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1. Lecture 1

Abstract tropical curves

Definition 1.
A (weighted) tropical curve is a triple Γ = (G, `, w) such that

G = (V,E) is a graph;

` : E → R>0 is a length function on the edges;

w : V → Z≥0 is a weight function on the vertices.

Convention. Graphs and tropical curves are connected.

The genus of the tropical curve Γ = (G, `, w) is

g(Γ) := g(G,w) := b1(G) +
∑
v∈V

w(v),

b1(G) = rkZH1(G,Z)

Convention. To avoid dealing with special cases, genus ≥ 2.

Definition 2. A tropical curve Γ = (G, `, w) is stable if its underlying
graph G = (V,E) is stable, i.e.

if every vertex of valency 0 has weight at least 3.

◦ ◦ ◦ ◦ ◦

Stable Not stable

Remark. For any g ≥ 2 there exist finitely many (non-isomorphic)
stable graphs of genus g.
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Question. Why a weight on the vertices?

◦

l1

l2

l3

◦ l3→0
// ◦ l2l1

l2→0
// ◦l1

l1→0
// ◦

Answer. Because the genus may drop under specialization.

Remedy. ([BMV11]) Add weights to the vertices and refine the con-
cept of specialization.

•

l1

l2

l3
11
• l3→ // • l2l1

2

l2→0
// •l1

3

l1→0
// • 4

Specializations of tropical curves correspond to weighted edge-contractions
of underlying graphs. we shall denote by

(G,w) −→ (G′, w′) if (G′, w′) is a contraction of (G,w)

Conclusion. Specializations of tropical curves, or contractions of
weighted graphs, preserve the genus.

Remark. Think of a vertex v of positive weight w(v) as having w(v)
invisible loops of zero length based at it.
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Equivalence of tropical curves

Two tropical Γ = (G, `, w) and Γ′ = (G′, `′, w′) are isomorphic if
there is an isomorphism between G and G′ which preserves both the
weights of the vertices and the lengths of the edges.

Definition 3. Two tropical curves, Γ and Γ′are equivalent if one ob-
tains isomorphic tropical curves, Γ and Γ′, after performing the follow-
ing two operations until Γ and Γ′ are stable.

- Remove all weight-zero vertices of valency 1 and their adjacent
edge.

- Remove every weight-zero vertex v of valency 2 and replace it by
a point (not a vertex), so that the two edges adjacent to v become one
edge.

◦
Γ = ◦ l7

l9

l8

•

l1

l2

l3

◦

l4

l5 • l6 ◦ Γ = •

l1

l2

l3+l4

◦ l5 •
◦ ◦

Figure 1. A tropical curve Γ and its stabilization, Γ.

Lemma 4. Let (G,w) be a stable graph. Then G has at most 3g − 3
edges, and the following are equivalent.

(1) |E(G)| = 3g − 3.
(2) Every vertex of G has weight 0 and valency 3.
(3) Every vertex of G has weight 0 and |V (G)| = 2g − 2.

Proof. EXERCISE. ♣
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The moduli space of tropical curves of genus g

M trop
g = moduli space of equiv. classes of tropical curves of genus g.

Set theoretically

M trop
g =

⊔
(G,w)∈Sg

M trop(G,w)

where

Sg = set of stable graphs of genus g

and

M trop(G,w) =
tropical curves having (G,w) as underlying graph

isomorphism

Remark. From now on we shall assume tropical curves are stable.

Goal. Construction of M trop
g as a topological space (following [Cap12]).

Start from constructing the stratum M trop(G,w).
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Construction of M trop
g as a topological space

Step 1. Construction of the stratum M trop(G,w).

Set G = (V,E).
Consider the open cone in R|E| with the euclidean topology:

R|E|>0 .

There is a natural surjection

R|E|>0 −→ M trop(G,w)

` = (l1, . . . , l|E|) 7→ (G, `, w)

Aut(G,w)= automorphism group of (G,w).

Aut(G,w) acts on R|E|>0 by permuting the coordinates.

The above surjection is the quotient by that action:

M trop(G,w) =
R|E|>0

Aut(G,w)

with the quotient topology.

We are done with M trop(G,w).

Now look at specializations of curves in M trop(G,w).
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Step 2. Study specializations of curves in M trop(G,w).

The boundary of the closed cone

R|E|≥0

parametrizes tropical curves with fewer edges, that are specializations
of tropical curves in the open cone.

The closure in M trop
g of a stratum is a union of strata:

M trop(G,w) ⊂M trop(G′, w′) ⇔ (G′, w′)→ (G,w).

The action of Aut(G,w) extends to the closed cone so that we have

M̃ trop(G,w) := R|E|≥0/Aut(G,w).

Step 3. Construct M trop
g .

For every stable graph (G,w) have a natural map

M̃ trop(G,w) := R|E|≥0/Aut(G,w) −→M trop
g

mapping a curve to its isomorphism class.
Hence we have the following natural map

⊔
(G,w)∈Sg :
|E|=3g−3

M̃ trop(G,w) −→M trop
g .

Question. Is the above map surjective?

Answer. Yes, by the following proposition.

Proposition 5. Let (G,w) be a stable graph of genus g.
Then there exists a stable graph (G′, w′) of genus g with 3g − 3 edges
such that

M trop(G,w) ⊂M trop(G′, w′).
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Example.

G G′′ G′

• 2
oo ◦

v
oo ◦

e

u1 u2
◦

gg

◦
e

u1 u2◦

We can thus endow M trop
g of the quotient topology.

Theorem 6 ([Mik07], [BMV11], [Cap12]). The topological space M trop
g

is connected, Hausdorff, and of pure dimension 3g − 3 (i.e. it has a
dense open subset which is a (3g − 3)-dimensional orbifold over R).
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Extended tropical curves

Remark. M trop
g is not compact.

Definition 7. An extended tropical curve is a triple Γ = (G, `, w) where
(G,w) is a stable graph and ` : E → R>0 ∪ {∞} an “extended” length
function.

Compactify R ∪ {∞} by the Alexandroff one-point compactification,
and consider its subspaces with the induced topology.

The moduli space of extended tropical curves with (G,w) as underlying
graph:

M trop(G,w) =
(R>0 ∪ {∞})|E|

Aut(G,w)

with the quotient topology.

As for M trop
g , we have

⊔
(G,w)∈Sg :
|E|=3g−3

M̃ trop
∞ (G,w) −→M trop

g =
⊔

(G,w)∈Sg

M trop(G,w).

Theorem 8. [Cap12] The moduli space of extended tropical curves,

M trop
g , with the quotient topology, is compact, normal, and contains

M trop
g as dense open subset.

Remark. A tropical curve will correspond to families of smooth alge-
braic curves degenerating to nodal ones.

An extended tropical curve will correspond to families of nodal alge-
braic curves degenerating, again, to nodal ones.

Under this correspondence an extended tropical curve Γ = (G,w,∞),
all of whose edges have length equal to∞, corresponds to locally trivial
families all of whose fibers have dual graph (G,w).
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2. Lecture 2.

From algebraic curves to tropical curves

Algebraic curve = projective variety of dimension one over an alge-
braically closed field k.

We shall be interested exclusively in

Nodal curves = reduced (possibly reducible) curves admitting at most
nodes as singularities.

Convention. Curves will be connected.

To a curve X we associate its (weighted) dual graph, (GX , wX)

V (GX) = irreducible components of X;

for v ∈ V (GX)

wX(v) = geometric genus of the corresponding component;

E(GX) = nodes of X.

An edge e joins the vertices v and w if the corresponding components
mett at the node e.

X is stable if so is its dual graph, (GX , wX).

Proposition 9. A connected curve is stable if and only if it has finitely
many automorphisms, if and only if its dualizing line bundle is ample.

Proof. EXERCISE (if you know some algebraic geometry). ♣
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Proposition 10. The (arithmetic) genus of an algebraic curve X is
equal to the genus of its dual graph, (GX , wX).

Proof. g(X) := h1(X,OX).

Now, write GX = (V,E), and consider the normalization map

ν : Xν =
⊔
v∈V

Cν
v −→ X.

The associated map of structure sheaves yields an exact sequence

0 −→ OX −→ ν∗OXν −→ S −→ 0

where S is a skyscraper sheaf supported on the nodes of X.
The associated exact sequence in cohomology is as follows (identify-

ing the cohomology groups of ν∗OXν with those of OXν as usual)

0 −→ H0(X,OX) −→ H0(Xν ,OXν )
δ̃−→ k|E| −→

−→ H1(X,OX) −→ H1(Xν ,OXν ) −→ 0.

Hence

g = h1(Xν ,OXν ) + |E| − |V |+ 1 =
∑
v∈V

gv + b1(GX) = g(GX , wX)

where gv = h1(Cν
v ,OCνv ) is the genus of Cν

v .
Now gv = wX(v), hence X and (GX , wX) have the same genus. ♣
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Families of algebraic curves over local schemes
K ⊃ k

K is a field complete with respect to a non-Archimedean valuation vK

vK : K → R ∪ {∞}.
Such a K is also called a non-Archimedean field.
The valuation of K induces on k the trivial valuation k∗ → 0.
R is the valuation ring of K.

The (updated) Stable Reduction Theorem of Deligne-Mumford [DM69].

Theorem 11. Let C be a stable curve over K.
Then there exists a finite field extension K ′|K such that the base

change C ′ = C×SpecK SpecK ′ admits a unique model over the valuation
ring of K ′ whose special fiber is a stable curve.

The theorem is represented in the following commutative diagram.

C ′

((��

� � // C ′R′

$$

C

((

SpecK ′ //

��

SpecR′

��

µC′
R′

  

SpecK �
�

//

µC ..

SpecR

))
M g
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The moduli space of algebraic curves of genus g

M g = moduli space of stable curves of genus g.

We have

M g =
⊔

(G,w)∈Sg

M(G,w)

where

M(G,w) = locus of stable curves having (G,w) as dual graph.

We have

M(G,w) ⊂M(G′,w′) ⇔ (G,w)→ (G′, w′).

This is analogous, though reversing the arrow, to what happens in

M trop
g .

For details about the following statement we refer to [HM98], [ACG11].

Theorem 12. The moduli space M g of stable curves of genus g is an
irreducible, normal, projective variety of dimension 3g − 3.

For every stable graph (G,w) the locus M(G,w) is quasiprojective,
irreducible, of codimension |E(G)|.

The locus of smooh curves, written Mg is open in M g

Example

The graph with no edges, and one vertex of weight g is denoted by

(G,w) = •g
hence

Mg = M(•g).



14

3. Lecture 3.

The poset of stable graphs.

Sg is the set of stable graphs of genus g.
Sg is a poset (i.e. partially ordered) with respect to contractions:

(G,w) ≥ (G′, w′) if (G,w)→ (G′, w′)

i.e. for some S ⊂ E(G)

(G′, w′) = (G/S,w/S).

Remark. (G/S,w/S) ≤ (G/T ,w/T ) if and only if T ⊂ S.

Sg is graded by the following rank function

rk : Sg −→ N : G 7→ |E(G)|
Recall: 0 ≤ rk(G) ≤ 3g − 3, and this is sharp.

Question. What are the maximal elements in S3?

−−−−−−−−−−−−−−−−−−−−−−−
LetM be a “geometric” space (an algebraic variety, a topological space)
and let (S, rk) be a graded poset.

We say M is stratified by S if M admits a partition indexed by S:

M =
⊔
s∈S

M(s)

such that

M(s) ⊂M(s′) ⇔ s ≥ s′ [ or s′ ≥ s]

and
codimM(s) = rk(s) [ or dimM(s) = rk(s)].
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The moduli space of algebraic stable curves, M g is stratified by the
poset Sg:

M g =
⊔

(G,w)∈Sg

M(G,w)

with

M(G,w) ⊂M(G′, w′) ⇔ (G,w) ≥ (G′, w′).

codimM(G,w) = |E(G)|.

−−−−−−−−−−−−−−−−−−Analogously−−−−−−−−−−−−−−−−−−

The moduli space of extended tropical curves, M trop
g , is stratified by Sg:

M trop
g =

⊔
(G,w)∈Sg

M trop(G,w)

with

M trop(G,w) ⊂M trop(G′, w′) ⇔ (G′, w′) ≥ (G,w).

and
dimM trop(G,w) = |E(G)|.
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Connection between M trop
g and M g: the global picture.

M trop
g is constructed by gluing Euclidean cones via of combinatorial

rules.

The same combinatorial rules are respected, up to arrow-reversal, by
M g.

The theory of Toroidal Embeddings ( Kempf-Knudsen-Mumford-Saint
Donat, [KKMSD73]) indicates that M trop

g should be the skeleton of M g.

The problem is: M g does not have a toroidal structure.
But its moduli stack, Mg, the moduli stack of stable curves, does.

The toroidal structure of Mg enables one to construct such a skeleton
as a generalized cone complex associated to Mg, denoted by

Σ(Mg)

and compactified by an extended generalized cone complex, written

Σ(Mg).
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Theorem 13. [ACP15] There are canonical isomorphisms

Σ(Mg) ∼= M trop
g and Σ(Mg) ∼= M trop

g

fitting in a commutative diagram

Σ(Mg)
� � //

∼=

��

Σ(Mg)

∼=
��

M trop
g
� � // M trop

g

This theorem is an explanation of the global geometric analogies be-

tween M g and M trop
g .

Question. What about the local point of view?
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Connection between M trop
g and M g: the local picture

K ⊃ k is a non-Archimedean, i.e. a field complete with respect to a
non-Archimedean valuation vK

vK : K → R ∪ {∞} such that vK(0) =∞.
The valuation vK induces on k the trivial valuation k∗ → 0.
R is the valuation ring of K.

Let C → SpecK be a stable curve over K. The ascociated moduli map
is

µC : SpecK −→M g

If C adimits a stable model, CR → SpecR, over R, then the moduli map
associated to CR

µCR : SpecR −→M g

is the extension of µC to SpecR.

Remark. By the vautaive criterion for properness, the map µC admits
a unique extension to a map SpecR → M g. But it may happen that
this extension is not the moduli map of a stable curve over SpecR.

Again the Stable Reduction Theorem of Deligne-Mumford [DM69].

Theorem 14. Let C be a stable curve over K.
Then there exists a finite field extension K ′|K such that the base

change C ′ = C×SpecK SpecK ′ admits a unique model over the valuation
ring of K ′ whose special fiber is a stable curve.

The theorem is represented in the following commutative diagram.

C ′

((��

� � // C ′R′

&&

C

))

SpecK ′ //

��

SpecR′

��
µC′
R′

  

SpecK �
�
//

µC //

SpecR

))
M g
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Mg(K): the set of stable curves of genus g over K.
We can define a (stable) reduction map for our field K:

redK :Mg(K) −→M g; C 7→ Ck.
Indeed: the map µC : SpecK → M g extends uniquely to a map
SpecR → M g. Hence the image of the special point of SpecR is
uniquely determined by C. This is a stable curve over the residue field,
k, of R, denoted by Ck and called the stable reduction of C.

Introduce the set of K-points (or K-rational points) of M g

M g(K) := Hom(SpecK,M g) = {SpecK →M g}
We have a natural map

µK :Mg(K) −→M g(K); C 7→ µC

It is clear that the map redK factors through µ, i.e. we have

redK :Mg(K)
µ−→M g(K) −→M g.

So far the valuation of K did not play a specific role; its existence
was used to apply the valuative criterion of properness. It will play a
more important role in what follows.
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The Stable Reduction Theorem implies the following.

Proposition 15. Let C be a stable curve over K and let Ck be the
stable reduction of C. Then there exists an extended tropical curve
ΓC = (GC, `C, wC) with the following properties.

(1) (GC, wC) is the dual graph of Ck.
(2) ΓC is a non-extended tropical curve (i.e. all edges have finite

length) if and only if C is smooth.
(3) (Compatibility with base change) If K ′ ⊃ K is a finite exten-

sion and C ′ the base change of C over K ′, then ΓC = ΓC′.

Main point of the proof: to complete definition of the tropical curve ΓC
by defining the length function `C.

Step 1. Stable Reduction Theorem ⇒ can assume Ck is the special
fiber of a family of stable curves over R′, for some finite extension
R′ ⊃ R.

Step 2. Let e be a node of Ck. The equation of the family locally at e
has the form

xy = fe
with fe ∈M ′ ⊂ R′ (M ′ the maximal ideal of R′).

Step 3. K is complete and the extension K ′ ⊃ K is finite ⇒ vK
extends to a unique valuation vK′ , and K ′ is complete.

Step 4. Set
`C(e) = vK′(fe).

Step 5. C smooth, ⇒ fe 6= 0, hence `C(e) ∈ R>0 and ΓC is a tropical
curve.
C has some node ⇒ this node specializes to some node, e, of Ck,

for which fe = 0, because the family is locally reducible. Therefore
`C(e) = vK′(0) =∞.

The rest of proof consists in showing independence from the various
choices and compatibility with base change; all of that is standard.
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(Same proposition as previous slide)

Proposition 16. Let C be a stable curve over K and let Ck be the
stable reduction of C. Then there exists an extended tropical curve
ΓC = (GC, `C, wC) with the following properties.

(1) (GC, wC) is the dual graph of Ck.
(2) ΓC is a non-extended tropical curve (i.e. all edges have finite

length) if and only if C is smooth.
(3) (Compatibility with base change) If K ′ ⊃ K is a finite exten-

sion and C ′ the base change of C over K ′, then ΓC = ΓC′.

Consequence. We can define a local tropicalization map, tropK , as
follows

tropK :Mg(K) −→M trop
g ; C 7→ ΓC.

As before, tropK factors as follows

tropK :Mg(K)
µ−→M g(K) −→M trop

g .

Conclusion. We have a commutative diagram representing the local
analogies.

Mg(K)

tropK

!!

redK

��

M g

##

M trop
g

zz
Sg
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4. Lecture 4,

Connection between M trop
g and M g: the local picture

The commutative diagram represents the local analogies:

Mg(K)

&&zz

tropK

��

redK

��

M g(K)

rK
''

M g(K)

tKww

M g

##

M trop
g

zz
Sg

K|k a non-Archimedean field (complete w.r.t. a non-Arch. valuation).

Mg(K) = the set of stable curves of genus g over K.

M g(K) = Hom(SpecK,M g) = the set of K-points of M g.

Sg= the graded poset of stable graphs of genus g.
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The Berkovich analytification, M
an

g , of M g.

A theory due to Berkovich ([Ber90]) provides, for any algebraic vari-
ety X over k, an analytic space, Xan, the analytification of X, to which
analytic methods can be applied.

We apply this theory to M g.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
The analytification M

an

g of M g is, set theoretically, described as follows

M
an

g :=

⊔
K|kM g(K)

∼an

where the union is over all non-Archimedean extensions K|k, and

ξ1 ∼an ξ2

for ξi ∈ M g(Ki) for i = 1, 2 if there exists a ξ3 ∈ M g(K3) and a
commutative diagram:

SpecK3

%%yy

ξ3

��

SpecK1

ξ1
%%

SpecK2

ξ2
yy

M g

Remark. A point of M
an

g is represented by a stable curve C over a
non-Archimedean field K.

By the Stable Reduction Theorem, we can assume, up to field ex-
tension, that C admits a stable model over the valuation ring of K.
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The local stable reduction maps, rK : M g(K)→M g, define a reduction
map

red : M
an

g −→M g

such that the restriction to M g(K) coincides with the map rK :

M
an

g

red

44=
⊔
K|kMg(K)

∼an
M g(K)? _oo

rK // M g

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
The local tropicalization maps, tK : M g(K) → M trop

g , define a tropi-
calization map

trop : M
an

g −→M trop
g

such that the restriction to M g(K) coincides with the map tK :

M
an

g

trop

44=
⊔
K|kMg(K)

∼an
M g(K)? _oo

tK // M trop
g

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Conclusion. The local analogies between M g and M trop

g described so
far derive from the following commutative diagram

M
an

g

trop

��

red

��

M g

!!

M trop
g

{{

Sg

[Tyo12], [BPR16], [Viv13]
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The local analogies derive from the following commutative diagram

M
an

g

trop

��

red

��

M g

!!

M trop
g

{{

Sg

In Lecture 3 - Theorem 1, we had a canonical isomorphism of extended
generalized cone complexes:

Φ : Σ(Mg)
∼=−→M trop

g

explaining the global analogies between M g and M trop
g .

Question. Is the isomorphism Φ connected to the diagram above?

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Answer. Yes. The connection is achieved using results of Thuillier
[Thu07], which enable us to construct a retraction of M

an

g onto the

extended skeleton of Mg. More precisely, there is a Homotopy

H : [0, 1]×Man

g −→M
an

g

connecting idMan
g

to an idempotent map ρ : M
an

g −→ M
an

g . Hence the

image, ρ(M
an

g ) ⊂M
an

g is a retraction of M
an

g .

Now, this retraction, ρ(M
an

g ) can be identified with the extended

skeleton of Mg. We thus have a retraction:

ρ : M
an

g −→ Σ(Mg).
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Conclusion. The following statement contains all the facts described
so far.

Theorem 17. ([ACP15]) We have a commutative canonical diagram:

M
an

g

ρ
//

trop

%%

red

��

Σ(Mg)

Φ∼=

��

M g

%%

M trop
g

ww
Sg

M
an

g is the Berkovich analytification of M g.

Σ(Mg) is the Skeleton of the stack Mg.

ρ : M
an

g −→ Σ(Mg) is the retraction.
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The previous theorem is a special case of the following

Theorem 18 ([ACP15]). Let g and n be non-negative integers.

(1) There is an isomorphism of generalized cone complexes with
integral structure

Φg,n : Σ(Mg,n)
∼−→M trop

g,n

extending uniquely to the compactifications

Φg,n : Σ(Mg,n)
∼−→M

trop

g,n .

(2) The following diagram is commutative:

M
an

g,n

redg,n
��

ρg,n
//

tropg,n
))

Σ(Mg,n)

Φg,n
��

M g,n

!!

M
trop

g,n

zz

Sg,n

In particular the map tropg,n is continuous, proper, and surjec-
tive.
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Jacobians of algebraic curves.

C = smooth, connected, projective curve C of genus g ≥ 2 over k.

The Jacobian of C is a principally polarized abelian variety, i.e. a
pair

Jac(C) := (Jac(C),Θ(C))

Jac(C) = an abelian variety of dimension g;
Θ(C) = the theta divisor, an irreducible, ample divisor in Jac(C).
If k = C we have

Jac(C) := H1(C,OC)/H1(C,Z) ∼= Cg/Z2g.

For any d ∈ Z we have an isomorphism

Jac(C) ∼= Picd(C) =
line bundles of degree d

∼=
∼=

Divisors of degree d

∼
.

Remark. If d = 0 then Pic0(C) is a group, hence Jac(C) is a group.

The Theta divisor, viewed in Picg−1(C), is

Θ(C) := {L ∈ Picg−1(C) : h0(C,L) ≥ 1}.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Recall the following famous Torelli Theorem.

Theorem 19 (Torelli version 1). Let C1 and C2 be two smooth curves;
then C1

∼= C2 if and only if Jac(C1) ∼= Jac(C2).

Question. What about moduli spaces of Jacobians, or of abelian
varieties?
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Moduli of Abelian varieties and the Torelli map for stable
cuves.

Ag = moduli space of principally polarized abelian varieties of dimen-
sion g

Ag is an irreducible, non projective, algebraic variety of dimension g(g+
1)/2.

The Torelli theorem can be re-stated using moduli spaces:

Theorem 20 (Torelli version 2). The following Torelli map

τ : Mg −→ Ag; C 7→ Jac(C)

is injective.

Question. Does the Torelli map extend to M g?

Answer. Yes, provided we compactify Ag.

There exist several compactifications for Ag, all of which rely on some
type of combinatorial methods. To extend the Torelli map we use
[Ale02] and [Ale04]:

Ag= Main irreducible component of the moduli space for semi-abelic
stable pairs.



30

The Torelli map extends to M g

M g
τ // Ag; [X] � // [Jac(X)] =

[
Jac(X) y (Pg−1(X),Θ(X))

]
Mg

?�

OO

τ // Ag
?�

OO

X is a stable curve;

Jac(X) is the (generalized) Jacobian of X, i.e.

Jac(X) :=
line bundles having degree 0 on every irr. comp. of X

∼=
.

Pg−1(X) is the compactified Jacobian constructed in [Cap94]. It is the
moduli space for balanced line bundles of degree g − 1 on semistable
curves stably equivalent to X.
Pg−1(X) is a connected and reduced projective variety; it may have
several irreducible components, all of dimension g.

Θ(X) is the Theta divisor, it is an ample Cartier divisor of Pg−1(X)
[Est01].

Jac(X) is a group, and acts on Pg−1(X) by tensor product.

Remark. The orbits in Pg−1(X) under the Jac(X)-action have an in-
teresting combinatorial structure, governed by the dual graph (GX , wX)
of X.
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5. Lecture 5.

Jacobians of stable curves

X a stable curve, (GX , wX) its dual graph.
The desingularization of X:

ν : Xν =
⊔
v∈V (GX)C

ν
v

// X

The Jacobian of X:

Jac(X) = {L ∈ Pic(X) : degCv L = 0, ∀v ∈ V (GX)}.
The Jacobian of Xν

Jac(Xν) = Πv∈V (GX)Jac(Cν
v )

is an abelian variety.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
We have an exact sequence of algebraic groups

0 −→ (k∗)b −→ Jac(X)
ν∗−→ Jac(Xν) −→ 0

where
b = b1(GX) = |E(GX)| − |V (GX)|+ 1.

Remark. Jac(X) is an abelian variety if and only if b = 0 if and only
if GX is a tree. Such curves are called of compact type.

M
cpt

g is the locus in M g of curves of compact type; it is an open subset
and

Mg ⊂M
cpt

g ⊂M g
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The extended Torelli morphism

M g
τ // Ag; [X] � // [Jac(X)] =

[
Jac(X) y (Pg−1(X),Θ(X))

]
Mg

?�

OO

τ // Ag
?�

OO

By the previous Remark

τ−1(Ag) = M
cpt

g

and the restriction of τ to M
cpt

g is not injective. Indeed:

Proposition 21. Let X1 and X2 be stable curves of compact type.
If Xν

1
∼= Xν

2 then τ(X1) = τ(X2).

The converse holds if X1 and X2 have the same number of irreducible
components.

Proof. EXERCISE. ♣
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Towards a combinatorial description of Pg−1(X)

Let G = (V,E) be a graph of genus g.
An orientation on G is totally cyclic if it has no directed cut, i.e. if

there exists no non-empty subset U ( V such that the edges joining U
to V r U are all directed towards U .

O(G) := {O : O is a totally cyclic orientation on G}.

To an orientation O we associate a dO ∈ ZV defined as follows

dOv := g(v)− 1 + indegO(v)

where indegO(v) is the number of edges of G having v as target.

Remark. For any orientation O on G

|dO| = g − 1.

Recall that Pg−1(X) parametrizes balanced line bundles of degree g−1.

Two orientations O and O′ on G are equivalent, written O ∼ O′, if
dO = dO

′
.

O(G):=Equivalence classes of totally cyclic orientations on G.

Example. If G is a cycle, then

|O(cycle)| = 2 and |O(cycle)| = 1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Fact. O(G) is not empty if and only if G is free from bridges.

Gbr denotes the set of bridges of the graph G.

The poset of bridgless subgraphs of G is

BP(G) := {S ⊂ E : (G− S)br = ∅},
ordered by reverse inclusion:

S ≤ S ′ if S ′ ⊂ S.

BP(G) is a graded poset with respect to the rank function S 7→ g(G−
S).
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A combinatorial stratification of Pg−1(X).

Let X be a stable curve and (GX , wX) its dual graph.

The poset of totally cyclic orientations on GX is defined as follows

OP(GX) :=
⊔

S∈BP(GX)

OP(GX − S)

with, for S, T ∈ BP(GX) and OS ∈ O(GX − S), OT ∈ O(GX − T )

[OS] ≤ [OT ] if S ≤ T and (OT )|G−S ∼ OS.

OP(GX) is graded with respect to the rank function [OS] 7→ g(G−
S).

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Back to Pg−1(X).

Proposition 22. Let X be a stable curve of genus g. Then

Pg−1(X) =
⊔

[OS ]∈OP(GX)

POS

with POS an irreducible variety of dimension g(GX − S).
Moreover

POS ⊂ POT ⇔ [OS] ≤ [OT ].

Consequence. The number of irreducible components of Pg−1(X) is
equal to the number of equivalence classes of totally cyclic orientations
on G−Gbr.

The minimal stratum of Pg−1(X) corresponds to S = E(GX) and is
canonically isomorphic to Jac(Xν).
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The fibers of the extended Torelli morphism

M g
τ // Ag; [X] � // [Jac(X)] =

[
Jac(X) y (Pg−1(X),Θ(X))

]
Surprising Remark. The restriction of τ away from curves of com-
pact type is not injective.

Example. Let C1 and C2 be two non-isomorphic smooth curves of
genus 2. Pick pi, qi ∈ Ci not mapped to one another by an automor-
phism of Ci.

X1 :=
C1 t C2

p1 = p2, q1 = q2

and X2 :=
C1 t C2

p1 = q2, q1 = p2

GX1 = GX2 = •
e1

22

e2

•

We have X1 6∼= X2 but Jac(X1) ∼= Jac(X2).

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Theorem 23 ([CV11]). Let X1 and X2 be two stable curves with
bridgeless dual graphs.

(1) Assume that Jac(X1) ∼= Jac(X2). Then
(a) (Xν

1 , ν
−1(sing(X1))) ∼= (Xν

2 , ν
−1(sing(X2)));

(b) GX1 ≡cyc GX2.
(2) Assume GX1 and GX2 are 3-edge connected. Then Jac(X1) ∼=

Jac(X2) if and only if X1
∼= X2.

Consequence. The restriction of τ to curves with bridgeless dual
graph has finite fibers.
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The tropical Torelli map

Let Γ = (G, `, w) be a tropical curve. Its tropical Jacobian is the
following polarized R-torus:

Jac(Γ) :=

(
H1(G,R)⊕ Rg−b1(G)

H1(G,Z)⊕ Zg−b1(G)
; ( , )`

)
Kotani-Sunada [KS00], Mikhalkin-Zharkov [MZ08], C.V. [CV11], Brannetti-
Melo-Viviani [BMV11].

Here is the tropical version of the Torelli theorem.

Theorem 24 ([CV10], [BMV11]). Let Γ1 and Γ2 be tropical curves.

Then Jac(Γ1) ∼= Jac(Γ2) if and only if Γ
(3)
1 ≡cyc Γ

(3)
2 .

Example.

• e1

l1
1 • 3 •4

Γ = Γ(3) =

◦ e2

l2
◦ ◦ e′

l1+l2
◦

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
In [BMV11] the authors construct M trop

g and a moduli space for tropical
abelian varieties, Atrop

g . They introduce and study the tropical Torelli
map

τ trop : M trop
g −→ Atrop

g ; Γ 7→ Jac(Γ).
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Summarizing commutative diagram 1.

M
an

g

trop
//

red

��

M trop
g

Mg(K)

tropK

88

redK

yy

M g

τ

��

M trop
g

?�

OO

τ trop

��

Ag Atrop
g
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Summarizing commutative diagram 2.

M
an

g

trop
//

red

��

M trop
g

Mg(K)

tropK

88

redK

yy

M g

τ

��

Mg(K)
?�

OO

tropK //
redKoo

τK

��

M trop
g

?�

OO

τ trop

��

Ag Ag(K)
trop

Ag
K //

red
Ag
Koo Atrop

g
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Partly conjectural, summarizing commutative diagram.

M
an

g

trop
//

red

��

τan

��

M trop
g

Mg(K)

tropK

88

redK

yy

M g

τ

��

Mg(K)
?�

OO

tropK //
redKoo

τK

��

M trop
g

?�

OO

τ trop

��

Ag Ag(K)
trop

Ag
K //

red
Ag
Koo Atrop

g

��

Ag
an

CC

55 ?
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