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This talk

1. Problem, context
2. Our tools

3. Our solution




THE PROBLEM

TORIC ARRANGEMENTS

A toric arrangement in the complex torus T := (C*)? is a set
of = {K17~-~7Kn}

of ‘hypertori’ K;=yx; "(b;) with x; € Homo(T,C*) and b; € C*/ =1/ € S*
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TORIC ARRANGEMENTS

A toric arrangement in the complex torus T := (C*)? is a set
of = {K17~-~7Kn}

of ‘hypertori’ K; = {z € T'| 2% = b;} with a; € Z?\0 and b; € C*

For simplicity assume that the matrix [a, ..., a,] has rank d.

The complement of &/ is

M(o) =T\ U,



THE PROBLEM

TORIC ARRANGEMENTS

A toric arrangement in the complex torus T := (C*)? is a set
of = {K17~-~7Kn}

of ‘hypertori’ K; = {z € T'| 2% = b;} with a; € Z?\0 and b; € C*

The complement of &/ is

M(o) =T\ U,

PROBLEM: Determine the ring H*(M (<), 7Z).



CONTEXT

GENERAL PROBLEM

Let X be a complex manifold, & := {L;}; a family of submanifolds of X.
Determine the topology of

M(a) =X \|JLs.

Examples: normal crossing divisors (Deligne), arrangements of hypersur-
faces (Dupont), configuration spaces (e.g., Totaro), affine subspace arrange-
ments (e.g., Goresky-MacPherson, De Concini-Procesi), toric arrangements,

arrangements of hyperplanes, etc.



CONTEXT

GENERAL PROBLEM

Let X be a complex manifold, & := {L;}; a family of submanifolds of X.

Determine the topology of

M(a) =X \|JLs.

What can combinatorial models tell us?

“Exhibit A”: Arrangements of (real) pseudospheres <+ Oriented matroids.
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o = {Hy,..., Hy}: set of (affine) hyperplanes in C¢,
L(o):={NB | B C }: (po)set of intersections (reverse inclusion).
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CONTEXT

HYPERPLANES: BRIESKORN

o = {Hy,..., Hy}: set of (affine) hyperplanes in C¢,

L(o):={NB | B C }: (po)set of intersections (reverse inclusion).
For X € L(&): @/x ={H; € & | X C H;}.

o/ 3 L(e)
T

=

Theorem (Brieskorn 1972). The inclusions M (&) — M («/x) induce, for
every k, an isomorphism of free abelian groups

b P HY(M(wx),Z) = HY (M(),2)

XeLl()
codim X=k



CONTEXT

HYPERPLANES: THE ORLIK-SOLOMON ALGEBRA
[Arnol’d ‘69, Orlik-Solomon ‘80]

H*(M(«/),Z) ~ E/J (&), where
E: exterior Z-algebra with degree-1 generators ey, ..., e, (one for each H;);

J(<): the ideal ( S35 (=1)ej, -~ &, - €5, | codim(Mimy_xHj,) =k —1)



CONTEXT

HYPERPLANES: THE ORLIK-SOLOMON ALGEBRA
[Arnol’d ‘69, Orlik-Solomon ‘80]

H*(M(«/),Z) ~ E/J (&), where
E: exterior Z-algebra with degree-1 generators ey, ..., e, (one for each H;);

J(): the ideal ( Zle(—l)lejl o€, - ey, | codim(Mi=1. 1, Hj) =k —1)

This is fully determined by £(). L(e)
For instance:

P(M(/).t) = D peen(0,X) (=X
XeL() Mobius .

f%nﬁc‘zizo{r; POIH(M(JZ%), t) =
14 4t + 5% + 263



CONTEXT
TORIC ARRANGEMENTS
Here the role of the intersection poset is played by C(), the poset of layers

(i.e. connected components of intersections of the K;).
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CONTEXT

TORIC ARRANGEMENTS
Here the role of the intersection poset is played by C(), the poset of layers

(i.e. connected components of intersections of the K;).

LA
N/

o C(e): .

Theorem [Looijenga ‘95, De Concini-Procesi ‘05]

Poin(M (), Z) = Z MC(gf)((A),Y)(—t)rkY(l—I—t)d_rky.

Yec(e) Mobius
function

of C(of)



CONTEXT

TORIC ARRANGEMENTS

[De Concini — Procesi 05] compute the cup product in H*(M (%), C) when

the matrix [aq,...,a,] is totally unimodular.
[Moci — Settepanella, "11] Combinatorial models for “thick” arrangements.
[Bibby '14] @-cohomology algebra of unimodular abelian arrangements

[Dupont '14, ’15] Algebraic model for C-cohomology algebra of complements
of hypersurface arrangements in manifolds with hyperplane-like crossings;

formality (coming up!),

We strive for a (combinatorial) presentation of the integer cohomology ring.



TooLs
POSETS AND CATEGORIES

P - a partially ordered set

A(P) - the order complex of P

(abstract simplicial complex

of totally ordered subsets)
1P| = [A(P)]

its geometric realization

a
a b c
b/ \C { ab ac (0) } *———0

P AP || P



TooLs
POSETS AND CATEGORIES

P - a partially ordered set C - a s.cw.o.l. | “acyclic category”

(all invertibles are endomorphisms,

all endomorphisms are identities)
A(P) - the order complex of P AC - the nerve
(abstract simplicial complex (simplicial set of composable chains)
of totally ordered subsets)
I1P|| = |AP) el == 1ac]

its geometric realization its geometric realization



TooLs
POSETS AND CATEGORIES

P - a partially ordered set C - a s.cw.o.l. | “acyclic category”

(all invertibles are endomorphisms,

all endomorphisms are identities)
A(P) - the order complex of P AC - the nerve
(abstract simplicial complex (simplicial set of composable chains)
of totally ordered subsets)
I1P|| = |AP) el == 1ac]

its geometric realization its geometric realization

e Posets are special cases of s.c.w.o.l.s;
e Every functor F': C — D induces a continuous map ||F|| : ||C|| — ||D||.

e Quillen-type theorems relate properties of ||F|| and F.



TooLs

FACE CATEGORIES
Let X be a polyhedral complex. The face category of X is F(X), with

e Ob(F(X)) = {Xa, polyhedra of X}.

o Morr(x)(Xa, Xp) = { face maps X, — X3}
Theorem. There is a homeomorphism ||F(X)|| = X. [Kozlov / Tamaki]

A toric arrangement 7 = {x; ' (b;)} with b; € S* is called complezified.
It induces a polyhedral cellularization of (S1)?: call F (&) its face category.

> LR
& Sy



TooLs

THE NERVE LEMMA
Let X be a paracompact space with a (locally) finite open cover U = {U; };.

For J C I write Uy := ;s Ui.

N (U) :{ 112 123 233 } 12 13

Nerve of U: the abstract simplicial complex A (U) ={0 # J C 1| U, # 0}
Theorem (Weil ‘51, Borsuk ‘48). If U, is contractible for all J € A" (U),

X = |4 WU
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THE GENERALIZED NERVE LEMMA
Let X be a paracompact space with a (locally) finite open cover U = {U; };.

7 @ @

/N
v A

Consider the diagram 2 : A (U) — Top, 2(J) := U, and inclusion maps.
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Consider the diagram 2 : A (U) — Top, 2(J) := U, and inclusion maps.

X = colim2
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E‘J@(J)/identifying
J

along maps
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J CJn mapping
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THE GENERALIZED NERVE LEMMA
Let X be a paracompact space with a (locally) finite open cover U = {U; };.

~
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/NN
un. o

Consider the diagram 2 : A (U) — Top, 2(J) := U, and inclusion maps.

X = colim92 ¢—— hocolim 2 < hocolim 7

T G.N.L.: ~ T

H—J‘@(J) identifying Lﬂ A x @(Jn)/glue in
J JoCoCl mapping

along maps cylinders



TooLs

THE GENERALIZED NERVE LEMMA
Let X be a paracompact space with a (locally) finite open cover U = {U; };.

~

7 @ @ 7 00

/NN
un. o

Consider the diagram 2 : A (U) — Top, 2(J) := U, and inclusion maps.

X = colim? W hocolim 2 ¢————— hocolim &
T T ~ || [ 7]
tl—J@(J) identifying Lﬂ A x @(Jn)/glue in
J JoCoCl mapping

along maps cylinders



TooLs

THE GENERALIZED NERVE LEMMA
APPLICATION: THE SALVETTI COMPLEX

Let &7 be a complezified arrangement of hyperplanes in C¢

(i.e. the defining equations for the hyperplanes are real).

[Salvetti ‘87] There is a poset Sal() such that

|| Sal(«/)|| ~ M ().



TooLs

THE GENERALIZED NERVE LEMMA
APPLICATION: THE SALVETTI COMPLEX

Let &7 be a complezified arrangement of hyperplanes in C¢

(i.e. the defining equations for the hyperplanes are real).

[Salvetti ‘87] There is a poset Sal() such that

|| Sal(«/)|| ~ M ().

[Callegaro-D. ‘15] Let X € £(&/) with codim X = k.

There is a map of posets Sal(«/) — Sal(«/x) that induces the Brieskorn
inclusion by : H*(M(e/x),Z) — H*(M (<), Z).



SALVETTI CATEGORY
[d’Antonio-D., ‘11]

Any complexified toric arrangement .7 lifts to a complexified arrangement

of affine hyperplanes 7! under the universal cover

Ct 5T, ol 1 . @

The group Z< acts on Sal(«/!) and we can define the Salvetti category of <"

Sal(«/) := Sal(&/'!) /74
(quotient taken in the category of scwols).

Here the realization commutes with the quotient [Babson-Kozlov ‘07], thus

|| Sal(e)|| ~ M ().



TooLs

DISCRETE MORSE THEORY

[Forman, Chari, Kozlov,...; since '98]

Here is a regular CW complex

with its poset of cells:

AN
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. are homotopy equivalences.
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DISCRETE MORSE THEORY

[Forman, Chari, Kozlov,...; since '98]

Elementary collapses...

. are homotopy equivalences.
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DISCRETE MORSE THEORY

The sequence of collapses is encoded in a matching of the poset of cells.

Question: Does every matchings encode such a sequence?



TooLs

DISCRETE MORSE THEORY

The sequence of collapses is encoded in a matching of the poset of cells.

Question: Does every matchings encode such a sequence?

Answer: No. Only (and exactly) those without “cycles” like

DI

Acyclic matchings <> discrete Morse functions.

e The theory extends to face categories [d’Antonio-D. 15]



TooLs

DISCRETE MORSE THEORY

APPLICATION: MINIMALITY OF Sal(.%/)

Let &7 be a complexified toric arrangement.

Theorem. [d’Antonio-D., ‘15] The space M (%) is minimal.
In particular, its cohomology groups H*(M (<), 7Z) are torsion-free.

Here "minimal” means: has the homotopy type of a CW-complex with one cell

for each generator in homology.

Proof. Construction of an acyclic matching of the Salvetti category with
Poin(M (&), 1) critical cells.

(Uses: minimality of Salvetti complexes of abstract oriented matroids [D.08])



OUR SOLUTION

THE SALVETTI CATEGORY - AGAIN
For F € Ob(F(«7)) consider the hyperplane arrangement <7 [F]:

& <



OUR SOLUTION

THE SALVETTI CATEGORY - AGAIN
For F' € Ob(F (7)) consider the hyperplane arrangement o7 [F/:

& <

[Callegaro — D. "15] || Sal(«?)|| ~ hocolim 2, where

2: F(&) — Top
e |[Sal(«[F)]

Call 4 EY? the associated cohomology spectral sequence [Segal ‘68].

(equivalent to the Leray Spectral sequence of the canonical proj to ||F(<7)||)
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THE SALVETTI CATEGORY - ...AND AGAIN
For Y € C(&/) define &Y = o/ NY, the arrangement induced on Y.

o Y =g NY : O



OUR SOLUTION

THE SALVETTI CATEGORY - ...AND AGAIN
For Y € C(«/) define &Y = &/ NY, the arrangement induced on Y.

o Y =g NY : O

For every Y € C(«/) there is a subcategory ¥y — Sal(«/) with
12y ]| = [|[F (&) x Sal(«/[Y])]| 2 Y x M(/[Y])

and we call y EY'? the Leray spectral sequence induced by the canonical

projection

Ty : Yy — F(&Y).



OUR SOLUTION

SPECTRAL SEQUENCES

For every Y € C(&), the following commutative square

M(7) =~ || Sal(e/)|| «———— ||By|
|1F ()| e—=—— || F(«r)]]

induces a morphism of spectral sequences ¢ EL'? — y ED9,

Next, we examine the morphism of spectral sequences associated to the

corresponding map from Wy cc ()| |Ey || to || Sal(e)]|.



OUR SOLUTION

SPECTRAL SEQUENCES

[Callegaro — D., ’15] (all cohomologies with Z-coefficients)

H*(M (7)) Dy ecn ™ (Y) @ H*(M(/[Y]))

J J

9By = D vE =
YeC(o)
P H(Y)® HI(M(]Y]) P H (V)0 HI(M(]Y])

YeC(«) YeC(«)
rkY=q
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SPECTRAL SEQUENCES

[Callegaro — D., ’15] (all cohomologies with Z-coefficients)
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J J

9By = D vE =
YeC(o)
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(W) ®b(\) Yy <Y

On Yp-summand: w ® At
0 else.
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OUR SOLUTION

SPECTRAL SEQUENCES

[Callegaro — D., ’15] (all cohomologies with Z-coefficients)

Hom. of rings

H*(M (7)) Dy ecn ™ (Y) @ H*(M(/[Y]))
Jbij. lbij.
@Eg,q — @ YEM
Hom. of rings YeC(o)
P H(Y)® HI(M(]Y]) P H (V)0 HI(M(]Y])
YeC(«) YeC(«)

rkY=q

( W @b\ Y <Y
\ 0 else.

On Yp-summand: w ® At



OUR SOLUTION

SPECTRAL SEQUENCES

[Callegaro — D., ’15] (all cohomologies with Z-coefficients)

Hom. of rings

H (M(o/)) — 228 @y oo H(Y) © HY (M([Y)))
Jbij. lbij.
@Eg,q — @ YEM
Hom. of rings YeC(o)
P H(Y)® HI(M(]Y]) P H (V)0 HI(M(]Y])
YeC(«) YeC(«)

rkY=q

( W @b\ Y <Y
\ 0 else.

On Yp-summand: w ® At



OUR SOLUTION
A PRESENTATION FOR H*(M(</),Z)

The inclusions ¢, : X4 < Sal(&/) give rise to a commutative triangle

S0y
D ) H M) +——— H(||Sal(=)])

Y'ec,y' DY

rer=a JZfYQY’ Py
H*(Y)® HI(M([Y]))
with fyoys = ¢* @ by, obtained from ¢ : Y < Y’ and the Brieskorn map b.

roof. Carrier lemma and ‘combinatorial Brieskorn’.
Proof. C 1 d* binat 1 Brieskorn’



OUR SOLUTION
A PRESENTATION FOR H*(M(</),Z)

The inclusions ¢, : X4 < Sal(&/) give rise to a commutative triangle

S0y
D ) H M) +——— H(||Sal(=)])

Y'ec,y' DY

rer=a JZfYQY’ Py
H*(Y)® HI(M([Y]))
with fyoys = ¢* @ by, obtained from ¢ : Y < Y’ and the Brieskorn map b.

roof. Carrier lemma and ‘combinatorial Brieskorn’.
Proof. C 1 d* binat 1 Brieskorn’

This defines a ‘compatibility condition’ on &y H*(Y) @ H* (M (/[Y)));
the (subalgebra of) compatible elements is isomorphic to H*(M (<), Z).



A PRESENTATION FOR H*(M(</),Z)

More succinctly, define an ‘abstract’ algebra as the direct sum

P H(v,z) @ HOM™Y (M(/]Y)),Z)
Yec(s)
with multiplication of o, @’ in the Y, resp. Y’ component, as
fy;y// (Oé) ~— fy/gy// (Oé,) lf Y n Y/ 2 Y// and

(a* o)y = kY =1kY +1kY’,

0 else.

Question: is this completely determined by C(<)?

Partial answer: yes, if “o/ has a unimodular basis”.
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