (2005) p.303-330.
[77] Georgiev, Vladimir; Visciglia, Nicola Solitary waves for Klein-Gordon-Maxwell system
with external Coulomb potential. J. Math. Pures Appl. (9) 84 (2005), no. 7, 957-983.
[78] V.Georgiev, A.Ivanov, Existence and mapping properties of wave operator for the
Schr¨odinger equation with singular potential Proc. Amer. Math. Soc. 133 (2005), 1993-2003.
[79] Georgiev, Vladimir, Semilinear hyperbolic equations. With a preface by Y. Shibata.
Second edition. MSJ Memoirs, 7 (2nd ed.). Mathematical Society of Japan, Tokyo, 2005, 209 pp.
[80] Catania, D.; Georgiev, V. Large time behaviour of solutions to the semilinear wave
equation in Schwarzschild metric. C. R. Acad. Bulgare Sci. 58 (2005), no. 6, 623-628.
[81] V.Georgiev, H.Takamura, Zhou Yi, The lifespan of solutions to nonlinear systems of
high dimensional wave equation, Nonlinear Analysis 64 (2006) 2215 - 2250.
[82] Scale invariant energy smoothing estimates for the Schroedinger Equation with small
Magnetic Potential Authors: Vladimir Georgiev, Mirko Tarulli, Asymptotic Analysis, 47 (2006)
107 -138.
[83] Davide Catania, Vladimir Georgiev, Blow Up for the Semilinear Wave Equation in
Schwarzschild Metric, Diff. Int. Equations, vol.19(7) 2006 p. 799 - 830.
[84] V.Georgiev, P. D'Ancona, Dispersive Nonlinear Problems in Mathematical Physiscs,
Quaderni di Matematica, vol. 15, 2005.
[85] V.Georgiev, A.Stefanov, Smoothing - Strichartz Estimates for the Schrodinger Equation
with small Magnetic Potential Authors: Vladimir Georgiev, Atanas Stefanov, Mirko Tarulli,
Discrete and Continuous Dynamical Systems 2007, A18, p.159 - 186.
[86] V.Georgiev, I.Arnaoudov, J.Venkov, Does Atkinson - Wilcox converges for any convex
domain, Serdica, 2007, 33, 363-376
[87] V.Georgiev, R.Kirova, B.Rubino, R.Sampalmieri, B.Yordanov, Asymptotic behaviour
for linear and nonlinear elastic waves for materials with memory, Journal of non - crystalline
solids, 354 (2008) 4126 - 4137
[88] Georgiev, V.; Visciglia, N. About resonances for Schrdinger operators with short range
singular perturbation. Topics in contemporary differential geometry, complex analysis and mathematical
physics, 74-84, World Sci. Publ., Hackensack, NJ, 2007.
[89] Georgiev Vladimir, Sandra Lucente, Nonlinear multiplicative inequalities in Sobolev
spaces associated with Lie algebras, Nonlinear Analysis Series A: Theory, Methods and Applications
Nonlinear Analysis: Volume 70, Issue 4, 15 February 2009, Pages 1574-1609.
[90] V. Georgiev, J. A.Mauro, G. Venkov, Spectral Properties of an Operator Associated with
Hartree Type Equations with External Coulomb Potential, Rendiconti dell'Istituto di Matematica
dell'Universita' di Trieste vol. 42 Suppl. (2010) p.51 - 66.
[91] Georgiev Vladimir, George Venkov, Existence of wave operators for Hartree type equations,
preprint 2008.