Basics	Tools	Applications	Further Questions	References
000	00		0	0

Arrangements with up to 7 Hyperplanes

Elía Saini

Université de Fribourg - Universität Freiburg Swiss National Science Foundation SNSF

3-rd February 2016

Elía Saini

Université de Fribourg - Universität Freiburg Swiss National Science Foundation SNSF

Basics	Tools	Applications	Further Questions	References
000				
Hyperplane Arrangem	ents			

Main Definitions

- A complex hyperplane arrangement is a finite collection $\mathcal{A} = \{H_1, \ldots, H_m\}$ of affine hyperplanes in \mathbb{C}^d .
- The complement manifold $M(\mathcal{A})$ is $\mathbb{C}^d \setminus \bigcup_{i=1}^m H_i$.
- **Problem:** study the topology of $M(\mathcal{A})$.

Basics	Tools	Applications	Further Questions	References	
000					
Hyperplane Arrangements					

The Central Case

- A complex hyperplane arrangement A = {H₁,..., H_m} in C^d is central if all the H_i's contain the origin.
- **Result:** to understand M(A) we can study the central case.

Basics	Tools	Applications	Further Questions	References	
000					
Hyperplane Arrangements					

Milnor Fiber and Fibration

For a complex central hyperplane arrangement $\mathcal{A} = \{H_1, \ldots, H_m\}$ in \mathbb{C}^d let $\alpha_i \in (\mathbb{C}^d)^*$ be linear formswith $H_i = \ker \alpha_i$. The polynomial $Q_{\mathcal{A}} = \prod_{i=1}^m \alpha_i$ is **homogeneous** of degree *m* and can be considered as a map $Q_{\mathcal{A}} : M(\mathcal{A}) \longrightarrow \mathbb{C}^*$ that is the projection of a **fiber bundle** called the **Milnor fibration** of the arrangement.

Elía Saini

Université de Fribourg - Universität Freiburg Swiss National Science Foundation SNSF

Isotopic Hyperplane Arrangements (Part 1)

Theorem ([Ran89])

Let A_t be a **smooth one-parameter** family of central complex hyperplane arrangements in \mathbb{C}^d . If the underlying matroid M_{A_t} does **not** depend on t, so does the **diffeomorphism** type of $M(A_t)$.

Elía Saini

Université de Fribourg - Universität Freiburg Swiss National Science Foundation SNSF

 Basics
 Tools
 Applications
 Further Questions
 References

 000
 00
 0
 0
 0

 Isotopic Hyperplane Arrangements
 000
 0
 0

Isotopic Hyperplane Arrangements (Part 2)

Theorem ([Ran97])

Let A_t be a **smooth one-parameter** family of central complex hyperplane arrangements in \mathbb{C}^d . If the underlying matroid M_{A_t} does **not** depend on t, so does the **isomorphism** type of Q_{A_t} .

Elía Saini

Université de Fribourg - Universität Freiburg Swiss National Science Foundation SNSF

Basics	Tools	Applications	Further Questions	References	
		000			
Small Hyperplane Arrangements					

Main Results

Theorem ([GS16])

Let $\mathcal{A} = \{H_1, \ldots, H_m\}$ and $\mathcal{B} = \{K_1, \ldots, K_m\}$ be **rank** *d* central hyperplane arrangements in \mathbb{C}^d with **same** underlying matroid. If $1 \leq d \leq m \leq 7$, then \mathcal{A} and \mathcal{B} are **isotopic** arrangements.

Elía Saini

Université de Fribourg - Universität Freiburg Swiss National Science Foundation SNSF

Basics	Tools	Applications	Further Questions	References	
		000			
Small Hyperplane Arrangements					

Some Corollaries (Part 1)

Corollary ([GS16])

Let $\mathcal{A} = \{H_1, \ldots, H_m\}$ and $\mathcal{B} = \{K_1, \ldots, K_m\}$ be **rank** *d* central hyperplane arrangements in \mathbb{C}^d with **same** underlying matroid. If $1 \leq d \leq m \leq 7$, then the complement manifolds $M(\mathcal{A})$ and $M(\mathcal{B})$ are **diffeomorphic**.

Elía Saini

Université de Fribourg - Universität Freiburg Swiss National Science Foundation SNSF

< 🗇 🕨 < 🖻 🕨 <

Basics	Tools	Applications	Further Questions	References
		000		
Small Hyperplane Arrangements				

Some Corollaries (Part 2)

Corollary ([GS16])

Let $\mathcal{A} = \{H_1, \ldots, H_m\}$ and $\mathcal{B} = \{K_1, \ldots, K_m\}$ be **rank** d central hyperplane arrangements in \mathbb{C}^d with **same** underlying matroid. If $1 \leq d \leq m \leq 7$, then the Milnor fibrations Q_A and Q_B are **isomorphic** fiber bundles.

Elía Saini

Université de Fribourg - Universität Freiburg Swiss National Science Foundation SNSF

< 🗇 > < 🖃 > <

Basics 000	Tools 00	Applications	Further Questions ●	References 0
Further Questic	ons			

Further Questions

- Find a non-case-by-case proof of these results.
- Find more **refined** techniques to study **non-connected** matroid realization spaces.
- Study the **Rybnikov** matroid realization space.

Elía Saini

Université de Fribourg - Universität Freiburg Swiss National Science Foundation SNSF

Basics	Tools	Applications	Further Questions	References
000	00		0	•
References				

A Small Bibliography

- Matteo Gallet and Elia Saini, The diffeomorphism type of small hyperplane arrangements is combinatorially determined, [arXiv:1601.05705] (2016).
- Richard Randell, Lattice-isotopic arrangements are topologically isomorphic, Proc. Amer. Math. Soc. 107 (1989), no. 2, 555–559.
- _____, Milnor fibrations of lattice-isotopic arrangements, Proc. Amer. Math. Soc. 125 (1997), no. 10, 3003–3009.

Elía Saini

Université de Fribourg - Universität Freiburg Swiss National Science Foundation SNSF