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First vague question

Let f : X → Y an algebraic map of complex algebraic varieties, denote

Xy := f−1(y)

Question: How does the topology of Xy varies with y?

This is very vague, but something can be said already in this generality,

depending on finiteness properties of algebraic maps.

A similar question would have no reasonable answer for complex analytic

maps of complex varieties.
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Ehresmann lemma

A first step: assume that X and Y are nonsingular.

A classical, result in differential topology ensures that:

If f is proper (=inverse image of compact is compact in the classical

topology) and smooth (= Df surjective)

Then the topological (even differentiable) type of Xy is constant on

connected components of Y .
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Ehresmann lemma

Properness is essential, otherwise one is always free to drill holes in the

fibres (not too many, though...finiteness).

The idea behind the proof:

restrict f to a real curve in Y , lift the vector field ∂
∂t

and follow its

trajectories (properness ensures completeness of the vector field).

One may wonder if anything like that holds in positive characteristic (but

what is the topological type?), we’ll discuss this shortly later.

Smooth maps are rare in algebraic geometry, especially if Y is "big",

e.g.projective, but...
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Generic smoothness

Still assuming, for simplicity, X nonsingular and f proper

Generic smoothness Theorem: There is a dense Zariski-open set Yreg ⊆ Y
such that:

f| : f−1(Yreg)→ Yreg is smooth,

therefore all fibres over points of Yreg (i.e. most fibres) have the same

differentiable type.
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Stratifications

A difficult theorem summing up work of several mathematicians,

(H. Whitney, R. Thom, J. Mather, H. Hironaka, J.L. Verdier)

gives a far reaching generalization of generic smoothness + Ehresmann

lemma
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Stratifications

Given any algebraic map f : X → Y of complex algebraic varieties:

there is a decomposition

Y =
∐

Yα

with the properties:

The Yα are locally closed in the Zariski topology and nonsingular.

For every α,

f| : f−1(Yα)→ Yα

is a topologically (in the euclidean topology) locally trivial fibration.

no properness hypothesis or nonsingularity is assumed.

This is an absolute result, i.e. the stratification invariant under

Aut(C).
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Stratifications

This theorem seems to end the question:

One just has to find the decomposition Y =
∐
Yα (the Yα are called the

strata of the map)

Problem: A stratification is usually extremely hard to find, and even if one

is able to find it, usually it contains very many strata.
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Stratifications

Example: The universal degree d plane curve.
Let P∨ the projectivization of the space of homogeneous degree d

polynomials in three indeterminates (X0, X1, X2), and

C = {(P, [X0, X1, X2]) ∈ P∨ × P2 : P (X0, X1, X2) = 0}.

Finding a stratification for this map is practically impossible for big d.

Let’s draw the case d = 3.
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Betti and Euler functions

A less ambitious, but still quite interesting, question:

Understand the functions:

Pt : Y → Z[T ] given by Pt(y) =
∑

dim Hk(Xy,Q)T k,

or even χ : Y → Z with χ(y) =
∑

(−1)k dim Hk(Xy,Q).
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Counting functions

Assume our map is defined over a finite field Fq

Assume that, for every r and y ∈ Yreg(Fqr )

we know the counting function ]{Xy(Fqrn)} for every n

What can we say about ]{Xy(Fqrn)} for y ∈ Y ?
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Betti and Euler functions

By definition a constructible function on an algebraic variety X is a linear

combination ∑
Z⊆X

nZ1Z

(with coefficients in a fixed ring, which in our case is Z[T ] for Pt and Z for

χ) of characteristic functions of closed algebraic subvarieties.

Hence, existence of stratifications ensures that these functions are

constructible

This holds true also in positive characteristic, with étale cohomology groups

with coefficients in Q` (constructibility theorem)
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Continuations

The question becomes more sensible if we change the basis {1Z} for
constructible functions to another one, more cleverly related to the

geometry of the map.

There are (at least) two ways to continue a constructible function, both due

to MacPherson

1 (Euler obstruction) This is a function EuZ , supported on Z which is

= 1 on the regular points of Z, but takes into account the singularities

of Z.

2 (Intersection cohomology) This is associated not only to a subvariety

Z, but also to a locally constant sheaf L on an open subset Z0. It

produces a function with values in Z[T ], which is = rkL on Z0. We

denote it by IHZ(L )
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Supports

We can write

χ =
∑
α

nαEuYα

and

Pt =
∑
α

sα(T )IHYα(Lα),

where sα(T ) are polynomials.

Which strata actually appear in the sum?

The strata which actually appear are called supports (Euler supports in the

first case)
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"Unexpected smoothness"

Assume X nonsingular, and y ∈ Yα, with Yα a codimension k stratum.

For a generic k- dimensional slice Σ ⊂ Y at y, we have

f−1(Σ) is nonsingular

In general one cannot expect more, i.e. if dim Σ < k, then f−1(Σ) is

singular

Sometimes, though, this may not happen, then we call this unexpected

smoothness
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"Example: the universal Weiestrass cubic."

Let f : X ⊂ C2 × P2(C)→ C2 = Y be the family of projective curves

{(a, b, [X,Y, Z]) ∈ C2 × P2(C), ZY 2 −X3 − aXZ2 − bZ3 = 0}. (1)

Let ∆ ⊂ C2 be defined by 4a3 + 27b2 = 0. For (a, b) /∈ ∆ the fibre is a

non-singular curve of genus one, while, for (a, b) ∈ ∆ \ {o}, it is a rational

nodal curve. Finally f−1(o) is a rational curve with a cusp.

Although o is a zero dimensional stratum, the inverse image of a generic

one-dimensional disc through o is nonsingular.

We have unexpected smoothness at o.
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Higher discriminants of a map

We define:

∆i(f) = {y ∈ Y s.t. there is no Di−1 ↪→ Y through y transverse to f}.

where, given y ∈ Y , by “a k−dimensional disc Dk ↪→ Y through y", we

mean a germ of nonsingular k−dimensional subvariety passing through y.

A k−dimensional disc Dk ↪→ Y through y ∈ Y is transverse to f if f−1(Dk)

is nonsingular along f−1(y) and

codim(f−1(Dk), X) = codim(Dk, Y ).
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Higher discriminants of a map

Properties of the ∆i(f)′s:

Y = ∆0(f) ⊇ ∆1(f) ⊇ ∆2(f) ⊇ ∆3(f) ⊇ · · ·

∆1(f) is by definition the locus where the fibre is singular – that is, the

usual discriminant.

By generic smoothness,

codim∆i(f) ≥ i.



Higher discriminants of a map

Properties of the ∆i(f)′s:

Y = ∆0(f) ⊇ ∆1(f) ⊇ ∆2(f) ⊇ ∆3(f) ⊇ · · ·

∆1(f) is by definition the locus where the fibre is singular – that is, the

usual discriminant.

By generic smoothness,

codim∆i(f) ≥ i.



Higher discriminants of a map

Properties of the ∆i(f)′s:

Y = ∆0(f) ⊇ ∆1(f) ⊇ ∆2(f) ⊇ ∆3(f) ⊇ · · ·

∆1(f) is by definition the locus where the fibre is singular – that is, the

usual discriminant.

By generic smoothness,

codim∆i(f) ≥ i.



Higher discriminants of a map

Properties of the ∆i(f)′s:

Y = ∆0(f) ⊇ ∆1(f) ⊇ ∆2(f) ⊇ ∆3(f) ⊇ · · ·

∆1(f) is by definition the locus where the fibre is singular – that is, the

usual discriminant.

By generic smoothness,

codim∆i(f) ≥ i.



Higher discriminants of a map

We think about these discriminants in the following way. Moving δ ∈ ∆(f)

off the discriminant to 6δ /∈ ∆1(f) changes the fibre topology: Xδ 6∼ X 6 δ. But
we can blur our focal point to obscure this feature: we pass to a one

dimensional disc D 3 δ, chosen generic and small enough to retract

f−1(D) =: XD ∼ Xδ. A one dimensional disc cannot be perturbed off the

discriminant, and indeed for δ general in ∆1(f), a perturbation D′ of the
thickening D induces a homeomorphism XD′ ∼ XD. The higher discriminant

∆2(f) is the locus which still appears to our blurred vision: where even a

general perturbation of a general one parameter thickening changes the

fibre topology.



Higher discriminants are supports

Theorem The supports of the map f are contained among the

codimension k components of the ∆k(f)’s.

The condition is not necessary, a higher discriminant may not be a support,

but ....generic points.
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