

Combinatorial algebraic topology

OF TORIC ARRANGEMENTS.

Emanuele Delucchi (SNSF / Université de Fribourg)

> Università di Pisa February 3., 2016

Combinatorial algebraic topology

Combinatorial algebraic topology

- 1. Problem, context
- OUTLINE: 2. Our tools
 - 3. Our solution

The problem

TORIC ARRANGEMENTS

A toric arrangement in the complex torus $T := (\mathbb{C}^*)^d$ is a set

$$\mathscr{A} := \{K_1, \ldots, K_n\}$$

of 'hypertori' $K_i = \chi_i^{-1}(b_i)$ with $\chi_i \in \operatorname{Hom}_{\neq 0}(T, \mathbb{C}^*)$ and $b_i \in \mathbb{C}^* / = 1 / \in S^1$

The problem

TORIC ARRANGEMENTS

A toric arrangement in the complex torus $T := (\mathbb{C}^*)^d$ is a set

$$\mathscr{A} := \{K_1, \ldots, K_n\}$$

of 'hypertori' $K_i = \{z \in T \mid z^{a_i} = b_i\}$ with $a_i \in \mathbb{Z}^d \setminus 0$ and $b_i \in \mathbb{C}^*$

For simplicity assume that the matrix $[a_1, \ldots, a_n]$ has rank d.

The *complement* of \mathscr{A} is

$$M(\mathscr{A}):=T\setminus\cup\mathscr{A},$$

The problem

TORIC ARRANGEMENTS

A toric arrangement in the complex torus $T := (\mathbb{C}^*)^d$ is a set

$$\mathscr{A} := \{K_1, \ldots, K_n\}$$

of 'hypertori' $K_i = \{z \in T \mid z^{a_i} = b_i\}$ with $a_i \in \mathbb{Z}^d \setminus 0$ and $b_i \in \mathbb{C}^*$

The *complement* of \mathscr{A} is

$$M(\mathscr{A}):=T\setminus\cup\mathscr{A},$$

PROBLEM: Determine the ring $H^*(M(\mathscr{A}), \mathbb{Z})$.

GENERAL PROBLEM

Let X be a complex manifold, $\mathscr{A} := \{L_i\}_i$ a family of submanifolds of X. Determine the topology of

$$M(\mathscr{A}) := X \setminus \bigcup_i L_i.$$

Examples: normal crossing divisors (Deligne), arrangements of hypersurfaces (Dupont), configuration spaces (e.g., Totaro), affine subspace arrangements (e.g., Goresky-MacPherson, De Concini-Procesi), toric arrangements, arrangements of hyperplanes, etc.

GENERAL PROBLEM

Let X be a complex manifold, $\mathscr{A} := \{L_i\}_i$ a family of submanifolds of X. Determine the topology of

$$M(\mathscr{A}) := X \setminus \bigcup_i L_i.$$

What can combinatorial models tell us?

"Exhibit A": Arrangements of (real) pseudospheres \leftrightarrow Oriented matroids.

Hyperplanes: Brieskorn

 $\mathscr{A} := \{H_1, \dots, H_d\}$: set of (affine) hyperplanes in \mathbb{C}^d , $\mathcal{L}(\mathscr{A}) := \{\cap \mathscr{B} \mid \mathscr{B} \subseteq \mathscr{A}\}$: (po)set of intersections (reverse inclusion).

HYPERPLANES: BRIESKORN

 $\mathcal{A} := \{H_1, \dots, H_d\}: \text{ set of (affine) hyperplanes in } \mathbb{C}^d,$ $\mathcal{L}(\mathcal{A}) := \{\cap \mathcal{B} \mid \mathcal{B} \subseteq \mathcal{A}\}: \text{ (po)set of intersections (reverse inclusion).}$ For $X \in \mathcal{L}(\mathcal{A}): \mathcal{A}_X = \{H_i \in \mathcal{A} \mid X \subseteq H_i\}.$

Hyperplanes: Brieskorn

 $\mathcal{A} := \{H_1, \dots, H_d\}: \text{ set of (affine) hyperplanes in } \mathbb{C}^d,$ $\mathcal{L}(\mathcal{A}) := \{\cap \mathcal{B} \mid \mathcal{B} \subseteq \mathcal{A}\}: \text{ (po)set of intersections (reverse inclusion).}$ For $X \in \mathcal{L}(\mathcal{A}): \mathcal{A}_X = \{H_i \in \mathcal{A} \mid X \subseteq H_i\}.$

Theorem (Brieskorn 1972). The inclusions $M(\mathscr{A}) \hookrightarrow M(\mathscr{A}_X)$ induce, for every k, an isomorphism of <u>free</u> abelian groups

$$b: \bigoplus_{\substack{X \in \mathcal{L}(\mathscr{A}) \\ \operatorname{codim} X = k}} H^k(M(\mathscr{A}_X), \mathbb{Z}) \xrightarrow{\cong} H^k(M(\mathscr{A}), \mathbb{Z})$$

HYPERPLANES: THE ORLIK-SOLOMON ALGEBRA [Arnol'd '69, Orlik-Solomon '80]

 $H^*(M(\mathscr{A}),\mathbb{Z})\simeq E/\mathcal{J}(\mathscr{A}),$ where

E: exterior \mathbb{Z} -algebra with degree-1 generators e_1, \ldots, e_n (one for each H_i);

 $\mathcal{J}(\mathscr{A}): \text{ the ideal } \langle \sum_{l=1}^{k} (-1)^{l} e_{j_{1}} \cdots \widehat{e_{j_{l}}} \cdots e_{j_{k}} \mid \operatorname{codim}(\cap_{i=1...k} H_{j_{i}}) = k-1 \rangle$

HYPERPLANES: THE ORLIK-SOLOMON ALGEBRA [Arnol'd '69, Orlik-Solomon '80]

 $H^*(M(\mathscr{A}),\mathbb{Z})\simeq E/\mathcal{J}(\mathscr{A}),$ where

E: exterior \mathbb{Z} -algebra with degree-1 generators e_1, \ldots, e_n (one for each H_i);

$$\mathcal{J}(\mathscr{A}): \text{ the ideal } \langle \sum_{l=1}^{k} (-1)^{l} e_{j_{1}} \cdots \widehat{e_{j_{l}}} \cdots e_{j_{k}} \mid \operatorname{codim}(\cap_{i=1\dots k} H_{j_{i}}) = k-1 \rangle$$

This is fully determined by
$$\mathcal{L}(\mathscr{A})$$
.
For instance:
 $P(M(\mathscr{A}), t) = \sum_{X \in \mathcal{L}(\mathscr{A})} \underbrace{\mu_{\mathcal{L}(\mathscr{A})}(\hat{0}, X)}_{\substack{M\"{o}bius \\ function \\ of \mathcal{L}(\mathscr{A})}} (-t)^{\mathbf{rk} X}$
 $\mathcal{L}(\mathscr{A})$
 $\mathcal{L}(\mathscr{A})$
 $\mathcal{L}(\mathscr{A})$
 $\mathcal{L}(\mathscr{A})$
 $\mathcal{L}(\mathscr{A})$
 $\mathcal{L}(\mathscr{A})$

TORIC ARRANGEMENTS

Here the role of the intersection poset is played by $\mathcal{C}(\mathscr{A})$, the poset of *layers* (i.e. connected components of intersections of the K_i).

TORIC ARRANGEMENTS

Here the role of the intersection poset is played by $\mathcal{C}(\mathscr{A})$, the poset of *layers* (i.e. connected components of intersections of the K_i).

Theorem [Looijenga '95, De Concini-Procesi '05]

$$\operatorname{Poin}(M(\mathscr{A}), \mathbb{Z}) = \sum_{Y \in \mathcal{C}(\mathscr{A})} \underbrace{\mu_{\mathcal{C}(\mathscr{A})}(\hat{0}, Y)}_{\substack{\mathsf{M\"obius}\\ \text{function}\\ \text{of } \mathcal{C}(\mathscr{A})}} (-t)^{\operatorname{rk} Y} (1+t)^{d-\operatorname{rk} Y}.$$

TORIC ARRANGEMENTS

[De Concini – Procesi '05] compute the cup product in $H^*(M(\mathscr{A}), \mathbb{C})$ when the matrix $[a_1, \ldots, a_n]$ is totally unimodular.

[Moci – Settepanella, '11] Combinatorial models for "thick" arrangements.

[Bibby '14] Q-cohomology algebra of unimodular abelian arrangements

[Dupont '14, '15] Algebraic model for C-cohomology algebra of complements of hypersurface arrangements in manifolds with hyperplane-like crossings; formality (coming up!),

We strive for a (combinatorial) presentation of the integer cohomology ring.

- Posets and categories
 - ${\cal P}$ a partially ordered set

$$\begin{split} \Delta(P) &- \text{the order complex of } P \\ & (\text{abstract simplicial complex } \\ & \text{of totally ordered subsets}) \\ & ||P|| := |\Delta(P)| \end{split}$$

its geometric realization

$$\begin{array}{cccc}
a & b & c \\
b & c & \left\{ \begin{array}{ccc}
a & b & c \\
ab & ac & (\emptyset) \end{array} \right\} & \bullet & \bullet \\
P & \Delta P & ||P||
\end{array}$$

POSETS AND CATEGORIES

$$P$$
 - a partially ordered set

C - a s.c.w.o.l. / "acyclic category" (all invertibles are endomorphisms, all endomorphisms are identities)

 $\Delta(P)$ - the order complex of P (abstract simplicial complex of totally ordered subsets)

 $||P|| := |\Delta(P)|$

its geometric realization

(simplicial set of composable chains)

 $||\mathcal{C}|| := |\Delta \mathcal{C}|$

 ΔC - the nerve

its geometric realization

Posets and categories

P - a partially ordered set

C - a s.c.w.o.l. / "acyclic category" (all invertibles are endomorphisms, all endomorphisms are identities)

 $\Delta(P)$ - the order complex of P (abstract simplicial complex of totally ordered subsets)

 $||P|| := |\Delta(P)|$

its geometric realization

(simplicial set of composable chains)

 $||\mathcal{C}|| := |\Delta \mathcal{C}|$

 ΔC - the nerve

its geometric realization

- Posets are special cases of s.c.w.o.l.s;
- Every functor $F : \mathcal{C} \to \mathcal{D}$ induces a continuous map $||F|| : ||\mathcal{C}|| \to ||\mathcal{D}||$.
- Quillen-type theorems relate properties of ||F|| and F.

FACE CATEGORIES

Let X be a polyhedral complex. The *face category* of X is $\mathcal{F}(X)$, with

- $Ob(\mathcal{F}(X)) = \{X_{\alpha}, \text{ polyhedra of } X\}.$
- $\operatorname{Mor}_{\mathcal{F}(X)}(X_{\alpha}, X_{\beta}) = \{ \text{ face maps } X_{\alpha} \to X_{\beta} \}$

Theorem. There is a homeomorphism $||\mathcal{F}(X)|| \cong X$. [Kozlov / Tamaki]

A toric arrangement $\mathscr{A} = \{\chi_i^{-1}(b_i)\}$ with $b_i \in S^1$ is called *complexified*. It induces a polyhedral cellularization of $(S^1)^d$: call $\mathcal{F}(\mathscr{A})$ its face category.

The Nerve Lemma

Let X be a paracompact space with a (locally) finite open cover $\mathcal{U} = \{U_i\}_I$. For $J \subseteq I$ write $U_J := \bigcap_{i \in J} U_i$.

Nerve of \mathcal{U} : the abstract simplicial complex $\mathscr{N}(\mathcal{U}) = \{ \emptyset \neq J \subseteq I \mid U_J \neq \emptyset \}$ **Theorem** (Weil '51, Borsuk '48). If U_J is contractible for all $J \in \mathscr{N}(\mathcal{U})$,

 $X \simeq |\mathscr{N}(\mathcal{U})|$

THE GENERALIZED NERVE LEMMA

Let X be a paracompact space with a (locally) finite open cover $\mathcal{U} = \{U_i\}_I$.

THE GENERALIZED NERVE LEMMA

Let X be a paracompact space with a (locally) finite open cover $\mathcal{U} = \{U_i\}_I$.

$$X = \operatorname{colim} \mathscr{D}$$

$$\uparrow$$

$$\biguplus_{J} \mathscr{D}(J) / \operatorname{identifying}_{along maps}$$

THE GENERALIZED NERVE LEMMA

Let X be a paracompact space with a (locally) finite open cover $\mathcal{U} = \{U_i\}_I$.

THE GENERALIZED NERVE LEMMA

Let X be a paracompact space with a (locally) finite open cover $\mathcal{U} = \{U_i\}_I$.

THE GENERALIZED NERVE LEMMA

Let X be a paracompact space with a (locally) finite open cover $\mathcal{U} = \{U_i\}_I$.

THE GENERALIZED NERVE LEMMA

Let X be a paracompact space with a (locally) finite open cover $\mathcal{U} = \{U_i\}_I$.

THE GENERALIZED NERVE LEMMA APPLICATION: THE SALVETTI COMPLEX

Let \mathscr{A} be a *complexified* arrangement of hyperplanes in \mathbb{C}^d (i.e. the defining equations for the hyperplanes are real).

[Salvetti '87] There is a poset $\operatorname{Sal}(\mathscr{A})$ such that

 $||\operatorname{Sal}(\mathscr{A})|| \simeq M(\mathscr{A}).$

THE GENERALIZED NERVE LEMMA Application: the Salvetti complex

Let \mathscr{A} be a *complexified* arrangement of hyperplanes in \mathbb{C}^d (i.e. the defining equations for the hyperplanes are real).

[Salvetti '87] There is a poset $Sal(\mathscr{A})$ such that

 $||\operatorname{Sal}(\mathscr{A})|| \simeq M(\mathscr{A}).$

[Callegaro-D. '15] Let $X \in \mathcal{L}(\mathscr{A})$ with codim X = k. There is a map of posets $\operatorname{Sal}(\mathscr{A}) \to \operatorname{Sal}(\mathscr{A}_X)$ that induces the Brieskorn inclusion $b_X : H^k(M(\mathscr{A}_X), \mathbb{Z}) \hookrightarrow H^k(M(\mathscr{A}), \mathbb{Z}).$

SALVETTI CATEGORY [d'Antonio-D., '11]

Any complexified toric arrangement \mathscr{A} lifts to a complexified arrangement of affine hyperplanes \mathscr{A}^{\uparrow} under the universal cover

The group \mathbb{Z}^d acts on $\operatorname{Sal}(\mathscr{A}^{\uparrow})$ and we can define the *Salvetti category* of \mathscr{A} :

$$\operatorname{Sal}(\mathscr{A}) := \operatorname{Sal}(\mathscr{A}^{\uparrow}) / \mathbb{Z}^d$$

(quotient taken in the category of scwols).

Here the realization commutes with the quotient [Babson-Kozlov '07], thus

$$||\operatorname{Sal}(\mathscr{A})|| \simeq M(\mathscr{A}).$$

DISCRETE MORSE THEORY [Forman, Chari, Kozlov,...; since '98] Here is a regular CW complex

with its poset of cells:

DISCRETE MORSE THEORY

[Forman, Chari, Kozlov,...; since '98]

Elementary collapses...

DISCRETE MORSE THEORY

[Forman, Chari, Kozlov,...; since '98]

Elementary collapses...

DISCRETE MORSE THEORY

[Forman, Chari, Kozlov,...; since '98]

Elementary collapses...

DISCRETE MORSE THEORY

[Forman, Chari, Kozlov,...; since '98]

Elementary collapses...

DISCRETE MORSE THEORY

[Forman, Chari, Kozlov,...; since '98]

Elementary collapses...

DISCRETE MORSE THEORY [Forman, Chari, Kozlov,...; since '98] Elementary collapses...

DISCRETE MORSE THEORY [Forman, Chari, Kozlov,...; since '98] Elementary collapses...

DISCRETE MORSE THEORY [Forman, Chari, Kozlov,...; since '98] Elementary collapses...

DISCRETE MORSE THEORY

The sequence of collapses is encoded in a matching of the poset of cells.

Question: Does every matchings encode such a sequence?

DISCRETE MORSE THEORY

The sequence of collapses is encoded in a matching of the poset of cells.

Question: Does every matchings encode such a sequence? **Answer:** No. Only (and exactly) those without "cycles" like

Acyclic matchings \leftrightarrow discrete Morse functions.

• The theory extends to face categories [d'Antonio-D. '15]

DISCRETE MORSE THEORY Application: minimality of $Sal(\mathscr{A})$

Let ${\mathscr A}$ be a complexified toric arrangement.

Theorem. [d'Antonio-D., '15] The space $M(\mathscr{A})$ is minimal. In particular, its cohomology groups $H^k(M(\mathscr{A}), \mathbb{Z})$ are torsion-free.

Here "minimal" means: has the homotopy type of a CW-complex with one cell for each generator in homology.

Proof. Construction of an acyclic matching of the Salvetti category with $Poin(\mathcal{M}(\mathcal{A}), 1)$ critical cells.

(Uses: minimality of Salvetti complexes of abstract oriented matroids [D.'08])

THE SALVETTI CATEGORY - AGAIN

For $F \in Ob(\mathcal{F}(\mathscr{A}))$ consider the hyperplane arrangement $\mathscr{A}[F]$:

The Salvetti category - again

For $F \in Ob(\mathcal{F}(\mathscr{A}))$ consider the hyperplane arrangement $\mathscr{A}[F]$:

[Callegaro – D. '15] $|| \operatorname{Sal}(\mathscr{A}) || \simeq \operatorname{hocolim} \mathscr{D}$, where

$$\mathcal{D}: \ \mathcal{F}(\mathscr{A}) \ \to \ \mathrm{Top}$$

$$F \ \mapsto \ ||\operatorname{Sal}(\mathscr{A}[F])||$$

Call $_{\mathscr{D}}E^{p,q}_{*}$ the associated cohomology spectral sequence [Segal '68]. (equivalent to the Leray Spectral sequence of the canonical proj to $||\mathcal{F}(\mathscr{A})||$)

THE SALVETTI CATEGORY - ...AND AGAIN

For $Y \in \mathcal{C}(\mathscr{A})$ define $\mathscr{A}^Y = \mathscr{A} \cap Y$, the arrangement induced on Y.

THE SALVETTI CATEGORY - ...AND AGAIN For $Y \in \mathcal{C}(\mathscr{A})$ define $\mathscr{A}^Y = \mathscr{A} \cap Y$, the arrangement induced on Y.

For every $Y \in \mathcal{C}(\mathscr{A})$ there is a subcategory $\Sigma_Y \hookrightarrow \operatorname{Sal}(\mathscr{A})$ with

$$||\Sigma_Y|| \simeq ||\mathcal{F}(\mathscr{A}^Y) \times \operatorname{Sal}(\mathscr{A}[Y])|| \simeq Y \times M(\mathscr{A}[Y])$$

and we call ${}_YE^{p,q}_*$ the Leray spectral sequence induced by the canonical projection

$$\pi_Y: \Sigma_Y \to \mathcal{F}(\mathscr{A}^Y).$$

Spectral sequences

For every $Y \in \mathcal{C}(\mathscr{A})$, the following commutative square

induces a morphism of spectral sequences ${}_{\mathscr{D}}E^{p,q}_* \to {}_YE^{p,q}_*$.

Next, we examine the morphism of spectral sequences associated to the corresponding map from $\biguplus_{Y \in \mathcal{C}(\mathscr{A})} ||\Sigma_Y||$ to $||\operatorname{Sal}(\mathscr{A})||$.

Spectral sequences

0

Spectral sequences

Spectral sequences

Spectral sequences

Spectral sequences

A presentation for $H^*(M(\mathscr{A}), \mathbb{Z})$

The inclusions $\phi_{\bullet}: \Sigma_{\bullet} \hookrightarrow \operatorname{Sal}(\mathscr{A})$ give rise to a commutative triangle

with $f_{Y \supset Y'} := \iota^* \otimes b_{Y'}$ obtained from $\iota : Y \hookrightarrow Y'$ and the Brieskorn map b.

Proof. Carrier lemma and 'combinatorial Brieskorn'.

A presentation for $H^*(M(\mathscr{A}), \mathbb{Z})$

The inclusions $\phi_{\bullet}: \Sigma_{\bullet} \hookrightarrow \operatorname{Sal}(\mathscr{A})$ give rise to a commutative triangle

with $f_{Y \supseteq Y'} := \iota^* \otimes b_{Y'}$ obtained from $\iota : Y \hookrightarrow Y'$ and the Brieskorn map b. **Proof.** Carrier lemma and 'combinatorial Brieskorn'.

This defines a 'compatibility condition' on $\oplus_Y H^*(Y) \otimes H^*(M(\mathscr{A}[Y]))$; the (subalgebra of) compatible elements is isomorphic to $H^*(M(\mathscr{A}), \mathbb{Z})$.

A presentation for $H^*(M(\mathscr{A}), \mathbb{Z})$

More succinctly, define an 'abstract' algebra as the direct sum

$$\bigoplus_{Y \in \mathcal{C}(\mathscr{A})} H^*(Y, \mathbb{Z}) \otimes H^{\operatorname{codim} Y}(M(\mathscr{A}[Y]), \mathbb{Z})$$

with multiplication of α, α' in the Y, resp. Y' component, as

$$(\alpha * \alpha')_{Y''} := \begin{cases} f_{Y \supseteq Y''}(\alpha) \smile f_{Y' \supseteq Y''}(\alpha') & \text{if } Y \cap Y' \supseteq Y'' \text{ and} \\ & \operatorname{rk} Y'' = \operatorname{rk} Y + \operatorname{rk} Y', \\ 0 & \text{else.} \end{cases}$$

Question: is this completely determined by $\mathcal{C}(\mathscr{A})$?

Partial answer: yes, if "A has a unimodular basis".

Some references

Combinatorial algebraic topology:

• D. Kozlov, Combinatorial Algebraic Topology, Springer 2010.

Toric arrangements:

- d'Antonio, D., A Salvetti complex for toric arrangements and its fundamental group, IMRN 2011
- d'Antonio, D., *Minimality of toric arrangements*, Journal of the E.M.S., 2015
- Callegaro, D., *The integer cohomology algebra of toric arrangements*. ArXiv e-prints 2015.