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The problem

Toric arrangements

A toric arrangement in the complex torus T := (C∗)d is a set

A := {K1, . . . ,Kn}

of ‘hypertori’ Ki=χ−1i (bi) with χi∈Hom 6=0(T,C∗) and bi ∈ C∗/ = 1/ ∈ S1
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Toric arrangements

A toric arrangement in the complex torus T := (C∗)d is a set

A := {K1, . . . ,Kn}

of ‘hypertori’ Ki = {z ∈ T | zai = bi} with ai ∈ Zd\0 and bi ∈ C∗

For simplicity assume that the matrix [a1, . . . , an] has rank d.

The complement of A is

M(A ) := T \ ∪A ,
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Toric arrangements

A toric arrangement in the complex torus T := (C∗)d is a set

A := {K1, . . . ,Kn}

of ‘hypertori’ Ki = {z ∈ T | zai = bi} with ai ∈ Zd\0 and bi ∈ C∗
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The complement of A is

M(A ) := T \ ∪A ,



Context

General problem

Let X be a complex manifold, A := {Li}i a family of submanifolds of X.

Determine the topology of

M(A ) := X \
⋃
i

Li.

Examples: normal crossing divisors (Deligne), arrangements of hypersur-

faces (Dupont), configuration spaces (e.g., Totaro), affine subspace arrange-

ments (e.g., Goresky-MacPherson, De Concini-Procesi), toric arrangements,

arrangements of hyperplanes, etc.



Context

General problem

Let X be a complex manifold, A := {Li}i a family of submanifolds of X.

Determine the topology of

M(A ) := X \
⋃
i

Li.

What can combinatorial models tell us?

“Exhibit A”: Arrangements of (real) pseudospheres ↔ Oriented matroids.



Context

Hyperplanes: Brieskorn

A := {H1, . . . ,Hd}: set of (affine) hyperplanes in Cd,

L(A ) := {∩B | B ⊆ A }: (po)set of intersections (reverse inclusion).

For X ∈ L(A ): AX = {Hi ∈ A | X ⊆ Hi}.

A L(A )

X

Theorem (Brieskorn 1972). The inclusions M(A ) ↪→ M(AX) induce, for

every k, an isomorphism of free abelian groups

b :
⊕

X∈L(A )
codimX=k

Hk(M(AX),Z)
∼=−→ Hk(M(A ),Z)
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Context

Hyperplanes: The Orlik-Solomon algebra

[Arnol’d ‘69, Orlik-Solomon ‘80]

H∗(M(A ),Z) ' E/J (A ), where

E: exterior Z-algebra with degree-1 generators e1, . . . , en (one for each Hi);

J (A ): the ideal 〈
∑k
l=1(−1)lej1 · · · êjl · · · ejk | codim(∩i=1...kHji) = k − 1 〉

This is fully determined by L(A ).

For instance:

P (M(A ), t) =
∑

X∈L(A )

µL(A )(0̂, X)︸ ︷︷ ︸
Möbius
function
of L(A )

(−t)rkX

L(A )

Poin(M(A ), t) =

1 + 4t+ 5t2 + 2t3
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Context

Toric arrangements

Here the role of the intersection poset is played by C(A ), the poset of layers

(i.e. connected components of intersections of the Ki).

A : C(A ):

Theorem [Looijenga ‘95, De Concini-Procesi ‘05]

Poin(M(A ),Z) =
∑

Y ∈C(A )

µC(A )(0̂, Y )︸ ︷︷ ︸
Möbius
function
of C(A )

(−t)rkY (1 + t)d−rkY .
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Context

Toric arrangements

[De Concini – Procesi ’05] compute the cup product in H∗(M(A ),C) when

the matrix [a1, . . . , an] is totally unimodular.

[Moci – Settepanella, ’11] Combinatorial models for “thick” arrangements.

[Bibby ’14] Q-cohomology algebra of unimodular abelian arrangements

[Dupont ’14, ’15] Algebraic model for C-cohomology algebra of complements

of hypersurface arrangements in manifolds with hyperplane-like crossings;

formality (coming up!),

We strive for a (combinatorial) presentation of the integer cohomology ring.



Tools

Posets and categories

P - a partially ordered set

∆(P ) - the order complex of P

(abstract simplicial complex

of totally ordered subsets)

||P || := |∆(P )|

its geometric realization

a

b c

P

 a b c

ab ac (∅)


∆P ||P ||



Tools

Posets and categories

P - a partially ordered set C - a s.c.w.o.l. / “acyclic category”

(all invertibles are endomorphisms,

all endomorphisms are identities)

∆(P ) - the order complex of P ∆C - the nerve

(abstract simplicial complex (simplicial set of composable chains)

of totally ordered subsets)

||P || := |∆(P )| ||C|| := |∆C|

its geometric realization its geometric realization

a

b c

P

 a b c

ab ac (∅)


∆P ||P || C



Tools

Posets and categories

P - a partially ordered set C - a s.c.w.o.l. / “acyclic category”

(all invertibles are endomorphisms,

all endomorphisms are identities)

∆(P ) - the order complex of P ∆C - the nerve

(abstract simplicial complex (simplicial set of composable chains)

of totally ordered subsets)

||P || := |∆(P )| ||C|| := |∆C|

its geometric realization its geometric realization

• Posets are special cases of s.c.w.o.l.s;

• Every functor F : C → D induces a continuous map ||F || : ||C|| → ||D||.

• Quillen-type theorems relate properties of ||F || and F .



Tools

Face categories

Let X be a polyhedral complex. The face category of X is F(X), with

• Ob(F(X)) = {Xα, polyhedra of X}.

• MorF(X)(Xα, Xβ) = { face maps Xα → Xβ}

Theorem. There is a homeomorphism ||F(X)|| ∼= X. [Kozlov / Tamaki]

A toric arrangement A = {χ−1i (bi)} with bi ∈ S1 is called complexified.

It induces a polyhedral cellularization of (S1)d: call F(A ) its face category.



Tools

The Nerve Lemma

Let X be a paracompact space with a (locally) finite open cover U = {Ui}I .

For J ⊆ I write UJ :=
⋂
i∈J Ui.

U13

U1

U12

U23

U2U3

N (U) =
{

12 13 23
1 2 3

} 1

232 3

12 13

Nerve of U : the abstract simplicial complex N (U) = {∅ 6= J ⊆ I | UJ 6= ∅}

Theorem (Weil ‘51, Borsuk ‘48). If UJ is contractible for all J ∈ N (U),

X ' |N (U)|
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The Generalized Nerve Lemma

Let X be a paracompact space with a (locally) finite open cover U = {Ui}I .

U1

U2

N (U) ={
1 2
12

}
D

Consider the diagram D : N (U)→ Top, D(J) := UJ and inclusion maps.
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/
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mapping
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' ||N
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Tools

The Generalized Nerve Lemma

Application: the Salvetti complex

Let A be a complexified arrangement of hyperplanes in Cd

(i.e. the defining equations for the hyperplanes are real).

[Salvetti ‘87] There is a poset Sal(A ) such that

||Sal(A )|| 'M(A ).

[Callegaro-D. ‘15] Let X ∈ L(A ) with codimX = k.

There is a map of posets Sal(A ) → Sal(AX) that induces the Brieskorn

inclusion bX : Hk(M(AX),Z) ↪→ Hk(M(A ),Z).
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Salvetti Category

[d’Antonio-D., ‘11]

Any complexified toric arrangement A lifts to a complexified arrangement

of affine hyperplanes A � under the universal cover

Cd → T, A �:
/Zd

−→ A :

The group Zd acts on Sal(A �) and we can define the Salvetti category of A :

Sal(A ) := Sal(A �)/Zd

(quotient taken in the category of scwols).

Here the realization commutes with the quotient [Babson-Kozlov ‘07], thus

||Sal(A )|| 'M(A ).



Tools

Discrete Morse Theory

[Forman, Chari, Kozlov,...; since ’98]

Here is a regular CW complex

with its poset of cells:
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Tools

Discrete Morse Theory

The sequence of collapses is encoded in a matching of the poset of cells.

Question: Does every matchings encode such a sequence?

Answer: No. Only (and exactly) those without “cycles” like

.

Acyclic matchings ↔ discrete Morse functions.

• The theory extends to face categories [d’Antonio-D. ’15]
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Answer: No. Only (and exactly) those without “cycles” like

.

Acyclic matchings ↔ discrete Morse functions.
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Tools

Discrete Morse Theory

Application: minimality of Sal(A )

Let A be a complexified toric arrangement.

Theorem. [d’Antonio-D., ‘15] The space M(A ) is minimal.

In particular, its cohomology groups Hk(M(A ),Z) are torsion-free.

Here ”minimal” means: has the homotopy type of a CW-complex with one cell

for each generator in homology.

Proof. Construction of an acyclic matching of the Salvetti category with

Poin(M(A ), 1) critical cells.

(Uses: minimality of Salvetti complexes of abstract oriented matroids [D.‘08])



Our solution

The Salvetti category - again

For F ∈ Ob(F(A )) consider the hyperplane arrangement A [F ]:

F

A [F ]

[Callegaro – D. ’15] ||Sal(A )|| ' hocolim D , where

D : F(A ) → Top

F 7→ ||Sal(A [F ])||

Call DE
p,q
∗ the associated cohomology spectral sequence [Segal ‘68].

(equivalent to the Leray Spectral sequence of the canonical proj to ||F(A )||)
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Our solution

The Salvetti category - ...and again

For Y ∈ C(A ) define A Y = A ∩ Y , the arrangement induced on Y .

A : A Y = A ∩ Y :

For every Y ∈ C(A ) there is a subcategory ΣY ↪→ Sal(A ) with

and we call Y E
p,q
∗ the Leray spectral sequence induced by the canonical

projection

πY : ΣY → F(A Y ).



Our solution

The Salvetti category - ...and again

For Y ∈ C(A ) define A Y = A ∩ Y , the arrangement induced on Y .

A : A Y = A ∩ Y :

For every Y ∈ C(A ) there is a subcategory ΣY ↪→ Sal(A ) with

||ΣY || ' ||F(A Y )× Sal(A [Y ])|| ' Y ×M(A [Y ])

and we call Y E
p,q
∗ the Leray spectral sequence induced by the canonical

projection

πY : ΣY → F(A Y ).



Our solution

Spectral sequences

For every Y ∈ C(A ), the following commutative square

M(A ) ' ||Sal(A )|| ||ΣY ||

||F(A )|| ||F(A Y )||

⊇

π πY

⊇

induces a morphism of spectral sequences DE
p,q
∗ → Y E

p,q
∗ .

Next, we examine the morphism of spectral sequences associated to the

corresponding map from ]Y ∈C(A )||ΣY || to || Sal(A )||.



Our solution

Spectral sequences

[Callegaro – D., ’15] (all cohomologies with Z-coefficients)

H∗(M(A ))
⊕

Y ∈C(A )H
∗(Y )⊗H∗(M(A [Y ]))

DE
p,q
2 =⊕

Y ∈C(A )
rkY=q

Hp(Y )⊗Hq(M(A [Y ]))

⊕
Y ∈C(A )

Y E
p,q
2 =⊕

Y ∈C(A )

Hp(Y )⊗Hq(M(A [Y ]))

On Y0-summand: ω ⊗ λ

 i∗(ω)⊗ b(λ) if Y0 ≤ Y

0 else.


Y

“Brieskorn” inclusion
i : Y ↪→ Y0
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Our solution

A presentation for H∗(M(A ),Z)
The inclusions φ• : Σ• ↪→ Sal(A ) give rise to a commutative triangle

H∗(||Sal(A )||)
⊕

Y ′∈C,Y ′⊇Y
rkY ′=q

H∗(Y ′)⊗Hq(M(A [Y ′]))

H∗(Y )⊗Hq(M(A [Y ]))

∑
fY⊇Y ′ φ∗Y

⊕φ∗Y ′

with fY⊇Y ′ := ι∗ ⊗ bY ′ obtained from ι : Y ↪→ Y ′ and the Brieskorn map b.

Proof. Carrier lemma and ‘combinatorial Brieskorn’.

This defines a ‘compatibility condition’ on ⊕YH∗(Y )⊗H∗(M(A [Y ]));

the (subalgebra of) compatible elements is isomorphic to H∗(M(A ),Z).
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A presentation for H∗(M(A ),Z)
More succinctly, define an ‘abstract’ algebra as the direct sum

⊕
Y ∈C(A )

H∗(Y,Z)⊗HcodimY (M(A [Y ]),Z)

with multiplication of α, α′ in the Y , resp. Y ′ component, as

(α ∗ α′)Y ′′ :=


fY⊇Y ′′(α) ^ fY ′⊇Y ′′(α′) if Y ∩ Y ′ ⊇ Y ′′ and

rkY ′′ = rkY + rkY ′,

0 else.

Question: is this completely determined by C(A )?

Partial answer: yes, if “A has a unimodular basis”.
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