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UNIQUENESS FOR RICCATI EQUATIONS WITH UNBOUNDED

OPERATOR COEFFICIENTS

PAOLO ACQUISTAPACE AND FRANCESCA BUCCI

Abstract. In this article we address the issue of uniqueness for differential
and algebraic operator Riccati equations, under a distinctive set of assump-
tions on their unbounded coefficients. The class of boundary control systems
characterized by these assumptions encompasses diverse significant physical in-
teractions, all modeled by systems of coupled hyperbolic-parabolic partial dif-
ferential equations. The proofs of uniqueness provided tackle obstacles raised
by the peculiar regularity properties of the composite dynamics. These results
supplement the theories of the finite and infinite time horizon LQ-problem
devised by the authors jointly with Lasiecka, as the unique solution to the
Riccati equation enters the closed loop form of the optimal control.

1. Introduction

Well-posedness of Riccati equations is a fundamental question within control
theory of Partial Differential Equations (PDE). While the issues of existence and
uniqueness for the corresponding solutions are both natural to be addressed and sig-
nificant in themselves, when seen in the context of linear-quadratic optimal control
uniqueness proves particularly relevant, not exclusively from a theoretical perspec-
tive. This is because – having established existence – it brings about in a univocal
manner the (optimal cost, or Riccati) operator which occurs in the feedback repre-
sentation of the optimal control, thereby allowing its synthesis.

In the present work focus is on the differential and algebraic (i.e. time inde-
pendent) Riccati equations arising from optimal control problems with quadratic
functionals for the class of infinite dimensional abstract control systems dealt with
in our earlier works [1] and [3] (joint with Lasiecka). The basic characteristics of
these linear systems – which read as y′ = Ay + Bu, according to a standard nota-
tion – are the following: the free dynamics operator A is the infinitesimal generator
of a C0-semigroup {eAt}t≥0 on the state space Y , while the control operator B is
unbounded. It is well known that the latter is an intrinsic feature of differential sys-
tems describing evolutionary PDE with boundary (and also point) control, already
recognized by the end of the sixties in the pioneering work of Fattorini [16]. (More
precisely, B maps continuously the control space U into a larger functional space
than Y , that is the extrapolation space [D(A∗)]′; see the basic Assumptions 2.1.)

We require in addition and more specifically that several assumptions on the
operators A,B are fulfilled, recorded in Section 2 as Assumptions 2.4. These are
regularity properties that pertain to the operator B∗eA

∗t, with respective PDE
counterparts. It is worth emphasizing here that not only the aforesaid control-
theoretic properties do not prescribe analyticity of the semigroup eAt, in accordance
with the fact that the class of systems under consideration – introduced by these
authors with Lasiecka in [1] – is inspired by and tailored on systems of coupled

1

http://arxiv.org/abs/2012.05670v1


2 PAOLO ACQUISTAPACE AND FRANCESCA BUCCI

hyperbolic-parabolic PDE, subjected to boundary/interface control. They are also
weaker (and somewhat trickier) than the full singular estimates for eAtB which are
known to be equally effective for well-posedness of the Riccati equations; see [19],
[20], [23, 24]. In this respect, we remark that it was first discovered in [9] that the
very same thermoelastic system, subjected to boundary (thermal) control, may or
may not yield a singular estimate for the corresponding operator eAtB, depending
on which boundary conditions are taken into consideration.

Another distinguishing feature of the coefficients of the Riccati equations under
study, which read as

(Px,Az)Y + (Ax, Pz)Y − (B∗Px,B∗Pz)U + (Rx,Rz)Z = 0 , x, z ∈ D(A)

when the unknown P is time-independent, is that R – that is the observation
operator in the optimization problem – does not need to be smoothing.

Working in the framework described above, a theory for both the finite and in-
finite time horizon LQ-problem has been devised in [1] and [3], the latter under
the Assumptions 2.9 (replacing Assumptions 2.4). The strenght of these theories
is confirmed by the trace regularity results that have been established for the solu-
tions to significant PDE systems comprising hyperbolic and parabolic components,
over the years. Indeed, the novel class introduced in [1] has proven successful
in describing a diverse range of physical interactions such as mechanical-thermal,
acoustic-structure, fluid-elasticity ones. And above all, successful in order to attain
solvability of the associated optimization problems; see [2], [7], [10, 11], [3], and the
most recent [8].

Our aim with the present work is to complete the complex of findings of [1, 3].
Because in [1] and [3] we followed a variational approach, by using the optimality
conditions a bounded operator – viz. P (t) or P , in accordance with either a finite
or infinite time interval – is constructed in terms of the optimal state and only
subsequently shown to satisfy the corresponding Riccati equations. For this reason
the works [1] and [3] provide existence for Riccati equations, but not uniqueness.

By contrast and as it is well-known, in the (so called) ‘direct’ approach, the
well-posedness of the nonlinear Riccati equation is studied in a first step, posssibly
independently from the minimization problem. For the Cauchy problems asso-
ciated with the differential Riccati equations, existence is established along with
uniqueness, since they are generally obtained via fixed point theorems and a priori
estimates. Then, in order to achieve the actual feedback representation of the op-
timal control, that is the ultimate goal from a mathematical as well as a practical
perspective, further steps are necessary. (And yet, this is not the case here.)

Our main results are Theorems 2.7 and 2.11. Besides being of intrinsic interest,
they supplement earlier results concerning the LQ-problem established by these
authors (jointly with Lasiecka) in [1] and [3], with the achievement of uniqueness
for the corresponding differential and algebraic Riccati equations. Although often
following classical arguments, the respective proofs face novel challenges, in com-
parison with similar results of the past literature, owing to the peculiar structure
and weakness of the present assumptions on the operator coefficients of the Riccati
equations.

1.1. An insight into the mathematical proofs. We find it useful to devote
a separate section to several comments and points concerning our analysis. We
provide two proofs of Theorem 2.7, that pertains to uniqueness for the differential
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Riccati equations (2.13) (DRE, in short). This result is relevant for the optimal
control problem on a finite time horizon (i.e. Problem 2.3 with T < +∞), under the
Assumptions 2.4. The first proof, given in Section 3, follows the method employed
by Lasiecka and Triggiani in [25, Theorem 1.5.3.3] up to a certain point. The basic
rationale is standard: one proceeds by contradiction, assuming there exists another
solution P1(t) to the DRE, besides the Riccati operator P (t). (That P (t) solves the
DRE has been proved in [1]; see the statement S6. of Theorem 2.6.) On the basis of
the integral forms of the DRE derived in Lemma 3.1, one finds that the difference
Q(t) = P1(t) − P (t) solves a suitable integral equation. It is in the estimates
performed afterwards, that the paths diverge, with iiic) of the Assumptions 2.4
playing a major role (together with the distinctive class of operators P1 belongs to),
whereas the proof in [25, Theorem 1.5.3.3] fully exploits the enhanced regularity of
the analytic semigroup that describes the free dynamics.

It is unlikely that the method of proof described above could be adjusted in order
to establish uniqueness for the algebraic Riccati equation, relevant for Problem 2.3
with T = +∞. This owing to the argument employed when T < +∞: Q(t) is
shown to be zero on some subinterval of [0, T ], with the soughtafter goal attained
in a finite number of steps. Other methods of proof are certainly worth to be
explored. However, in this respect an obstacle seems to come from the fact that
a full characterization of the domain of the generator AP of the optimal state
semigroup is not available (see statement A5. of Theorem 2.10). This differs from
what is seen in the case the free dynamics is governed by an analytic semigroup,
where the said characterization results in another advantage of the Riccati theory
for parabolic PDE, having a role, for instance, in the proof of uniqueness carried
out in [25, Theorem 2.3.4]. In any case, we leave this question open.

Therefore, in order to prove Theorem 2.11 we choose to return to the dynamic
programming approach to the LQ-problem, and borrow from it a key element in
attaining that the optimal control admits a (pointwise in time) feedback represen-
tation. This element is fulfilled by the so called fundamental identity. In a direct
approach, the fundamental identity builds a bridge between the nonlinear Riccati
equation – whose well-posedness is studied in a first step, independently from the
minimization problem, as recalled above – and the actual closed loop form of the
optimal control. The latter goal (i.e. the feedback representation of the optimal
control) was already attained in [1] and [3]; see the statements S4. of in Theo-
rem 2.6 and A4. of Theorem 2.10, respectively. And yet, the identities we establish
in Lemma 4.1 and Lemma 4.3 constitute a major (and technically nontrivial) step in
our analysis, allowing to achieve uniqueness for both differential and algebraic Ric-
cati equations, respectively. Theorem 2.7 and Theorem 2.11 are thus established,
via methods of proof which are akin.

1.2. Riccati equations: a brief historical synopsis. Historically, the appear-
ance of matrix Riccati equations – named after Jacopo Riccati (XVII century) – as
a research subject is recognized to date back to the sixties, with the independent
contributions of Kalman [18] in the USA and of Letov [28] in the former Soviet
Union (although they certainly appeared before). Their study has already lasted
for more than half a century, owing to its connections to a wide variety of topics
such as stability and stabilization problems, the linear-quadratic (LQ) optimal con-
trol, differential games, just to name a few. We refer the reader to the introductory
monograph [34], along with its references.
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During the seventies, the theories of the LQ-problem and of Riccati equations
is extended to the infinite dimensional setting. The abstract formulation of initial-
boundary value problems (IBVP) for PDE in bounded domains, in the presence
of distributed control, leads to the usual Cauchy problem for the control system
y′ = Ay+Bu, where B is a bounded operator from the control space U to the state
space Y ; see [6]. (The same framework encompasses also other kinds of differential
problems such as, e.g., delay systems.) The first contributions to the study of
Riccati equations with unbounded operator coefficients (still, with B bounded) are
due to the works of Da Prato [14], Tartar, Curtain and Pritchard, Zabczyk; see the
introductory monograph [34, Part IV, Ch. 4]).

The proof performed in [14] paves the way for subsequent direct studies of well-
posedness of Riccati equations with an unbounded operator B. Within the theory
of the LQ-problem, these extensions were initially motivated by and focused on
parabolic PDE. Hence, they could exploit the regularity properties brought about
by the analytic semigroup that describes the free dynamics. Although well known
to those acquainted with the subject, it is important to emphasise that the transi-
tion to infinite-dimensional systems describing PDE with boundary or point control
(as opposed to PDE with distributed control), has drastically impacted on the
mathematical analysis of the corresponding Riccati equations. It is here that the
parabolic (parabolic-like) and the hyperbolic analyses split apart.

We refer the reader to [22] and [6], and to the in-depth monograph [25] for a
complete overview of the subject. The reference section therein include the princi-
pal contributions to the Riccati theory for parabolic (and parabolic-like) PDEs by
Balakrishnan (1977), Lasiecka and Triggiani (1983), Pritchard and Salamon (1984),
Flandoli (1984), Da Prato and Ichikawa (1985). As for the Riccati theory for hyper-
bolic (and hyperbolic-like) PDE, we mention explicitly the latest works by Flandoli,
Lasiecka and Triggiani (1988), Barbu, Lasiecka and Triggiani (2000); see also the
second volume of [25].

The hyperbolic character of the dynamics – in the present work, of one compo-
nent of the coupled PDE system –, combined with the unboundedness of the control
operator, produces further mathematical challenges. It will suffice to highlight that
under the abstract trace regularity assumption or admissibility condition, which is
characteristic of hyperbolic-like dynamics,

• well-posedness of differential Riccati equations holds true provided the ob-
servation operator R has appropriate smoothing properties;

• given the optimal cost operator P for the infinite time horizon problem,
it turns out the gain operator B∗P that occurrs in the algebraic Riccati
equation may be even not densely defined. (Then, appropriate extensions
of B∗P are called for.)

A simple illustration of the latter anomaly is given by Weiss and Zwart [33]. This
work exhibits a first-order hyperbolic PDE (in one space dimension), with point con-
trol; given a certain quadratic functional, the optimal cost operator P is computed
explicitly, and then it is shown that B∗ is intrinsically not defined on Py, y ∈ D(A).
In this connection we remark that, to the best of our knowledge, the question as
to whether there actually exist examples of hyperbolic PDE with boundary control
(rather than point control) which give rise to the same ‘failure’, is open.

Thus, we like to point out that in the case of systems of hyperbolic-parabolic
PDEs (with boundary control) which fulfil the requirements of our Assumptions 2.4
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(or Assumptions 2.9, when time varies in the positive half line), the highlighted
difficulties are overcome, as the theory of the Riccati equations devised in [1, 3] and
in the present work shows.

A technical discussion of the Bolza problem (where the quadratic functional to be
minimized includes a penalization of the state at the final time T ), drawing a picture
of the evolution of the increasingly enhanced results that have been established,
would require a space which falls outside the scope of the present work. We refer
the reader to [25] and its references. We remark that the Bolza problem is not
covered by the theory of the LQ-problem in [1]; it is indeed an open problem.

Last but not least, the case of time dependent (operator) coefficients in the
Riccati equation is considerably more difficult, from a technical point of view. The
major contributions, that all pertain to the parabolic case, are due to Acquistapace
and Terreni, in part jointly with Flandoli; see [4], [5].

The study of optimal boundary control problems for thermoelastic systems and
then more generally PDE systems comprising two (or more) evolutionary PDE of
different type, in the presence of boundary/interface control actions, motivated
the introduction of a class characterized by certain (local in time) estimates for
the kernel eAtB. These were named and are know in the literature as singular
estimates. The corresponding theory of the optimal boundary control problem is
well established: after the former works [19], [20], [23, 24], a great deal of attention
has been devoted to the Bolza problem by Lasiecka and Tuffaha (see [26], [27], [32]).
Apparently, the question of uniqueness of Riccati equations is addressed in none of
the aforementioned works, with the exception of [32].

1.3. Outline of the paper. The structure of the paper is outlined readily. In the
next Subsection 2 we give the statements of our main results, viz. Theorem 2.7 and
Theorem 2.11, after having recalled the framework and the core statements of the
theories of the LQ-problem devised in [1] and [3].

In Section 3 we present a first proof of Theorem 2.7. This is preceded by
Lemma 3.1, which establishes two integral forms of the differential Riccati equa-
tion. An integral form of the algebraic Riccati equation is derived as well here, as
Lemma 3.2.

Section 4 provides a second proof of Theorem 2.7 and the proof of Theorem 2.11.
Instrumental to the proofs are Lemma 4.1 and Lemma 4.2 for the former result,
and Lemma 4.3 along with Lemma 4.4 for the latter. These lemmas establish the
fundamental identities and discuss certain built closed loop equations.

In Appendix A we gather several regularity results (some old, some new) which
are used throughout the paper.

2. Abstract framework, theoretical results

2.1. The LQ problem: abstract dynamics and setting. Let Y and U be two
separable Hilbert spaces, the state and control space, respectively. We consider
the abstract (linear) control system y′ = Ay + Bu and the corresponding Cauchy
problem







y′(t) = Ay(t) +Bu(t) , 0 ≤ t < T

y(0) = y0 ∈ Y ,
(2.1)

under the following basic Assumptions.
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Assumptions 2.1 (Basic Assumptions). Let Y , U be separable complex Hilbert
spaces.

• The closed linear operator A : D(A) ⊂ Y → Y is the infinitesimal generator
of a strongly continuous semigroup {eAt}t≥0 on Y ;

• B ∈ L(U, [D(A∗)]′).

Remarks 2.2. The apparent weakness of the basic assumptions on the pair (A,B)
which characterize the initial/boundary value problems described by the abstract
equation in (2.1) – viz. the free dynamics operator A and the control operator B
– is a reflection of the modeling of most boundary control problems for systems
of coupled hyperbolic/parabolic PDEs. It is worth recalling its most prominent
features: (i) first, the control operator B will not be bounded from the control space
U into the state space Y ; (ii) secondly, the semigroup eAt will not be analytic.
We remind the reader that (i) is intrinsic to the mathematical modeling of control
actions on the boundary of the domain (or on some part of it), as first shown in [16].
We also note that the presence of control actions concentrated on points (in 1-D) or
on curves (in 2-D) in the interior of domain results in unboundedness of the control
operator as well; illustrations of both situations are found in [22], [6] and [25].
As for the simple requirement in (ii), it is a natural feature of composite dynamics
comprising solely a parabolic component: analiticity of the overall semigroup should
not be expected.

Thus, given y0 ∈ Y , the Cauchy problem (2.1) possesses a unique mild solution
given by

y(t) = eAty0 +

∫ t

0

eA(t−s)Bu(s) ds , t ∈ [0, T ) , (2.2)

where

L : u(·) −→ (Lu)(t) :=

∫ t

0

eA(t−s)Bu(s) ds

is the input-to-state mapping, that is the operator which associates to any control
function u(·) the solution to the Cauchy problem (2.1) with y0 = 0, and (2.2)
makes sense at least in the extrapolation space [D(A∗)]′; see [25, § 0.3, p. 6, and
Remark 7.1.2, p. 646].

To the state equation (2.1) we associate the quadratic functional

J(u) =

∫ T

0

(

‖Ry(t)‖2Z + ‖u(t)‖2U
)

dt , (2.3)

where Z is a third separable Hilbert space – the so called observation space (possibly,
Z ≡ Y ) – and at the outset the observation operator R simply satisfies

R ∈ L(Y, Z) . (2.4)

The formulation of the optimal control problem under study is classical. The adjec-
tives finite or infinite time horizon problem refer to the cases T < +∞ or T = +∞,
respectively.

Problem 2.3 (The optimal control problem). Given y0 ∈ Y , seek a control
function u ∈ L2(0, T ;U) which minimizes the cost functional (2.3), where y(·) =
y(· ; y0, u) is the solution to (2.1) corresponding to the control function u(·) (and
with initial state y0) given by (2.2).
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It is well known that aiming at solving Problem 2.3, certain principal facts need
to be ascertained, beside the existence of a unique optimal pair (û(·, s; y0), ŷ(·, s; y0))
(which is readily established by using classical variational arguments); namely,

- that the optimal control û(t) admits a (pointwise in time) feedback repre-
sentation, in terms of the optimal state ŷ(t);

- that the optimal cost operator P (t) (P , when T = +∞) solves the corre-
sponding Differential (Algebraic) Riccati equation; thus, the issue of well-
posedness of the DRE (ARE) arises, requiring

- that a meaning is given to the gain operator B∗P (t) (B∗P ) on the state
space Y (by means of extensions, or – and this will be the case here –, as
a bounded operator on a dense subset of Y ).

2.2. Theoretical results: finite and infinite time horizon problems. We
begin by recalling the theory of the LQ-problem on a finite time interval developed
in [1]. This theory pertains to the class of control systems – introduced in the very
same [1] – whose dynamics, control and observation operators are subject to the
following assumptions.

Assumptions 2.4 (Finite time horizon case). Let Y , U and Z be separable
complex Hilbert spaces, and let T > 0 be given. The pair (A,B) (which describes
the state equation (2.1)) fulfils Assumptions 2.1, with the additional property A−1 ∈
L(Y ), while the observation operator R (which occurs in the cost functional (2.3))
satisfies the basic condition (2.4).

The operator B∗eA
∗t can be decomposed as

B∗eA
∗tx = F (t)x+G(t)x , 0 ≤ t ≤ T , x ∈ D(A∗) , (2.5)

where F (t) : Y −→ U and G(t) : D(A∗) −→ U , t > 0, are bounded linear operators
satisfying the following assumptions:

i) there exist constants γ ∈ (0, 1) and N > 0 such that

‖F (t)‖L(Y,U) ≤ N t−γ , 0 < t ≤ T ; (2.6)

ii) the operator G(·) belongs to L(Y, Lp(0, T ;U)) for all p ∈ [1,∞);
iii) there exists ǫ > 0 such that:

a) the operator G(·)A∗−ǫ belongs to L(Y,C([0, T ];U)), with

sup
t∈[0,T ]

‖G(t)A∗−ǫ‖L(Y,U) < ∞ ;

b) the operator R∗R belongs to L(D(Aǫ),D(A∗ǫ)), i.e.

‖A∗ǫR∗RA−ǫ‖L(Y ) ≤ c < ∞ ; (2.7)

c) there exists q ∈ (1, 2) (depending, in general, on ǫ) such that the map

x 7−→ B∗eA
∗tA∗ǫx has an extension which belongs to L(Y, Lq(0, T ;U)).

Remarks 2.5. 1. We note that it is assumed at the very outset that 0 ∈ ρ(A), i.e.
the dynamics operator A is boundedly invertible on Y . It is important to emphasize
that this property happens to hold true for an ample variety of composite systems of
hyperbolic-parabolic PDE, such as e.g. thermoelastic systems, structural-acoustics
models, fluid-elasticity interactions; see [2], [7], [10, 11], [8]. This allows in particular
to define the fractional powers (−A)α, α ∈ (0, 1); see [31, § 1.15.1-2], [30], [29,
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§ 2.2.2]. (In order to make the notation lighter, we wrote Aα instead of (−A)α; the
same will happen throughout the paper.)

On the other hand, when λ = 0 is not in the resolvent set of A, one can find
ω0 > 0 – the type of the semigroup – such that the translation Â := ω − A is a

positive operator for any ω > ω0; then Â is boundedly invertible, and the fractional
powers Âθ of Â are well-defined. The extension of the present theory to the case
of unstable semigroups eAt is particularly relevant in the infinite time horizon case
(T = +∞). It would certainly require a tedious series of technical changes and is
so far lacking.

2. If the singular estimate (2.6) for the component F (cf. i) of Assumptions 2.4)
is shown to hold true in an arbitrarily small right neighbourhood of t = 0, then it
usually extends to all t ∈ (0, T ], by using semigroup theory.

3. We note that iiia) of the Assumptions 2.4 tells us that the ‘basic’ (time) regularity
of the G component, that is G(·)y ∈ Lp(0, T ;U) for y ∈ Y and all finite summability
exponents p ≥ 1, improves to G(·)y ∈ C([0, T ];U), when y ∈ D(A∗ǫ).

4. The findings of the work [1], summarized in the next Theorem 2.6, were actually
established under the weaker regularity assumption

iiic)’ there exists q ∈ (1, 2) such that the map x 7−→ B∗eA
∗tR∗RAǫx has an

extension which belongs to L(Y, Lq(0, T ;U)).

Indeed, iiic)’ of Assumptions 2.4, combined with iiib), implies readily iiic), as al-
ready pointed out in [1, p. 1401] (with a reversed notation, though).

However, on one side the present iiic) – more precisely, the boundary regularity
result that (case by case) the control-theoretic condition iiic) translates to – has been
shown over the years to hold true in the case of distinct PDE systems studied in the
aforementioned references (viz. [2], [7], [10, 11], [8]). On the other side, uniqueness
of solutions to the Riccati equations appears to be in need of it: both within the first
proof of Theorem 2.6 given in the next section (specifically to perform the estimates
which bring about (3.7)), and also to show Lemma 4.2, instrumental to the distinct
proof of the same result proposed in Section 4. Furthermore, the stronger (A.3)
– which is central to the proof of Lemma 4.4 relevant to the infinite time horizon
case – is based upon iiic) of Assumptions 2.4.

Under the listed Assumptions 2.4, a full solution to the optimal control Prob-
lem 2.3, as detailed by the complex of statements S1.–S6. collected in Theorem 2.6
below, was obtained in [1]. These include, in particular, two specific novel features
over the parabolic or hyperbolic cases ([22]):

• the lack of continuity (in time) of the optimal control û(·) (viz. S1.), and
• that the gain operator B∗P (t) is bounded only on a certain dense subset of
Y , yet not preventing well-posedness of the Differential Riccati Equations
corresponding to the LQ problem.

Theorem 2.6 (Finite time horizon theory; cf. [1], Theorem 2.3). With reference
to the control problem (2.1)–(2.3), under the Assumptions 2.4, the following state-
ments are valid for each s ∈ [0, T ).

S1. For each x ∈ Y the optimal pair (û(·, s;x), ŷ(·, s;x)) satisfies

ŷ(·, s;x) ∈ C([s, T ];Y ), û(·, s;x) ∈
⋂

1≤p<∞

Lp(s, T ;U).
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S2. The linear bounded (on Y ) operator Φ(t, s), defined by

Φ(t, s)x = ŷ(t, s;x) = eA(t−s)x+ [Lsû(·, s;x)](t) , s ≤ t ≤ T , x ∈ Y , (2.8)

is an evolution operator, i.e.

Φ(t, t) = IY , Φ(t, s) = Φ(t, σ)Φ(σ, s) for s ≤ σ ≤ t ≤ T .

S3. For each t ∈ [0, T ] the operator P (t) ∈ L(Y ), defined by

P (t)x =

∫ T

t

eA
∗(τ−t)R∗RΦ(τ, t)x dτ , x ∈ Y, (2.9)

is self-adjoint and positive; it belongs to L(Y,C([0, T ];Y )) and is such that

(P (s)x, x)Y = Js(û(·, s;x), ŷ(·, s;x)) ∀s ∈ [0, T ] .

S4. The gain operator B∗P (·) belongs to L(D(Aε), C([0, T ];U)) and the optimal
pair satisfies for s ≤ t ≤ T

û(t, s;x) = −B∗P (t)ŷ(t, s;x) ∀x ∈ Y. (2.10)

S5. The operator Φ(t, s) defined in (2.8) satisfies for s < t ≤ T :

∂Φ

∂s
(t, s)x = −Φ(t, s)(A−BB∗P (t))x ∈ L1/γ(s, T ; [D(A∗ε)]′) (2.11)

for all x ∈ D(A), and

∂Φ

∂t
(t, s)x = (A−BB∗P (t))Φ(t, s)x ∈ C([s, T ], [D(A∗)]′) (2.12)

for all x ∈ D(Aε).
S6. The operator P (t) defined by (2.9) satisfies the following (differential) Ric-

cati equation in [0, T ):















d
dt (P (t)x, y)Y + (P (t)x,Ay)Y + (Ax, P (t)y)Y + (Rx,Ry)Z

−(B∗P (t)x,B∗P (t)y)U = 0 ∀x, y ∈ D(A)

P (T ) = 0 .

(2.13)

Among the fundamental conclusions of Theorem 2.6 is assertion S6., namely
the property that the optimal cost operator P (·) defined in (2.9) does solve the
differential Riccati equation (DRE) corresponding to Problem (2.1)-(2.3). That
P (·) is actually the unique solution to the DRE (2.13), at least within an appropriate
class of operators, is an issue which was not explicitly dealt with in the paper [1].

Thus, in order to render the finite time horizon theory devised in [1] complete, we
complement assertion S6. of Theorem 2.6 about existence of solutions to the DRE
(2.13) with the (novel) achievement of uniqueness, thereby concluding the proof of
well-posedness of the DRE. As we will see, uniqueness is meant within a suitable
class – that is class QT in (2.14) below – of linear, bounded, self-adjoint operators
also meeting an additional requirement, which is consistent with the regularity
property displayed by the gain operator in assertion S4. above.

Theorem 2.7 (Uniqueness for the DRE). With reference to the control problem
(2.1)–(2.3), let the Assumptions 2.4 hold. Then,
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S7. the differential Riccati equation (2.13) has a unique solution within the class

QT =
{

Q ∈ C([0, T ];L(Y )) : Q(t) = Q(t)∗ ≥ 0 , Q(T ) = 0 ,

B∗Q(·) ∈ L(D(Aǫ), C([0, T ];U))
}

.
(2.14)

The optimal cost operator P (·) defined by (2.9) is consequently that solution.

Remark 2.8. We give two distinct proofs of Theorem 2.7: a first one in Section 3
and a second one in Section 4. Both proofs utilize the link between the differential
and the integral forms of the Riccati equation, as clarified in the beginning of the
next section. The standing Assumptions 2.4 play a key role in both proofs, as
expected, with the trickier iiic) influencing them in a decisive and crucial way. A
major technical step in the longer second proof of uniqueness is the derivation of a
fundamental identity which is classical in control theory, stated as Lemma 4.1.

In the infinite time horizon case – i.e., when T = +∞ in (2.3) – appropriate
requirements on the decay (as t → +∞) of the semigroup eAt as well as of the

component F (t) involved in the decomposition of the operator B∗eA
∗t are intro-

duced, which both appear very natural; see (2.15) and (2.16) (the latter being (i)’
of Assumptions 2.9) below, respectively.

Interestingly, as a consequence of the aforesaid asymptotic behaviour, the re-
quirements on the Lp (in time) regularity of the component G(·) as well as of the

operator B∗eA
∗·A∗ǫ will need to hold only on a certain bounded interval [0, T ],

rather than on the entire half-line (0,∞).
For the sake of completeness and the reader’s convenience, the hypotheses pertain-
ing to the infinite time horizon are wholly recorded below.

Assumptions 2.9 (Infinite time horizon case). Let Y , U and Z be separable
complex Hilbert spaces, and let the basic Assumptions 2.1 be valid, with the ad-
ditional property that the C0-semigroup eAt is exponentially stable on Y , t ≥ 0;
namely, there exist constants M ≥ 1 and ω > 0 such that

‖eAt‖L(Y ) ≤ M e−ωt ∀t ≥ 0 . (2.15)

Then in particular, A−1 ∈ L(Y ).
The operator B∗eA

∗t admits the decomposition (2.5), where F (t) : Y −→ U ,
t ≥ 0, is a bounded linear operator such that

i)’ there exist constants γ ∈ (0, 1) and N, η > 0 such that

‖F (t)‖L(Y,U) ≤ N t−γ e−ηt ∀t > 0 , (2.16)

while ii)-iiia)-iiib)-iiic) of the Assumptions 2.4 on the (linear, bounded) component
G(t) : D(A∗) −→ U , t ≥ 0, hold true for some T > 0.

We note that the functional (2.3) with T = +∞ makes sense at least for u ≡ 0.
This again in view of the exponential stability of the semigroup eAt ((2.15) of As-
sumptions 2.9), which combined with (2.4) ensures Ry(·, y0; 0) ∈ L2(0,∞;Y ).
(The analysis carried out in the present paper easily extends to more general qua-
dratic functionals, like

J(u) =

∫ ∞

0

(

‖Ry(t)‖2Z + ‖R̃u(t)‖2U
)

dt ,

provided R̃ is a coercive operator in U . We take R̃ = I just for the sake of simplicity
and yet without loss of generality.)



11

Theorem 2.10 (Infinite time horizon theory; cf. [3], Theorem 1.5). Under the
Assumptions 2.9, the following statements are valid.

A1. For any y0 ∈ Y there exists a unique optimal pair (û(·), ŷ(·)) for Prob-
lem (2.1)-(2.3), which satisfies the following regularity properties

û ∈
⋂

2≤p<∞

Lp(0,∞;U) ,

ŷ ∈ Cb([0,∞);Y ) ∩
[

⋂

2≤p<∞

Lp(0,∞;Y )
]

.

A2. The family of operators Φ(t), t ≥ 0, defined by

Φ(t)y0 := ŷ(t) = y(t, y0; û) (2.17)

is a C0-semigroup on Y , t ≥ 0, which is exponentially stable.
A3. The operator P ∈ L(Y ) defined by

Py0 :=

∫ ∞

0

eA
∗tR∗RΦ(t)y0 dt x ∈ Y (2.18)

is the optimal cost operator; P is (self-adjoint and) non-negative.
A4. The following (pointwise in time) feedback representation of the optimal

control is valid for any initial state y0 ∈ Y :

û(t) = −B∗P ŷ(t) for a.e. t ∈ (0,∞),

where the gain operator satisfies B∗P ∈ L(D(Aǫ), U) (that is, it is just
densely defined on Y and yet it is bounded on D(Aǫ)).

A5. The infinitesimal generator AP of the (optimal state) semigroup Φ(t) de-
fined in (2.17) coincides with the operator A(I−A−1BB∗P ); more precisely,

AP ≡ A(I −A−1BB∗P ) ,

D(AP ) ⊂
{

x ∈ Y : x−A−1BB∗Px ∈ D(A)
}

.

A6. The operator eAtB, defined in U and a priori with values in [D(A∗)]′, is
such that

eδ·eA·B ∈ L(U,Lp(0,∞; [D(A∗ǫ)]′) ∀p ∈ [1, 1/γ) (2.19)

for all δ ∈ [0, ω ∧ η); almost the very same regularity is inherited by the
operator Φ(t)B:

eδ·Φ(·)B ∈ L(U,Lp(0,∞; [D(A∗ǫ)]′) ∀p ∈ [1, 1/γ) ,

with δ > 0 sufficiently small.
A7. The optimal cost operator P defined in (2.18) is a solution to the algebraic

Riccati equation (ARE) corresponding to Problem (2.1)-(2.3), that is

(Px,Az)Y + (Ax, Pz)Y − (B∗Px,B∗Pz)U + (Rx,Rz)Z = 0

for any x, z ∈ D(A) (or x, z ∈ D(AP )).
(2.20)

In order to render the infinite time horizon theory devised in [3] complete, we
complement assertion A7. of Theorem 2.10 about existence of solutions to the ARE
(2.20) corresponding to Problem (2.1)-(2.3), with the achievement of uniqueness,
thereby concluding the proof of well-posedness of the ARE.
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Theorem 2.11 (Uniqueness for the ARE). Consider the optimal control prob-
lem (2.1)-(2.3), with T = +∞, under the Assumptions 2.9. Then,

A8. the algebraic Riccati equation (2.20) has a unique solution P within the
class Q defined as follows:

Q :=
{

Q ∈ L(Y ) : Q = Q∗ ≥ 0 , B∗Q ∈ L(D(Aǫ), U)
}

. (2.21)

The optimal cost operator P defined by (2.18) is consequently that solution.

Remark 2.12. As in the finite time horizon case, the (linear, bounded, self-adjoint)
operators that belong to the class Q in (2.21) are characterized by a requirement
that is consistent with the regularity property displayed by the gain operator in
assertion A4. of Theorem 2.10.

3. A first proof of uniqueness for the DRE

In this Section we derive integral forms of both the differential and algebraic
Riccati equations, and present a first proof of Theorem 2.7. The argument employed
in this proof is pretty standard: the difference between another possible solution
P1(t) to the DRE and the Riccati operator P (t) is shown – in a series of steps – to
be identically zero on the interval [0, T ]. The final goal is attained fully exploiting
the Assumptions 2.4 and more specifically iiic), having taken as a starting point
the integral form of the DRE.

By contrast, in the next Section 4 a unified approach and method of proof will
prove effective in showing uniqueness for both cases.

3.1. Finite time interval, differential Riccati equations. In this subsection
we make reference to the optimal control problem (2.1)–(2.3), with T < +∞. We
address the issue of uniqueness of solutions to the Cauchy problem (2.13) for the
Riccati equation corresponding to problem (2.1)–(2.3), under the Assumptions 2.4.

We begin by relating the differential form (2.13) of the Riccati equation to an
integral form of it, which in turn can be further interpreted.

Lemma 3.1 (Integral forms of the Riccati equation). Let QT be the class defined
in (2.14), and let Q(·) ∈ QT be a solution to the DRE (2.13). Then the following
assertions hold true.

1. Q(·) solves the integral Riccati equation (in short, IRE), that is

(

Q(t)eA(t−s)x, eA(t−s)y
)

Y
= (Q(s)x, y)Y −

∫ t

s

(

ReA(r−s)x,ReA(r−s)y
)

Z
dr

+

∫ t

s

(

B∗Q(r)eA(r−s)x,B∗Q(r)eA(r−s)y
)

U
dr ,

(3.1)

with 0 ≤ s ≤ t ≤ T and x, y ∈ D(Aǫ).

2. B∗Q(·)eA(·−s) ∈ L(Y, L2(s, T ;U)).

3. The IRE (3.1) can be rewritten in the form

(

eA
∗(t−s)Q(t)eA(t−s)x, y

)

Y
= (Q(s)x, y)Y −

∫ t

s

(

eA
∗(r−s)R∗ReA(r−s)x, y

)

Y
dr

+

∫ t

s

(

eA
∗(r−s)Q(r)BB∗Q(r)eA(r−s)x, y

)

Y
dr ,

(3.2)
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valid for any x, y ∈ Y and with 0 ≤ s ≤ t ≤ T .

Proof. 1. Let x, y ∈ D(A): then eA·x, eA·y are differentiable, and therefore, using
(2.13), there exists

d

dr

(

Q(r)eA(r−s)x, eA(r−s)y
)

Y
=

= −
(

Q(r)eA(r−s)x,AeA(r−s)y
)

Y
−
(

AeA(r−s)x,Q(r)eA(r−s)y
)

Y
−

−
(

ReA(r−s)x,ReA(r−s)y
)

Z
+
(

B∗Q(r)eA(r−s)x,B∗Q(r)eA(r−s)y
)

U
+

+
(

Q(r)AeA(r−s)x, eA(r−s)y
)

Y
+

(

Q(r)eA(r−s)x,AeA(r−s)y
)

Y
=

−
(

ReA(r−s)x,ReA(r−s)y
)

Z
+
(

B∗Q(r)eA(r−s)x,B∗Q(r)eA(r−s)y
)

U
.

Integrating the above identity in r ∈ [s, t], one readily obtains the IRE (3.1), valid
for x, y ∈ D(A). In view of Lemma A.5, the validity of the IRE is extended to all
x, y ∈ D(Aǫ) by density.

2. By taking now in (3.1) t = T , x = y ∈ D(Aǫ), since P (T ) = 0 we establish
∫ T

s

∥

∥B∗P (r)eA(r−s)x
∥

∥

2

U
dr ≤

∫ T

s

∥

∥ReA(r−s)x
∥

∥

2

Z
dr ≤ C‖x‖2Y

by density.

3. The equivalent form (3.2) of the IRE follows in view of 2. and by density.
�

A first proof of Theorem 2.7. We follow the proof of Theorem 1.5.3.3 in [25], up
to a point. The subsequent arguments and estimates are driven by the distinctive
assumptions on the adjoint of the kernel eAtB, as well as by the different class of
regularity the solutions to the DRE are sought.

We know already that the optimal cost operator P (·) defined by (2.9) solves
(the Cauchy problem (2.13) for) the differential Riccati equation, as well as that
P ∈ QT . Assume there exists another operator in QT , say P1(·), which solves
(2.13), and set Q(t) := P1(t)− P (t), t ∈ [0, T ]; we aim to prove that Q(t) ≡ 0. By
construction Q(·) ∈ QT . By Lemma 3.1, both P1(·) and P (·) satisfy the IRE (3.1).
Then, taking in particular t = T , we find that Q(s) satisfies

(Q(s)x, y)Y = −

∫ T

s

(B∗Q(r)eA(r−s)x,B∗P1(r)e
A(r−s)y)U dr

−

∫ T

s

(B∗P (r)eA(r−s)x,B∗Q(r)eA(r−s)y)U dr ,

(3.3)

for any x, y ∈ D(Aǫ). To render the computations cleaner, set V (r) := B∗Q(r)
(that r belongs to [s, T ] is omitted here and below, as clear from the context).
Because Q(·) ∈ QT , it holds V (r)∗ ∈ L(U, [D(Aǫ)]′), along with

‖V (r)∗‖L(U,[D(Aǫ)]′) = ‖V (r)‖L(D(Aǫ),U) ≤ ‖V (·)‖L(D(Aǫ),C([s,T ];U) =: c .

We see that
∣

∣〈V (r)∗w, y〉[D(Aǫ)]′,D(Aǫ)

∣

∣ ≤ c ‖w‖U‖y‖D(Aǫ)
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consequently, as well as that
[

A∗−ǫV (r)
]∗

∈ L(U, Y ), with
∣

∣

([

A∗−ǫV (r)
]∗
w, x

)

Y

∣

∣ =
∣

∣〈[V (r)∗w,A−ǫx〉[D(Aǫ)]′,D(Aǫ)

∣

∣ ≤ c ‖w‖U‖x‖Y .

The same observations apply to [B∗P1(r)]
∗ and [B∗P (r)]∗, bringing about analo-

gous estimates.
We may now rewrite (3.3) as

(Q(s)x, y)Y = −

∫ T

s

(eA
∗(r−s)A∗−ǫ[B∗P1(r)]

∗V (r)eA(r−s)x,Aǫy)Y dr

−

∫ T

s

(eA
∗(r−s)A∗−ǫV (r)∗B∗P (r)eA(r−s)x,Aǫy)Y dr ,

which tells us that

A∗ǫ
∫ T

s

[

eA
∗(r−s)A∗−ǫ[B∗P1(r)]

∗V (r)eA(r−s)

+ eA
∗(r−s)A∗−ǫV (r)∗B∗P (r)eA(r−s)

]

x dr ,

a priori an element of [D(Aǫ)]′, in fact coincides with −Q(s)x ∈ Y by the very
definition of adjoint operator. We deduce

Q(s)x = −A∗ǫ
∫ T

s

[

eA
∗(r−s)A∗−ǫ[B∗P1(r)]

∗V (r)eA(r−s)

+ eA
∗(r−s)A∗−ǫV (r)∗B∗P (r)eA(r−s)

]

x dr ,

(3.4)

valid for every x ∈ D(Aǫ), where, as pointed out above, the right hand side is an
element of Y . As x ∈ D(Aǫ), B∗Q(s)x is meaningful, and we are allowed to apply
B∗ to both sides of (3.4), thus obtaining

V (s)x = −B∗(A∗)ǫ
∫ T

s

[

eA
∗(r−s)A∗−ǫ[B∗P1(r)]

∗V (r)eA(r−s)

+ eA
∗(r−s)A∗−ǫV (r)∗B∗P (r)eA(r−s)

]

x dr .

(3.5)

It is here where iiic) of Assumptions 2.4, that is

∃ q ∈ (1, 2) , C = C(T ) > 0: ‖B∗eA
∗(·−s)A∗ǫx‖Lq(s,T ;U) ≤ C ‖x‖Y ∀x ∈ Y ,

becomes crucially important: indeed, it yields as well

‖[B∗eA
∗(·−s)A∗ǫ]∗g(·)‖Y ≤ C ‖g‖Lq′(s,T ;U)

(q′ denotes the conjugate exponent of q), so that in particular

‖[B∗eA
∗(·−s)A∗ǫ]∗w‖Y ≤ C (T − s)1/q

′

‖w‖U ∀w ∈ U . (3.6)

We return to (3.5), and highlight a few blocks within its right hand side, as follows:

V (s)x = −

∫ T

s

[

B∗eA
∗(r−s)A∗ǫ

]

A∗−ǫ[B∗P1(r)]
∗V (r)eA(r−s)x dr

−

∫ T

s

[

B∗eA
∗(r−s)A∗ǫ

]

A∗−ǫV (r)∗B∗P (r)eA(r−s)x dr ;
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multiply next both members by w ∈ U , to find

(V (s)x,w)U = −

∫ T

s

(

V (r)eA(r−s)x, [B∗P1(r)A
−ǫ]

[

B∗eA
∗(r−s)A∗ǫ

]∗
w
)

U
dr

−

∫ T

s

(

B∗P (r)eA(r−s)x, [V (r)A−ǫ]
[

B∗eA
∗(r−s)A∗ǫ

]∗
w
)

U
dr .

We now proceed to estimate either summand in the right hand side, making use of
(3.6); this leads to

|(V (s)x,w)U |

≤ M ‖V (·)‖L(D(Aǫ),C([s,T ];U))‖x‖D(Aǫ)‖B
∗P1(·)‖L(D(Aǫ),C([s,T ];U))‖w‖U (T − s)1/q

′

+M ‖B∗P (·)‖L(D(Aǫ),C([s,T ];U))‖x‖D(Aǫ)‖V (·)‖L(D(Aǫ),C([s,T ];U))‖w‖U (T − s)1/q
′

.

Therefore, there exists a positive constant C (depending on P and P1) such that

∣

∣(V (s)x,w)U
∣

∣ ≤ C ‖V (·)‖L(D(Aǫ),C([s,T ];U))(T − s)1/q
′

‖w‖U‖x‖D(Aǫ) ,

which establishes

‖V (s)‖L(D(Aǫ),U) ≤ C ‖V (·)‖L(D(Aǫ),C([s,T ];U))(T − s)1/q
′

, (3.7)

for any s ∈ [0, T ).

The argument is now pretty standard: set s0 such that (T −s0)
1/q′ < 1/C; since

the estimate (3.7) holds true in particular for any s ∈ [s0, T ), we have

‖V (·)‖L(D(Aǫ),C([s0,T ];U)) ≤ C (T − s0)
1/q′ ‖V (·)‖L(D(Aǫ),C([s0,T ];U))

which is impossible unless V (·) ≡ 0 on [s0, T ]. Iterating the same argument, in a
finite number of steps we obtain V (s) ≡ 0 on [0, T ]. This in turn implies, by (3.3),

(Q(s)x, y)Y = 0 ∀s ∈ [0, T ] , ∀x, y ∈ D(Aǫ) ;

by density we obtain (Q(s)x = 0 for any x ∈ Y first, and then) Q(·) ≡ 0, that is
P1(·) ≡ P (·), as desired.

�

3.2. Infinite time interval. Preparatory material. We turn now our attention
to the optimal control problem (2.1)–(2.3), with T = +∞. In order to establish a
uniqueness result for the corresponding algebraic Riccati equation (2.20), we will
employ a different method of proof than the one utilized in the previous subsection
for the DRE. Still, an integral form of the ARE will prove more effective (than its
algebraic form) to accomplish this goal, just like the integral forms of the DRE in
Lemma 3.1 provide fundamental tools for both proofs of Theorem 2.7. This is the
reason why we derive the said integral form of the ARE here. The following Lemma
contributes to the preparatory material for the forthcoming analysis in Section 4.
Its proof is not difficult, yet it is explicitly given for the reader’s convenience.

Lemma 3.2 (Integral form of the ARE). Let Q be the class defined in (2.21), and
let P1 ∈ Q be a solution to the algebraic Riccati equation (2.20). Then, P1 solves
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the following integral form of the ARE valid for all x, y ∈ D(Aǫ):

(

P1e
A(t−s)x, eA(t−s)y

)

Y
= (P1x, y)Y +

∫ t

s

(

B∗P1e
A(r−s)x,B∗P1e

A(r−s)y
)

U
dr

−

∫ t

s

(

ReA(r−s)x,ReA(r−s)y
)

Z
dr ,

(3.8)

with 0 ≤ s ≤ t.

Proof. Let P1 ∈ Q be a solution to the ARE (2.20), that is

(P1x,Ay)Y + (Ax, P1y)Y − (B∗P1x,B
∗P1y)U + (Rx,Ry)Z = 0 , x, y ∈ D(A) .

With eA(t−s)x, eA(t−s)y ∈ D(A) in place of x, y, and with 0 ≤ s ≤ t, the equation
becomes

(P1e
A(t−s)x,AeA(t−s)y)Y + (AeA(t−s)x, P1e

A(t−s)y)Y

− (B∗P1e
A(t−s)x,B∗P1e

A(t−s)y)U + (ReA(t−s)x,ReA(t−s)y)Z = 0 ,

that is nothing but

d

dt

(

P1e
A(t−s)x, eA(t−s)y

)

Y
=

(

B∗P1e
A(t−s)x,B∗P1e

A(t−s)y
)

U

−
(

ReA(t−s)x,ReA(t−s)y
)

Z
, x, y ∈ D(A) .

(3.9)

Integrating both sides of (3.9) between s and t we attain (3.8), initially for any
x, y ∈ D(A). Its validity is then extended to all x, y ∈ D(Aǫ) by density, since
P1 ∈ Q. �

While the integral form (3.8) of the ARE will constitute the starting point for
the proof of Theorem 2.11, it is important to emphasize the central role of the
distinguishing (and improved) regularity properties of the operator B∗eA

∗·A∗ǫ. We
refer the reader to Appendix A, where we collected and highlighted several instru-
mental results, with the aim of displaying their statements in a clear sequence and
framework. See, more specifically, Proposition A.6 therein.

4. A unified method of proof of uniqueness for both DRE and ARE

In this Section we provide a second proof of Theorem 2.7 and then show Theo-
rem 2.11, thereby settling the question of uniqueness for the differential and alge-
braic Riccati equations corresponding to the optimal control problem (2.2)–(2.3).
We recall from Section 1.1 that the a crucial intermediate step to achieve either
goal is an identity which is classical in control theory.

4.1. Finite time interval, differential Riccati equations. In this subsection
we focus on the optimal control problem (2.1)–(2.3), with T < +∞, along with
the corresponding Riccati equation. In approaching the second proof of Theo-
rem 2.7, we start by showing the above-mentioned fundamental identity. Despite
being a standard element in classical optimal control theory, the identity should
not be taken for granted in the absence of evident beneficial regularity properties
of the kernel eAtB – such as analiticity of the semigroup or more generally singu-
lar estimates. Achieving the said equality requires that the Assumptions 2.4 are
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fully exploited. The delicate, careful computations are carried out in the following
Lemma.

Lemma 4.1 (Fundamental identity). Let Q ∈ QT be a solution to the integral Ric-
cati equation (3.1). With u ∈ L2(s, T ;U) and x ∈ D(Aǫ), let y(·) be the semigroup
solution to the state equation in (2.1) corresponding to u(·), with y(s) = x, that is

y(t) = eA(t−s)x+

∫ t

s

eA(t−r)Bu(r) dr =: eA(t−s)x+ Lsu(t) , t ∈ [s, T ] .

Then, the following identity is valid: for t ∈ [s, T ]

(Q(t)y(t), y(t))Y − (Q(s)x, x)Y = −

∫ t

s

[

‖Ry(r)‖2Z + ‖u(r)‖2U
]

dr

+

∫ t

s

‖u(r) +B∗Q(r)y(r)‖2U dr .

(4.1)

Proof. Assume initially that u ∈ L∞(s, T ;U). We examine the right hand side of
the identity (4.1). For the first term we have

−

∫ t

s

‖Ry(r)‖2Z = −

∫ t

s

∥

∥ReA(r−s)x
∥

∥

2

Z
dr −

∫ t

s

∥

∥RLsu(r)
∥

∥

2

Z
dr

− 2Re

∫ t

s

(

ReA(r−s)x,RLsu(r)
)

Z
dr =:

3
∑

j=1

Rj .

We note that each summand Rj makes sense, just considering the space regularity
originally singled out in [1] and here recalled in Proposition A.1; more specifically,
u ∈ L∞(s, T ;U) implies Lsu ∈ C([s, T ];Y ) by its fourth assertion. We consider
next the remainder

−

∫ t

s

‖u(r)‖2U dr +

∫ t

s

‖u(r) +B∗Q(r)y(r)‖2U dr .

Computing the square in the second integral, discarding additive inverses and re-
placing again the expression of y(r), we get

−

∫ t

s

‖u(r)‖2U dr +

∫ t

s

‖u(r) +B∗Q(r)y(r)‖2U dr

= 2Re

∫ t

s

(

B∗Q(r)eA(r−s)x, u(r)
)

U
dr + 2Re

∫ t

s

(

B∗Q(r)Lsu(r), u(r)
)

U
dr

+

∫ t

s

∥

∥B∗Q(r)eA(r−s)x
∥

∥

2

U
dr + 2Re

∫ t

s

(B∗Q(r)eA(r−s)x,B∗Q(r)Lsu(r)
)

U
dr

+

∫ t

s

∥

∥B∗Q(r)Lsu(r)
∥

∥

2

U
dr =:

5
∑

j=1

Cj .

That each summand Cj makes sense as well is justified by the following observa-

tions: B∗Q(·)eA(·−s)x ∈ L2(s, T ;U) because of item 2. of Lemma 3.1; in addi-

tion, since L∞(s, T ;U) ⊂ Lq′(s, T ;U), Lemma A.2 yields the improved regularity
Lsu ∈ C([s, T ];D(Aǫ)), which in turn implies B∗Q(·)Lsu(·) ∈ C([s, T ];U), as shown
in Lemma A.5.
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By using the original form (3.1) of the integral Riccati equation (IRE), with
x = y, we find that

R1 + C3 = −

∫ t

s

‖ReA(r−s)x‖2Z dr +

∫ t

s

∥

∥B∗Q(r)eA(r−s)x
∥

∥

2

U
dr

=
(

Q(t)eA(t−s)x, eA(t−s)x
)

Y
− (Q(s)x, x)Y .

(4.2)

Next,

R3 + C4 + C1 = −2Re

∫ t

s

(

ReA(r−s)x,RLsu(r)
)

Z
dr

+ 2Re

∫ t

s

(

B∗Q(r)eA(r−s)x,B∗Q(r)Lsu(r)
)

U
dr

+ 2Re

∫ t

s

(

B∗Q(r)eA(r−s)x, u(r)
)

U
dr

= −2Re

∫ t

s

(

R∗ReA(r−s)x,

∫ r

s

eA(r−σ)Bu(σ) dσ
)

Y
dr

+ 2Re

∫ t

s

〈

Q(r)BB∗Q(r)eA(r−s)x,

∫ r

s

eA(r−σ)Bu(σ) dσ
〉

[D(Aǫ)]′,D(Aǫ)
dr

+ 2Re

∫ t

s

(

B∗Q(r)eA(r−s)x, u(r)
)

U
dr ,

where the duality in the penultimate term is based on the membership Q(·) ∈ QT

(along with the estimate (A.2)) which yields Q(r)B ∈ L(U, [D(Aǫ)]′), combined as
before with Lsu ∈ C([s, T ];D(Aǫ)). The above leads to

R3 + C4 + C1 = −2Re

∫ t

s

∫ r

s

(

B∗eA
∗(r−σ)R∗ReA(r−s)x, u(σ)

)

U
dσ dr+

+ 2Re

∫ t

s

∫ r

s

(

B∗eA
∗(r−σ)Q(r)BB∗Q(r)eA(r−s)x, u(σ)

)

U
dσdr

+ 2Re

∫ t

s

(B∗Q(σ)eA(σ−s)x, u(σ)
)

U
dσ ,

which can be rewritten, exchanging the order of integration, as follows:

R3 + C4 + C1 =− 2Re

∫ t

s

(

B∗
{

∫ t

σ

eA
∗(r−σ)R∗R

[

eA(r−s)x
]

dr

−

∫ t

σ

eA
∗(r−σ)Q(r)BB∗Q(r)eA(r−σ)

[

eA(σ−s)x
]

dr

−Q(σ)
[

eA(σ−s)x
]

}

, u(σ)
)

U
dσ .

(4.3)

Let us focus on the expression inside the curly bracket. Because Q(·) solves the
IRE (3.1), as well as its second form (3.2) valid for any pair x, y ∈ Y , then the
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following identity – a strong form of the IRE, when Q(·) is unknown – holds true:

eA
∗(t−σ)Q(t)eA(t−σ)z = Q(σ)z −

∫ t

σ

eA
∗(r−σ)R∗Rz dr

+

∫ t

σ

eA
∗(r−σ)Q(r)BB∗Q(r)eA(r−σ)z dr , 0 ≤ σ ≤ t ≤ T , z ∈ Y .

Thus, returning to (4.3) with this information and setting in particular z = eA(σ−s)x,
we find that R3 + C4 + C1 simply reads as follows:

R3 + C4 + C1 = −2Re

∫ t

s

(

B∗eA
∗(t−σ)Q(t)eA(t−s)x, u(σ)

)

U
dσ

= −2Re
(

Q(t)eA(t−s)x, Lsu(t)
)

Y
.

(4.4)

We examine next the sum

R2 + C5 = −

∫ t

s

‖RLsu(r)‖
2
Z dr +

∫ t

s

∥

∥B∗Q(r)Lsu(r)
∥

∥

2

U
dr ,

where, again, since u ∈ L∞(s, T ;U) ⊂ Lq′(s, T ;U), we know from Lemma A.2 that
Lsu ∈ C([s, T ];D(Aǫ)). Consequently, one gets

R2 + C5 = −

∫ t

s

〈[

R∗R−Q(r)BB∗Q(r)
]

Lsu(r), Lsu(r)
〉

[D(Aǫ)]′,D(Aǫ)
dr

= −Re

∫ t

s

(

A∗−ǫ[R∗R−Q(r)BB∗Q(r)
]

A−ǫ

∫ r

s

AǫeA(r−λ)Bu(λ) dλ,

∫ r

s

AǫeA(r−µ)Bu(µ) dµ
)

Y
dr .

(4.5)

It is important to emphasize that in going from the duality to the inner product
in (4.5), two facts have been crucially used, besides Q(·) ∈ QT : the hypothesis
(2.7) on the observation operator R (that is iiib) of the Assumptions 2.4), and once
again, Lemma A.2. Further handling of the right hand side of (4.5) leads to the
triple integral

R2 + C5 = −Re

∫ t

s

I(r, s) dr ,

having set

I(r, s) =

∫ r

s

∫ r

s

(

B∗eA
∗(r−µ)

[

R∗R−Q(r)BB∗Q(r)
]

eA(r−λ)Bu(λ), u(µ)
)

U
dλ dµ .

Let us focus on the inner double integral I(r, s). We note that this integral
pertains to a symmetric function of (λ, µ), and hence the integral over the square
[s, r]× [s, r] can be replaced by twice the integral over the triangle

{(λ, µ) : s ≤ µ ≤ λ ≤ r} .
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It follows that

I(r, s) = 2

∫ r

s

dλ

∫ λ

s

dµ
(

B∗eA
∗(r−µ)

[

R∗R−Q(r)BB∗Q(r)
]

eA(r−λ)Bu(λ), u(µ)
)

U

= 2

∫ r

s

[

∫ λ

s

(

B∗eA
∗(λ−µ) eA

∗(r−λ)
[

R∗R−Q(r)BB∗Q(r)
]

eA(r−λ)Bu(λ), u(µ)
)

U
dµ

]

dλ

= 2

∫ r

s

(

eA
∗(r−λ)

[

R∗R−Q(r)BB∗Q(r)
]

eA(r−λ)Bu(λ),

∫ λ

s

eA(λ−µ)Bu(µ) dµ
)

Y
dλ

= 2

∫ r

s

(

eA
∗(r−λ)

[

R∗R−Q(r)BB∗Q(r)
]

eA(r−λ)Bu(λ), Lsu(λ)
)

Y
dλ .

Inserting the expression of I(r, s) obtained above in the outer integral yields

R2 + C5

= −2Re

∫ t

s

∫ r

s

(

eA
∗(r−λ)

[

R∗R−Q(r)BB∗Q(r)
]

eA(r−λ)Bu(λ), Lsu(λ)
)

Y
dλ dr ;

next we exchange the order of integration and also move the first argument of the
inner product, to achieve

R2 + C5

= −2Re

∫ t

s

∫ t

λ

(

eA
∗(r−λ)

[

R∗R−Q(r)BB∗Q(r)
]

eA(r−λ)Bu(λ), Lsu(λ)
)

Y
dr dλ

= −2Re

∫ t

s

∫ t

λ

(

u(λ), B∗eA
∗(r−λ)

[

R∗R−Q(r)BB∗Q(r)
]

eA(r−λ)Lsu(λ)
)

Y
dr dλ

= −2Re

∫ t

s

(

u(λ), B∗

∫ t

λ

eA
∗(r−λ)

[

R∗R−Q(r)BB∗Q(r)
]

eA(r−λ) Lsu(λ) dr
)

U
dλ .

(4.6)

It is apparent that the second form (3.2) of the IRE (with λ in place of s) – in
fact, a strong form of it – provides once more the tool, just like in deriving (4.4)
from (4.3). With z = Lsu(λ), replace the integral

∫ t

λ

eA
∗(r−λ)

[

R∗R−Q(r)BB∗Q(r)
]

eA(r−λ)z dr

by [Q(λ)− eA
∗(t−λ)Q(t)eA(t−λ)]z, to find

R2 + C5 = −2Re

∫ t

s

(

u(λ), B∗
[

Q(λ)− eA
∗(t−λ)Q(t)eA(t−λ)

]

Lsu(λ)
)

U
dλ

= −2Re

∫ t

s

(

B∗
[

Q(λ)− eA
∗(t−λ)Q(t)eA(t−λ)

]

Lsu(λ), u(λ)
)

U
dλ .

(4.7)
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Thus, adding C2 to (4.7), we see that a useful simplification occurs, as detailed
below:

R2 + C5 + C2 = −2Re

∫ t

s

(

B∗Q(λ)Lsu(λ), u(λ)
)

U
dλ

+ 2Re

∫ t

s

(

B∗eA
∗(t−λ)Q(t)eA(t−λ)Lsu(λ), u(λ)

)

U
dλ

+ 2Re

∫ t

s

(

B∗Q(r)Lsu(r), u(r)
)

U
dr

= 2Re

∫ t

s

∫ λ

s

(

Q(t)eA(t−σ)Bu(σ), eA(t−λ)Bu(λ)
)

Y
dσ dλ .

Owing to the simmetry of the latter integrand in (σ, λ), we may replace twice the
integral over the triangle {(λ, σ) : s ≤ λ ≤ σ ≤ t} by the integral over the square
[s, t]× [s, t], and finally get

R2 + C5 + C2 = Re

∫ t

s

∫ t

s

(

Q(t)eA(t−σ)Bu(σ), eA(t−λ)Bu(λ)
)

Y
dλ dσ

= Re
(

Q(t)Lsu(t), Lsu(t)
)

Y
=

(

Q(t)Lsu(t), Lsu(t)
)

Y
.

(4.8)

Combining (4.8) with (4.2) and (4.4), we finally obtain

3
∑

i=1

Ri +

5
∑

j=1

Cj =
(

Q(t)eA(t−s)x, eA(t−s)x
)

Y
− (Q(s)x, x)Y

+ 2Re(Q(t)eA(t−s)x, Lsu(t))Y + (Q(t)Lsu(t), Lsu(t))Y

= (Q(t)y(t), y(t))Y − (Q(s)x, x)Y ,

which establishes the fundamental identity (4.1) in the case u ∈ L∞(s, T ;U). Fi-
nally, the identity extends to u ∈ L2(s, T ;U) by density, which concludes the proof
of Lemma 4.1.

�

We next introduce an integral equation that involves a given operator solution
Q(t) to the Riccati equation corresponding to optimal control problem (2.1)–(2.3).
Once uniqueness for the DRE (2.13) is established, so that Q(t) must coincide
with the Riccati operator P (t), then it will be clear that the said integral equation
(viz. (4.9) below) is nothing but the well known closed-loop equation, of central
importance for the synthesis of the optimal control. (This justifies the use of the
term “closed-loop equation” for (4.9)).

As we shall see, the following Lemma 4.2 and (the independent) Lemma 4.1
constitute the core elements for the proof of Theorem 2.7.

Lemma 4.2. Let ǫ be as in iii) of Assumptions 2.4. Let Q ∈ QT , where QT is the
class defined by (2.14). Then, for every x ∈ D(Aǫ), the closed loop equation

y(t) = eAtx−

∫ t

0

eA(t−s)BB∗Q(σ)y(σ) dσ , t ∈ [0, T ] , (4.9)
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has a unique solution in the space

X =
{

y ∈ C([0, T ];D(Aǫ)) : sup
t∈[0,T ]

(

e−rt‖y(t)‖D(Aε)) < ∞
}

(4.10)

endowed with the norm

‖y‖X,r = sup
t∈[0,T ]

e−rt‖y(t)‖D(Aǫ) , y ∈ X ,

provided r > 0 is chosen sufficiently large.

Proof. With x ∈ D(Aǫ), we set E(t) = eAtx. By semigroup theory we know
that E(·) ∈ C([0, T ];D(Aǫ)); even more, since eAt is exponentially stable, it holds
E(·) ∈ X provided r is sufficiently large. As the integral equation (4.9) has the
clear form

y(t) +
[

LB∗Q(·)y(·)
]

(t) = E(t) , t ∈ [0, T ] ,

we appeal to a classical argument of functional analysis: we will prove that LB∗Q(·)
is a contraction mapping in X , having chosen r sufficiently large. This will in turn
imply that I+LB∗Q(·) is invertible in X , thus providing the sought unique solution
to (4.9).

For each y ∈ X , z ∈ D(A∗ǫ), t ∈ [0, T ], we have by Lemma A.5
∣

∣(e−rtLB∗Q(·)y(·), A∗ǫz)Y
∣

∣

=
∣

∣

∣

∫ t

0

e−r(t−s)
(

B∗Q(s)e−rsy(s), B∗eA
∗(t−s)A∗ǫz

)

U
ds
∣

∣

∣

≤

∫ t

0

e−r(t−s)‖B∗Q(·)e−r·y(·)‖C([0,T ];U)

∥

∥B∗e(t−s)A∗

A∗ǫz
∥

∥

U
ds

≤ ‖B∗Q(·)‖C([0,T ];D(Aǫ)),C([0,T ];U)) ‖y‖X,r

∫ t

0

e−rσ‖B∗eA
∗σA∗ǫz‖U dσ

≤ ‖B∗Q(·)‖C([0,T ];D(Aǫ)),C([0,T ];U)) ‖y‖X,r

[

∫ t

0

e−rσq′ dσ
]1/q′

‖B∗e·A
∗

A∗ǫz‖Lq(0,T ;U)

≤ ‖B∗Q(·)‖C([0,T ];D(Aǫ)),C([0,T ];U))
1

(rq′)1/q′
‖B∗eA

∗·A∗ǫ‖L(Y,Lq(0,T ;U)) ‖z‖Y ‖y‖X,r .

We note that in going from the antepenultimate to the penultimate estimate we
used iiic) of the Assumptions 2.4. Therefore, there exist positive constants c, c′ such
that

∥

∥e−rt
[

LB∗Q(·)y(·)
]

(t)
∥

∥

D(Aǫ)
≤

c

(rq′)1/q′
‖y‖X,r ≤

c′

r1/q′
‖y‖X,r ,

so that by taking a sufficiently large r we see that LB∗Q(·) is a contraction mapping
in X . The conclusion of the Lemma follows. �

Uniqueness for the DRE is now a consequence of Lemmas 4.1 and 4.2, its proof
following a somewhat familiar path.

Proof of Theorem 2.7. For the optimal pair (ŷ, û) corresponding to the initial state
x ∈ Y it holds

(P (s)x, x)Y = J(û) =

∫ T

s

(

‖Rŷ(r)‖2Z + ‖û(r)‖2U

)

dr , 0 ≤ s ≤ T ,
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where P (·) is the Riccati operator defined in (2.9), i.e.

P (t)x =

∫ T

t

eA
∗(r−t)R∗RΦ(r, t)x dr , x ∈ Y ,

while Φ(r, t) denotes the evolution operator

Φ(r, t)x = eA(r−t)x+ Ltû(r) , r ∈ [t, T ] .

Let Q(·) ∈ QT be another solution to the DRE (2.13): by Lemma 3.1 Q(·) solves
the IRE (3.1) as well; then, with u ∈ L2(s, T ;U) and x ∈ D(Aǫ), the identity (4.1)
holds true by Lemma 4.1. With t = T , since Q(T ) = 0, from (4.1) we see that

(Q(s)x, x)Y =

∫ T

s

[

‖Ry(r)‖2Z + ‖u(r)‖2U
]

dr −

∫ T

s

‖u(r) +B∗Q(r)y(r)‖2U dr

≤

∫ T

s

[

‖Ry(r)‖2Z + ‖u(r)‖2U
]

dr = J(u) .

In particular, when u = û, we establish

(Q(s)x, x)Y ≤ J(û) = (P (s)x, x)Y ∀s ∈ [0, T ] , ∀x ∈ D(Aǫ) . (4.11)

Conversely, let y(·) be the solution to the closed-loop equation (4.9) correspond-
ing to x ∈ D(Aǫ), guaranteed by Lemma 4.2, and let u(·) = −B∗Q(·)y(·). By
construction u ∈ L2(s, T ;U), and the fundamental identity becomes

(Q(s)x, x)Y =

∫ t

s

(

‖Ry(r)‖2Z + ‖u(r)‖2U

)

dr + (Q(t)y(t), y(t))Y ,

which in turn gives, for t = T ,

(Q(s)x, x)Y = J(u) ≥ J(û) = (P (s)x, x)Y ∀s ∈ [0, T ] , ∀x ∈ D(Aǫ) . (4.12)

The inequality (4.12), combined with (4.11), establishes – via the usual polarization
(first) and density (next) arguments – Q(s) ≡ P (s) on [0, T ], as desired.

�

4.2. Infinite time interval, algebraic Riccati equations. In this Section we
prove our second main result, that is Theorem 2.11, which pertains to uniqueness for
the algebraic Riccati equation (2.20), under the standing Assumptions 2.9. Instru-
mental results are the counterparts of Lemmas 4.1 and 4.2, along with the integral
form (3.8) of the ARE, already obtained in Section 3; see Lemma 3.2 therein.

The first Lemma is the infinite time horizon version of the fundamental identity
established in Lemma 4.1.

Lemma 4.3 (Fundamental identity (T = +∞)). Recall the class Q defined in
(2.21). Let Q ∈ Q be a solution to the integral Riccati equation (3.8). With u ∈
L2
loc

(0,∞;U) and x ∈ D(Aǫ), let y(·) be the semigroup solution to the state equation
(2.1) corresponding to u(·), with initial state x, given by (2.2). Then, the following
identity holds true, for any t ≥ 0:

(Qy(t), y(t))Y − (Qx, x)Y

= −

∫ t

0

(

‖Ry(s)‖2Z + ‖u(s)‖2U

)

ds+

∫ t

0

∥

∥u(s) +B∗Qy(s)
∥

∥

2

U
ds .

(4.13)
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Proof. It suffices to proceed along the lines of the proof of Lemma 4.1, replacing the
interval [s, t] by [0, t] and assuming initially u ∈ L∞

loc(0,∞;U); the proof is actually
slightly simpler, since here Q is independent of t. The details are omitted for the
sake of conciseness. �

The next Lemma is the infinite time horizon version of Lemma 4.2, dealing with
an integral equation which – once uniquenss for the ARE is ascertained – will turn
out to be the closed-loop equation.

Lemma 4.4. Let ǫ be as in the Assumptions 2.9. Recall the class Q defined by
(2.21), and let Q ∈ Q. For every x ∈ D(Aǫ) and a suitably large r > 0 there exists
a unique solution y(·) to the closed loop equation

y(t) = eAtx−

∫ t

0

eA(t−s)BB∗Qy(s) ds , t > 0 , (4.14)

in the space

X =
{

y ∈ C([0,∞);D(Aǫ)) : sup
t≥0

e−rt‖y(t)‖D(Aǫ) < ∞
}

(4.15)

endowed with the norm

‖y‖X,r = sup
t>0

e−rt‖y(t)‖D(Aǫ) ∀y ∈ X , r > 0 .

Proof. The argument is pretty much the same employed in the proof of Lemma 4.2.
A technically decisive (distinct) element here comes from the extended (and en-

hanced) regularity in time of the operator B∗eA
∗·A∗ǫ over the half line [0,∞),

which is guaranteed by [3, Proposition 3.2], recalled here as Proposition A.6. The
computation is included for the reader’s convenience.

Let x ∈ D(Aǫ) be given. By setting E(t) = eAtx, and recalling the input-to-state
map L, the integral equation (4.14) reads as

(

[I + LB∗Q]y(·)
)

(t) = E(t), in short.
For any function y(·) ∈ X and any z ∈ D(A∗ǫ), we have

|(e−rtLB∗Qy(t), A∗ǫz)Y =

∣

∣

∣

∣

∫ t

0

e−r(t−s)(B∗Qy(s)e−rs, B∗eA
∗(t−s)A∗ǫz)Y

∣

∣

∣

∣

≤

∫ t

0

e−r(t−s)‖B∗Q‖L(D(Aǫ),U)‖y‖X,r e
−δ(t−s) ‖eδ(t−s)B∗eA

∗(t−s)A∗ǫz‖U ds

≤ ‖B∗Q‖L(D(Aǫ),U)‖y‖X,r

(

∫ t

0

e−(r+δ)(t−s)q′ ds
)1/q′

·

·
(

∫ t

0

‖eδ(t−s)B∗eA
∗(t−s)A∗ǫz‖qU ds

)1/q

≤
1

[(r + δ)q′]1/q′
‖B∗Q‖L(D(Aǫ),U) ‖e

δ·B∗eA
∗·A∗ǫ‖L(Y,Lq(0,∞;U)) ‖y‖X,r ‖z‖Y ,

where δ belongs to the interval (0, ω∧η) (ω and η being like in the Assumptions 2.9).
The above estimate implies readily that there exists a constant C > 0 such that

‖LB∗Qy‖X,r ≤
C

(r + δ)1/q′
‖y‖X,r‖e

δ·B∗eA
∗·A∗ǫ‖L(Y,Lq(0,∞;U))

so that

‖LB∗Qy‖X,r ≤
1

2
‖y‖X,r ,
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provided r is sufficiently large. The conclusive argument is standard. �

Proof of Theorem 2.11. Let y0 ∈ Y , and let (ŷ, û) the optimal pair of the optimal
control problem (2.1)-(2.3) (with T = +∞), corresponding to the initial state y0.
Recall that

(Py0, y0)Y = J(û) =

∫ ∞

0

‖Rŷ(s)‖2Z ds+

∫ ∞

0

‖û(s)‖2U ds ,

where the (optimal cost) operator P is defined in terms of the evolution map
Φ(t)x := ŷ(t) via

Py0 =

∫ ∞

0

eA
∗tR∗RΦ(t)y0 dt, y0 ∈ Y .

In addition, P belongs to the class Q and solves the ARE (2.20); consequently, by
Lemma 3.2 P solves the integral form (3.8) of the ARE.

Let now Q ∈ Q be another solution to the ARE. By Lemma 4.3, we know
that for any given y0 ∈ D(Aǫ), and any admissible control u(·), the identity (4.13)
holds true (with x replaced by y0), where y(·) is the solution to the state equation
corresponding to the control u and the initial state y0. Consequently,

(Qy0, y0)Y ≤ (Qy(t), y(t))Y + J(u) ∀u ∈ L2
loc(0,∞;U) , ∀t > 0 ;

by choosing in particular the admissible pair (yT , uT ) defined as follows,

uT = û · χ[0,T ] , yT (t) =







ŷ(t) if t ≤ T

eAty0 + eA(t−T )Lû(T ) if t > T ,

we find (Qy0, y0)Y ≤ (QyT (t), yT (t))Y + J(uT ), valid for arbitrary t ≥ T > 0. By
letting t → +∞ in the previous inequality, one obtains readily

(Qy0, y0)Y ≤ J(uT ) ∀y0 ∈ D(Aǫ) ∀T > 0 , (4.16)

in view of the fact that the semigroup eAt decays exponentially, and thus ‖yT (t)‖Y →
0.

Observe now that

J(uT ) =

∫ ∞

0

‖RyT (s)‖
2
Z ds+

∫ ∞

0

‖uT (s)‖
2
U ds =

∫ T

0

‖Rŷ(s)‖2Z ds+

+

∫ ∞

T

∥

∥R
(

esAy0 + e(s−T )ALû(T )
)
∥

∥

2
ds+

∫ T

0

‖û(s)‖2U ds ,

so that J(uT ) −→ J(û), as T → +∞. Keeping this in mind, return to (4.16) and
let T → +∞ to find

(Qy0, y0)Y ≤ J(û) = (Py0, y0)Y ∀y0 ∈ D(Aǫ) . (4.17)

On the other hand, given y0 ∈ D(Aǫ) (and still with Q ∈ Q another solu-
tion to the ARE), let y(·) be the solution to the closed loop equation guaran-
teed by Lemma 4.4; by construction y ∈ L2

loc(0,∞;Y ). Take now the control
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u(·) = −B∗Qy(·), which belongs to L2
loc(0,∞;U). Then, the identity (4.13) holds

true for any positive t, that is

(Qy0, y0)Y = (Qy(t), y(t))Y +

∫ t

0

(

‖Ry(s)‖2Z + ‖u(s)‖2U

)

ds

−
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘✘∫ t

0

∥

∥u(s) +B∗Qy(s)
∥

∥

2

U
ds ≥

∫ t

0

‖Ry(s)‖2Z ds+

∫ t

0

‖u(s)‖2U ds .

(4.18)

As t → +∞, this shows that Ry ∈ L2(0,∞;Z), u ∈ L2(0,∞;U), as well as
(Qy0, y0)Y ≥ J(u). By minimality we find

(Qy0, y0)Y ≥ J(u) ≥ J(û) = (Py0, y0)Y ∀y0 ∈ D(Aǫ) . (4.19)

On the basis of (4.17) and (4.19), a standard polarization (first) and density (next)
argument confirms that Q = P , thereby concluding the proof of Theorem 2.11. �

Appendix A. Instrumental results

In this appendix we gather several results (some old, some new) which single out
certain regularity properties – in time and space – of

• the input-to-state map L,
• the operator B∗Q(·), when Q(t) ∈ QT ,

• the operator B∗eA
∗tA∗ǫ and its adjoint.

All of them stem from the Assumptions 2.4 or 2.9 on the (dynamics and control)
operators A and B. The role played by the assertions of the novel Lemma A.2 and
Lemma A.5 in the proofs of our uniqueness results is absolutely critical.

Initially, it is useful to recall from [1] and [3] the basic regularity properties of the
input-to-state map L. The first result pertains to the finite time horizon problem.
The reader is referred to [1, Appendix B] for the details of the computations leading
to the various statements in the following Proposition.

Proposition A.1 ([1], Proposition B.3). Let Ls be the operator defined by

Ls : u(·) −→ (Lsu)(t) :=

∫ t

s

eA(t−rBu(r) dr , 0 ≤ s ≤ t ≤ T . (A.1)

Under the Assumptions 2.4, the following regularity results hold true.

(1) If p = 1, then Ls ∈ L(L1(s, T ;U), L1/γ(s, T ; [D(A∗ǫ)]′);
(2) if 1 < p < 1

1−γ , then Ls ∈ L(Lp(s, T ;U), Lr(s, T ;Y )), with r = p
1−(1−γ)p ;

(3) if p = 1
1−γ , then Ls ∈ L(Lp(s, T ;U), Lr(s, T ;Y )) for all r ∈ [1,∞);

(4) if p > 1
1−γ , then Ls ∈ L(Lp(s, T ;U), C([s, T ];Y )).

Moreover, in all cases the norm of Ls does not depend on s.

The space regularity in the last assertion can be actually enhanced. To be more
precise, Ls maps control functions u(·) which belong to Lq′(s, T ;U) into functions
which take values in D(Aǫ) (q′ being the conjugate exponent of q in the Assump-
tions 2.4). We highlight this property – appparently left out of the work [1] – as a
separate result, since it will be used throughout in the paper. The proof is omit-
ted, as it is akin to (and somewhat simpler than) the one carried out to establish
assertion (v) of the subsequent Proposition A.3.
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Lemma A.2. Let ǫ and q be as in (iii) of the Assumptions 2.4. Then, for the
operator Ls defined in (A.1) we have

Ls ∈ L(Lq′(s, T ;U), C([s, T ];D(Aǫ))) .

A counterpart of Proposition A.1 specific for the infinite time horizon problem
was proved in [3, Proposition 3.6]. The collection of findings on the regularity of
the input-to-state map L is recorded here for the reader’s convenience.

Proposition A.3 ([3], Proposition 3.6). Let L be the operator defined by

L : u(·) −→ (Lu)(t) :=

∫ t

0

eA(t−rBu(r) dr , t ≥ 0 .

Under the Assumptions 2.9, the following regularity results hold true.

(i) L ∈ L(L1(0,∞;U), Lr(0,∞; [D(A∗ǫ)]′), for any r ∈ [1, 1/γ);
(ii) L ∈ L(Lp(0,∞;U), Lr(0,∞;Y )), for any p ∈ (1, 1/(1 − γ)) and any r ∈

[p, p/(1− (1− γ)p)];

(iii) L ∈ L(L
1

1−γ (0,∞;U), Lr(0,∞;Y )), for any r ∈ [1/(1− γ),∞);
(iv) L ∈ L(Lp(0,∞;U), Lr(0,∞;Y )∩Cb([0,∞);Y )), for any p ∈ (1/(1−γ),∞)

and any r ∈ [p,∞);
(v) L ∈ L(Lr(0,∞;U), Cb([0,∞);D(Aǫ)), for any r ∈ [q′,∞].

Because they occur in the present work, besides being central to the analysis of
[3], we need to recall the Lp-spaces with weights. Set

Lp
g(0,∞;X) :=

{

f : (0,∞) −→ X , g(·)f(·) ∈ Lp(0,∞;X)
}

,

where g : (0,∞) −→ R is a given (weight) function. We will use more specifically
the exponential weights g(t) = eδt, along with the following (simplified) notation:

Lp
δ(0,∞;X) :=

{

f : (0,∞) −→ X , eδ·f(·) ∈ Lp(0,∞;X)
}

.

Remark A.4. As pointed out in [3, Remark 3.8], all the regularity results pro-
vided by the statements contained in the Propositions A.1 and A.3 extend readily
to natural analogues involving Lp

δ spaces (rather than Lp ones), maintaining the
respective summability exponents p.

We now move on to a result which clarifies the regularity of the operator B∗Q(·),
Q(t) ∈ QT , when acting upon functions (with values in D(Aǫ)) rather than on
vectors – namely, on elements of the space D(Aǫ).

Lemma A.5. Let ǫ be as in (iii) of the Assumptions 2.4. If Q(·) ∈ QT and
f ∈ C([0, T ];D(Aǫ)), then

B∗Q(·)f(·) ∈ C([0, T ];U) .

Proof. We proceed along the lines of the proof of [1, Lemma A.3]. Let Q(·) ∈ QT

and let t0 ∈ [0, T ]. By the definition of QT , there exists c1 > 0 such that

‖B∗Q(t)z‖U ≤ c1‖z‖D(Aǫ) ∀t ∈ [0, T ] , ∀z ∈ D(Aǫ) . (A.2)

Since f(t0) ∈ D(Aǫ), then B∗Q(·)f(t0) ∈ C([0, T ];U). Then

‖B∗Q(t)f(t)−B∗Q(t0)f(t0)‖U

≤ ‖B∗Q(t)[f(t)− f(t0)]‖U + ‖B∗Q(t)f(t0)−B∗Q(t0)f(t0)‖U

≤ c1‖f(t)− f(t0)‖D(Aǫ) + ‖[B∗Q(t)−B∗Q(t0)]f(t0)‖U = o(1) , t −→ t0 .
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Essential as well in this work, and more specifically in the proof of Theorem 2.11,
is a stronger property of the operator B∗eA

∗·A∗ǫ, namely, (A.3) below, which holds
true for appropriate δ, under the Assumptions 2.9. Originally devised in [3], this
result reveals that once the validity of iiic) of Assumptions 2.4 is ascertained on
some bounded interval [0, T ], then the very same regularity estimate extends to the

half line, along with an enhanced summability of the function B∗eA
∗·A∗ǫx, x ∈ Y .

The key to this is the exponential stability of the semigroup, i.e. (2.15); see [3,
Proposition 3.2].

Proposition A.6 ([3], Proposition 3.2). Let ω, η and ǫ like in the Assumptions 2.9.
For each δ ∈ (0, ω ∧ η) the map

t −→ eδtB∗eA
∗tA∗ǫ

has an extension which belongs to L(Y, Lq(0,∞;U)). In short,

B∗eA
∗·A∗ǫ ∈ L(Y, Lq

δ(0,∞;U)) . (A.3)

We conclude providing a result that takes a more in-depth glance at the regularity
of the operator B∗eA

∗tA∗ǫ and its adjoint.

Lemma A.7. Under the Assumptions 2.9, the following regularity results are valid,
for any δ ∈ (0, ω ∧ η):

a) eδ·AǫeA·B ∈ L(Lq′(0,∞;U), Y ) ,

b) eδ·B∗eA
∗·A∗−ǫ ∈ L(Lr(0,∞;Y ), U) ∀r >

1

1− γ
.

(A.4)

The respective actions of the operators in (A.4) are made explicit by (A.5) and
(A.6).

Proof. The regularity results in (A.4) are, in essence, dual properties of the regu-
larity result in Proposition A.6 and of assertion A6. in Theorem 2.10, respectively.
To infer (a), we introduce the notation S for the mapping from Y into Lq(0,∞;U)
defined by

Y ∋ z −→ [Sz](t) := eδtB∗eA
∗tA∗ǫz , t > 0 .

For any z ∈ Y and any h ∈ Lq′(0,∞;U), it must be S∗ ∈ L(Lq′(0,∞;U), Y ) and
more precisely,

〈S∗h, z〉Y = 〈h, Sz〉Lq′(0,∞;U),Lq(0,∞;U) =

∫ ∞

0

〈

h(t), eδtB∗eA
∗tA∗ǫz

〉

U
dt

=
〈

∫ ∞

0

eδtAǫeAtBh(t) dt, z
〉

Y
.

Therefore,

S∗h =

∫ ∞

0

eδtAǫeAtBh(t) dt , h ∈ Lq′(0,∞;Y ) . (A.5)

To achieve (b) of (A.4), we recall instead the assertion A6. in Theorem 2.10,
which further tells us that

eδ·A−ǫeA·B ∈ L(U,Lp(0,∞;Y )) , for any p such that 1 ≤ p <
1

γ
.
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Similarly as above, we introduce the notation T for the mapping from U into
Lp(0,∞;Y ) defined by

U ∋ w −→ [Tw](t) := eδtA−ǫeAtBw , t > 0 ;

by construction, T ∗ ∈ L(Lp′

(0,∞;Y ), U) for all p′ > 1/(1− γ). More precisely, for

any w ∈ U and any g ∈ Lp′

(0,∞;Y ) we have

〈T ∗g, w〉U = 〈g, Tw〉Lp′(0,∞;Y ),Lp(0,∞;Y ) =

∫ ∞

0

〈

g(t), eδtA−ǫeAtBw
〉

Y
dt

=
〈

∫ ∞

0

eδtB∗eA
∗tA∗−ǫg(t) dt, w

〉

U
,

which establishes

T ∗g =

∫ ∞

0

eδtB∗eA
∗tA∗−ǫg(t) dt . ∀g ∈ Lp′

(0,∞;Y ) . (A.6)

The integrals in (A.5) and (A.6) are the sought respective representations of the
adjoint operators in (A.4). �

Acknowledgements

The research of F. Bucci was partially supported by the Università degli Studi di Firenze
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Laboratoire International Associé (LIA) COPDESC in Applied Analysis.

The research of P. Acquistapace was partially supported by the PRIN-MIUR Project

2017FKHBA8 of the Italian Education, University and Research Ministry.

References

[1] P. Acquistapace, F. Bucci, I. Lasiecka, Optimal boundary control and Riccati theory for
abstract dynamics motivated by hybrid systems of PDEs, Adv. Differential Equations 10
(2005), no. 12, 1389-1436.

[2] P. Acquistapace, F. Bucci, I. Lasiecka, A trace regularity result for thermoelastic equa-
tions with application to optimal boundary control, J. Math. Anal. Appl. 310 (2005), no. 1,
262-277.

[3] P. Acquistapace, F. Bucci, I. Lasiecka, A theory of the infinite horizon LQ-problem for
composite systems of PDEs with boundary control, SIAM J. Math. Anal. 45 (2013), no. 3,
1825-1870.

[4] P. Acquistapace, F. Flandoli, B. Terreni, Initial-boundary value problems and optimal
control for nonautonomous parabolic systems, SIAM J. Control Optim. 29 (1991), no. 1,
89-118.

[5] P. Acquistapace, B. Terreni, Classical solutions of nonautonomous Riccati equations aris-
ing in parabolic boundary control problems. II, Appl. Math. Optim. 41 (2000), no. 2, 199-226.

[6] A. Bensoussan, G. Da Prato, M. Delfour, S. Mitter, Representation and Control of

Infinite Dimensional Systems, 2nd edition, Birkhäuser, Boston, 2007.
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[math.AP], Sept. 2020.

http://arxiv.org/abs/2009.04905


30 PAOLO ACQUISTAPACE AND FRANCESCA BUCCI

[9] F. Bucci, I. Lasiecka, Singular estimates and Riccati theory for thermoelastic plate models
with boundary thermal control. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 11
(2004), no. 4, 545-568.

[10] F. Bucci, I. Lasiecka, Optimal boundary control with critical penalization for a PDE model
of fluid-solid interactions, Calc. Var. Partial Differential Equations 37 (2010), no. 1-2, 217-
235.

[11] F. Bucci, I. Lasiecka, Regularity of boundary traces for a fluid-solid interaction model,
Discrete Contin. Dyn. Syst. Ser. S 4 (2011), no. 3, 505-521.

[12] F. Bucci, I. Lasiecka, Feedback control of the acoustic pressure in ultrasonic wave propa-
gation, Optimization 20 (2019), no. 10, 1811-1854 (published online: 19 Aug. 2018).

[13] R.F. Curtain, A.J. Pritchard, Infinite dimensional linear systems theory, Lecture Notes
in Control and Information Sciences, 8, Springer-Verlag, Berlin-New York, 1978. vii+297 pp.

[14] G. Da Prato, Quelques résultats d’existence, unicité et régularité pour un problème de la
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