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We study existence. uniqueness and regularity of the strict, classical and strong 
solutions u E C(l0, r]. E) of the non-autonomous evolution equation u’(t) - 
A(t) U(I) =f(?). with the initial datum u(O) = x, in a Banach space E, under the 
classical KatcvTanabe assumptions. The domains of the operators A(t) are not 
needed to be dense in E. We prove necessary and sufficient conditions for existence 
and Holder regularity of the solution and its derivative. 

0. INTRODUCTION 

Let E be a Banach space, {A(t)},,,,, a family of closed linear operators 
on E. We consider the following Cauchy problem: 

(PI 

u’(t) -A(t) u(t) =f(t). t E [O. 7-1, 

u(0) =x 

x E E, f E C( [0, T], E) prescribed. 

We suppose that for each t E [0, T] A(t) is the infinitesimal generator of an 
analytic semigroup, and moreover A(t) has a domain D@(t)) which varies 
with I and is not necessarily dense in E. 

Problem (P) has been discussed by several authors under the assumption 
that D@(t)) = E for every t E [0, T]. The case of variable domains was first 
studied by Kato [ 111, who supposed D(A(t)) to vary “smoothly”: more 
precisely, a bounded operator R(t) was assumed to exist, with bounded 
inverse R(t)-‘, such that D(R(t) A(t) R(t))‘) = constant; moreover R(t) was 
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subject to very strong differentiability properties. Similar hypotheses are also 
considered by Tanabe (see Section 6 of [3 1 I). with a slight weakening of 
regularity assumptions about R(t). 

A first generalization was carried over by Sobolevski [ 27. 28 1 and Kato 
[ 12 I. In 1271 the evolution space E is a Hilbert space and -A(t) is positive 
definite and self-adjoint for each t E 10, T]: in [28] and I12 1 a Banach space 
situation is considered and in both papers a number p > 0 is supposed to 
exist, such that D((-A(f))O) = constant, with the further requirement in I12 1 
for the number p- ’ to be an integer. All these papers also require a Holder 
condition for (-A(f))O (-A(O)))O of order a E 11 -p, 11. 

Such assumptions are, in a certain sense, intermediate between the case of 
a constant dense domain and that of variable (dense) domains. Now it is 
difficult in general to examine D((-A(t))“): on the other hand many 
examples can be made in the opposite direction. relative to domains which 
vary very “badly”: namely, there are cases of dense domains &4(t)) such 
that D(A(t)) n D@(s)) is nowhere dense or even equal to (0 1 for any I f s 
(see, e.g., Dorroh 19 1, Kato [ 111, and Goldstein [ 10 I). 

It was therefore desirable to avoid any direct assumption about the 
“regularity” of the domains. A great improvement was attained by Kato and 
Tanabe [ 15 1, who replaced any assumption about D@(t)) by a differen- 
tiability condition for R(1, A(f)) and a Holder condition for (d/&),4(t) ‘. 
These assumptions also generalize those of Chapter 7 of Lions’ book 118 1 
(see also [ 19]), where the variational case in a Hilbert space E is considered. 
In recent years the hypotheses of [ 15 1 have been slightly modified and 
weakened by Tanabe (321 and Yagi 136, 371. In all these papers Problem (P) 
is solved by constructing the fundamental solution with the use of integral 
equation techniques; the density of domains makes it possible to find 
solutions which are strongly differentiable in 10. TI, for any s E E and J’ 
Holder continuous in [0, 71. 

From a different point of view. Da Prato and Grisvard (6 1 studied 
Problem (P) without assuming D@(t)) = E, as a special case of their theory 
about sums of non-commuting linear operators. They restrict themselves to 
the case s = 0 and discuss evolution both in L%paces and in spaces of 
continuous functions with values in E andf(0) = 0. 

In the present paper we will assume the same hypotheses of I15 1 and use a 
large part of their results, but we are mainly inspired by the techniques of 
[6 I. We only consider evolution in spaces of continuous functions, discussing 
also the case x # 0 and proving existence and uniqueness of various kinds of 
solutions of Problem (P). namely. strong. classical and strict solutions. In 
particular we prove a representation formula for the solution of Problem (P), 
without passing through the construction of the fundamental solution. 

Our formula can be heuristically derived by the following argument: we 
look for a solution of this kind: 
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u(l) = ef.4(f)X + if e(f-S).d(t)g(S) & 

-0 
(0.1) 

where g(t) is a suitable (integrable) function with values in E. Of course 
when A(t) = A = constant, this formula with g =f gives the ordinary mild 
solution of Problem (P). Thus in the general case g may be considered as a 
“modification” off. Taking the formal derivative of (0.1) we get 

u’(t) = A(t) et-‘“‘x + 

+ if A(t) e(r-s’4cr’g(s) ds + ( 
.f ii 

I I 
_ e”.“(f) 

-0 2t g(s) ds 
5=1-r 

=A(;;.([)+ [g(t)+!: [~e~-~~~)l,=,-,g(~)ds+l~e’““I 
l-1 

x]. 

Hence, if we want (0.1) to be a solution of Problem (P). we must choose g 
such that 

g(t) + I-’ P(t, s) g(s) ds + P(t, 0) x =f(t), 
-0 

where 

(0.2) 

Denote by P the integral operator a, + j-b P(t, s) q(s) ds; then the represen- 
tation formula for the solution of Problem (P) is formally given by 

qr) = e’.4’f’?c + if ecr-sL4cr, (1 + P)-’ If- P(., 0) x](s) ds. 
-0 

(0.3) 

We also study the “maximal regularity” of the solution. We say that there is 
maximal regularity for the solution of Problem (P) if it has Holder 
continuous first derivative for some exponent a E 10, 1 [, whenever f is 
Holder continuous with the same exponent (x, provided the vectors x and 
f(0) satisfy some suitable compatibility conditions. Here we get a necessary 
and sufftcient condition on x and f(O), which generalizes the regularity 
results of [6, Theorem 7.211 relative to the case x =f(O) = 0, and the 
analogous condition of Sinestrari [25, 261 and Da Prato and Sinestrari [8 ] 
in the case A(t) = A = constant. When A(t) is not constant, partial results in 
this direction are due to Paulsen [24], who proved (a - &)-Holder regularity 
of the derivative for each E > 0 provided f is a-Holder continuous and 
x =f(O) = 0. 
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Let us now introduce some notations. If .4 is a linear operator on a 
Banach space E, we denote by D(A) its domain and by R(A ) its range; also, 
p(A) is the resolvent set of A, a(A) its spectrum, and the resolvent operator 
(AI - A ) ‘, which is defined for each 1 E ~(4 ). will be denoted by R (A. A J. 

We will consider the following Banach spaces: 

C([O, T], E) = (U : 10, T] + E : u is continuous 1, 

with norm 

for any 8 E 10, 1 I. 

C”([O, T], E) = (U : [0, T] + E : K is Holder continuous 

with exponent 8). 

with norm 

C’( [0, T], E) = (U : IO, T] + E : u is strongly differentiable 

and U’ E C( [0, T], E) /, 

with norm 

1141 C’([O,Tl.E, = II~lIc~,o,~,.L, + II~‘Ilc,~oJ,.r.l~ 
for any 8 E 10, 1 [, 

C’*‘([O, T], E) = (U : (0, T] + E : u is strongly differentiable 

and U’ E C”( 10, T]. E)), 

with norm 

II~llcl.ec,o,r].r, = Il~lICI(,O,T,,E, + IIaYJ,,0.~,.~~. 

In addition, we define the spaces 

C( 10, Tl, E), C”( 107 u, 3 C’(lO, Tl, EL C’3e( ]O. T-1, E) 

as the spaces of the functions u : 10, T] + E belonging to 

C( I&, q, 3 Ce( I&, n -a C’([E, T], E). C’.e([~, 7-1, E) 

for each E > 0. 
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Similarly, for any p E [ 1, co 1 we define the Banach space 

Lp(O, T; E) = (U : 10, T[ -+ E : u is Bochner measurable 

and lI~(-)ll~ E ~YO, 01, 
with norm 

Finally if E is a Banach space, denote by 
continuous linear operators with domain E 
norm 

if p=oo. 

It;‘(E) the Banach space of all 
and range contained in E, with 

Now we list our assumptions. 
(I) For each t E [0, T], A(t) is a closed linear operator on the Banach 

space E with domain D@(t)), which generates an analytic semigroup 
v’*’ l[>o; in particular: 

(i) there exists 19, E 1742, ~1 such that 

p(A(f))~~,~~(zEC:peie,pE[O,+cO[,BE]-~~,B,[} 

Vf E [O, 7-l; 

(ii) there exists M > 0 such that 

(II) The operator-valued function t I--, R(l,A(t)) is in C’([O, TI. Y(E)) 
for each 1 E Coo; moreover there exist L > 0 and a E 10, 11 such that 

/I 
P 

$ RCA A(f)) II VA E &lo, Vf E [O, 7-I. 

(III) There exist B > 0 and q E 10, 11 such that 

II $4(f)-’ --g&-l 
II 

<Bit-71” Vf, t E [O, z-1. 
I(E) 
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Let us specify now what we mean as a “solution” of Problem (P). First of all 
we set 

D& (U E C(j0. Tj. E) : u(l) E D(.4(t)) it E 10. TI. and 

t w A(r) u(f) is in C([O. TI. El\ 

D,, 2 (u E C(l0, TI, E) : zc(t) E D(A(t)) ‘vt E 10. TI. and 

t w A(t) u(t) is in C( IO. T]. E)). 

Now we define our solutions. 

DEFINITION 0.1. u : [O, T/ + E is a strict solufion of Problem (P) if 
u E D and 

u’(t) -A(r) U(l) =f(t) vt E 10. 7-I. u(0) = .Y. 

DEFINITION 0.2. u : 10, r] + E is a classical solution of Problem (P) if 
u E D, and 

U’(l) -A(f) u(t) =f(t) vt E 10, 7-I. u(0) = s. 

DEFINITION 0.3. u : [O, T] + E is a strong solution of Problem (P) if 
u E C([O. T], E) and there exists ( u,,},~~ c D such that 

6) u, + u in C([O, 7’1, E); 

(ii) u,(t) - A(f) u,(t) &f,(r) E C( IO, rl, E) and f, -fin C( 10, TI. E): 

(iii) u,(O) --t x in E. 

Remark 0.4. Hypothesis III will be used only to prove existence and 
regularity of classical and strict solutions, while it is not necessary for 
uniqueness and for what concerns strong solutions. 

Remark 0.5. Yagi 137 I has shown existence and uniqueness of the 
classical solution of Problem (P) under Hypotheses I. II and the following 
condition, weaker than III: 

(III’) There exist B > 0, k E N and c( ,,.... ak. /? ,,..., Pk E R with 
-1 < ui < pi < 1 for i = l...., k, such that 

II A(t)R(&A(t))-$A(W’ -A(T)R(L,A(~));A(T)~’ 11 
XIEI 

<B \‘ Illa;It-75/4f 

,r, 
VA E c,o. vr, 7 E [O, z-1. 

It should be observed that in the present paper condition III’ instead of III 
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would be sufficient to get all our results about classical and strict solutions. 
In fact, existence is guaranteed by the fact that under this assumption the 
Dunford integrals, formally defining the derivative of the solution, are 
actually convergent; on the other hand, by a direct but very tedious 
calculation based upon our representation formula, it can be shown that our 
maximal regularity results still hold under condition III’ instead of III. 
However, we prefer to assume the stronger condition III, for it allows much 
simpler proofs, mainly in the case of maximal regularity, and in addition in 
concrete situations it seems more difficult to verify directly condition III’ 
rather than III. 

Remark 0.6. It follows directly by the definitions that every strict 
solution of Problem (P) is also a classical solution and a strong solution. It 
is not true, however, that a classical solution is necessarily a strong solution 
(see Remark 6.5 in Section 6 below). 

Remark 0.7. Kato and Tanabe [ 151 also consider weak solutions of 
Problem (P), i.e., functions u E C( [0, T], E) such that 

fr (u(t), cpr(t) -/i(t)* v(f)) dt + ).I (f(f). cp(t)) dt + (~3 rp(o)) = 0 
-0 -0 

for each a, E C’([O, r], E*) satisfying the following conditions: 

(i) q(t) E D@(f)*) Vt E [0, T]. and f ++ A(f)* o(t) E C([O, rl. E*): 

(ii) (o(r) = 0. 

Here (.> denotes the duality product between E and its dual space E*. and 
A(f)* is the adjoint operator of A(t). Then, it is easy to verify that every 
strict or strong solution of Problem (P) is also a weak solution in this sense. 
The same is true for every classical solution of Problem (P): to prove this, 
one has just to integrate by parts the equation in Is, T[. and let E + 0 ‘. 

Let us now describe the subjects of the following sections. In Section 1 we 
establish some preliminary results and give sense to formula (0.3), i.e., our 
candidate to be the representation formula for any solution of Problem (P). 
In Section 2 we derive some necessary conditions for existence of solutions 
of Problem (P), and prove uniqueness of such solutions. Section 3 is devoted 
to the basic results which are needed to get our existence and regularity 
theorems. In Section 4 we discuss classical solutions. Section 5 concerns 
strict solutions and their maximal regularity. In Section 6 we study strong 
solutions. Finally, in Section 7 we describe some examples and applications. 

409,‘99 I ? 
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1. PRELIMINARIES 

Let A be a closed linear operator on a Banach space E, satisfying 
Hypothesis I; then D(A), equipped with the graph norm. is itself a Banach 
space continuously imbedded into E. We recall the following definitions of 
the intermediate space (D(A), E), m0.r, between D(A) and E (see Lions 1 17 1 
and Lions and Peetre 1201): 

DEFINITION 1.1. Let E be a Banach space, and let 0 E 10, 1 [. If x E E. x 
is said to be in (D(A), E), m0,Z if there exists u : IO, co [ + D(A) having first 
derivative in the sense of distributions U’ : IO, co [ + E, such that 

(i) t’-‘u(t), tlmeAu(t), I’-‘u’(t) E L”(0, 03; E). 

(ii) u(0) = .Y. 

Remark 1.2. Condition (ii) of Definition 1.1 is meaningful since it is 
easily seen that condition (i) implies u E C”( [O, 03 [, E). Moreover it is clear 
that 

D(A)~(D(A),E),_,.,~D(A) V8E 10, l[. 

The space (D(A), EL,., is also customarily denoted by Ol(t9. co). In 
Peetre 1231 and in Butzer and Berens’ book 141 (see also Da Prato and 
Grisvard [7]) many properties and characterizations of D,l(S, co) are proved 
under the assumption that D(A) is dense in E. In the general case we can set 

Z= (xED(A):AxED(A)} 

and define the restriction of A to Z: 

D(A’)=Z 

A’x=Ax vx E z. 

Obviously, D(A’) is dense in D(A) which is a Banach space with the norm 
of E. Moreover we have: 

PROPOSITION 1.3. (WI’), D(A)),-e,-,. = (D(A), EL,,, VeE 10, 11. 

Proof: Obviously (D(A’), D(A)),po,c,, c (D(A), E),-e.,x,: conversely if 
x E P(A), EL,,, let u be the vector-valued function appearing in 
Definition 1.1. Then if we set u(t) = e’“u(f) it is easy to verify that t’-‘~~(t), 
t’-‘A’w(t), t’pew’(t) E L.%(O, co; D(A)) and ~‘(0) =x, which means 
XC (W’)lW))t-e.,. 

Remark 1.4. By Proposition 1.3 and the density of D(A’) in D(A) it 
follows that the space D,(8, co) has the same well-known characterizations 
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which are valid (see [4]) when A has dense domain. Therefore the following 
equalities hold: 

D,~(8,a,)={xEE:supt-eIJe’“x-xllE<cot 
f>O 

or equivalently 

D,4(e,cn)=(XEE: supP(IAR(A,A)?cllE< co} 
.4 >o 

Now we go back to our situation and represent the analytic semigroup 
le IA(f) tr>o by a Dunford integral. 

Let 7 be an arbitrary continuous path contained in Co0 joining fcoe-” 
and Scoe”, 0 E ]n/2,8, [ being fixed. For our purposes it is convenient to 
choose 

Y=YouY+uY~, 

where 

yOB (AEC:(Al= l,larg1l<0) 

~,~(~EC:~=pe*“,p~lt. 

For each r E 10, ZJ we define 

y,A(AEC:dEEyt. 

Then, for example, the following equalities hold: 

the integrals being absolutely convergent. 
The following lemma is very useful. 

LEMMA 1.5. Under Hypotheses I, II we haoe: 

(i) rfx E E then Ile’.““‘xll, < C IIxII~ Vt E 10, T]. 

(ii) If x E E then 11,4(t) erd(T’s$ < C/t [lxllE Vf E 10, T], Vs E 10, T]. 

(iii) If x E O,,,,@, co)), /3 E 10, l[, then IIA(r) e’~““&. < C(x)/t’-” 
vt E 10, z-1, Vr E IO, t[. 
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(iv) rf.uE &4(O)) therz JlA(f)e’-““sJ1, < C(lA(O)sll, bt E 10. 7‘i. 

(v) Zj’x~ D(A(0)) then lim,_,,& I~fA(fjet4”‘dJt =O. 

Progf: (i) and (ii) are evident by (1.1). 

(iii) We have 

A(r) e’““’ ,~=A(r)e’““‘[.u-e’,““‘.u+ (A(O)-’ ~A(r)~‘)A(O)e”““.ul 

+ ef4”‘A(0) efrco’x, 

so (iii) follows by (i), (ii) and the estimate (coming from Remark 1.4) 

(iv) By (i), (ii) and 

the result follows. 

(v) If x E D@(O)) the result follows by (iv); the general case is a 
consequence of (ii) and the density of D@(O)) in D@(O)). 

Under hypotheses I, II it is possible to define the linear operator on E (see 
(0.2)) 

(1.2) 

Observing that (see [ 3 1, Lemma 1. I]) 

we conclude that there exists K > 0 such that 

(1.3) 
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Therefore we can associate to the kernel P(t, s) the integral operator P 
defined by 

J%(t) 4 1” P(t, s) g(s) ds, fE [O, T], gEL’(0, T;E). (1.4) 
-0 

The properties of the operator P will be discussed in Section 3 below; for the 
moment we will just remark some basic facts (whose proofs will be found in 
Section 3). 

Remark 1.6. P is a Volterra integral operator with integrable kernel, so 
that P E I(‘(L’(0, T; E)) n Y’(LX (0, T, E)), and 1 + P can be inverted, with 
the operator Q A (1 + P)-’ being in Y:(L ‘(0, T; E)) n Y(L “(0, T; E)). In 
other words, the integral equation 

g(f) + 1’ P(f, s) g(s) ds = v(t), fE [O, T], (1.5) 
-0 

can be uniquely solved in L ‘(0, p, E) (resp. L “(0. C E)) for any 
q E L ‘(0, T; E) (resp. L”(0, T; E)). 

Remark 1.7. As a trivial consequence of (1. l), the vector-valued 
function f + P(f, 0) x is in L ‘(0, T; E) for each x E E. 

Now we are able to give sense to formula (0.1); for the moment, it will 
define just an element of L “(0. F E). 

PROPOSITION 1.8. Under Hypotheses I, II, ler x E E andfE C( [ 0, T], E). 
The formula 

u(q & e’““‘x + 1-I e(r-s)Aw I(1 +W' (f-P(.,O)x)] (s)ds (F) 
"0 

defines a uectorwaluedfinctiorz u E Lx’(O, T; E) n C(]O, T], E); moreover, if 
x E D(A (0)). then u E C( [0, T], E). 

ProoJ It is a consequence of Propositions 3.4, 3.6 and 3.7 of Section 3 
below. 

Formula (F) will play a very important role in the following, namely, to 
prove existence and regularity results for classical, strict and strong solutions 
of Problem (P). It is possible to get another representation formula for a 
strict solution u of Problem (P). Introduce the operator (analogous to (1.2)) 

=&[ e-“‘-“~R(L,A(s))di, O<s < f< T; 
‘Y 



20 .KQlJIST.&PACE AND TERRENI 

clearly an estimate similar to (1.3) holds for p(t. s). so that all properties of 
Remark 1.6 still hold for the operator 

I’g(t)& I’?-(t,s)g(s)ds. tE [O.Tl. gEL’(O.T;E). 
-0 

Then we have 

PROPOSITION 1.9. Under H.vpotheses I. II, suppose u is a strict solution 
of Problem (P). Then the following formula holds: 

u(t)=(l -&I erAIo)X+I.‘e”-‘“‘“lf(s)ds 
I 
. t E [0, T]. (R 

-0 

ProoJ If t E IO, T], define 

p(s) 4 e(r-s)a(s’u(g), s E [O, t]; 

then it is easy to verify that L’ E C’( [0, t[, E) and 

c’(s) = &t, s) u(s) + e(rms’A(slf(s) 

(see also Proposition 3.4 of Section 3 below). Consequently by integrating 
between 0 and t-s and letting E -+ O’, we obtain 

u(t) - e’.4(o’.y = pu(t) + 1’ e”-“‘“‘slf(s) ds, 
.O 

from which formula (F) follows. 
The representation formula (F) will be used in Section 2 to get uniqueness 

results for classical, strict and strong solutions of Problem (P). 

2. A PRIORI ESTIMATES: NECESSARY CONDITIONS 

THEOREM 2.1 (A PRIORI ESTIMATE). Under Hypotheses I, II let u be a 
strict solution of Problem (P); then 

II4Ol~ G C ) IIxlI~ + j: Ilf (s)IIE dj Vt E [0, T]. (2.1) 

Proof: It is a trivial consequence of formula (F) and the fact that 
(1 - P)-’ E l;“‘(Lx (0, t; E)) for each t E IO. T]. 

COROLLARY 2.2. Under Hypotheses I, II let u be a strong solution of 
Problem (P). Then (2.1) holds. 
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Proof: Obvious, by Definition 0.3 and Theorem 2.1. 

COROLLARY 2.3. Under Hypothesis I, II let u be a classical solution of 
Problem (P). Then (2.1) holds. 

Proof. Fix E > 0 and set 

v,(t) = u(t + E), tE (0, T--E]. 

Then ~7, is a strict solution of 

v:(t) = A(t + E) cc(t) =f(t + F), tE [0, T--E], 

v,(O) = U(E). 

Hence by Theorem 2.1 

IIu(t + E)lIE < c 1 IIz+)llE +ro’Ilf(s + E)llE ds[ VtE [O,T-E]: 

as E + 0’ the result follows. 

COROLLARY 2.4 (UNIQUENESS). Under Hypotheses I, II, Problem (P) 
has at most one strict (resp. strong, classical) solution. 

Proof: It follows trivially by Theorem 2.1 and Corollaries 2.2 and 2.3. 
We will discuss now some necessary conditions on the vectors x andf(0) 

for existence of strict and strong solutions; we will see in Sections 5 and 6 
that such conditions are also sufficient, provided f is sufficiently smooth in 
the case of strict solutions. 

THEOREM 2.5, Under HJ,potheses I, II, let x E E and fE C( [0, T], E). 
and suppose that the strict solution of Problem (P) exists; then the electors .Y 
and f (0) satisfy the following condition: 

and 

x E D@(O)) 

aox+S(o)-[~A(t)-‘]t~o .A(O)xEDo). (2.2) 

ProoJ By Definition 0.1, we have u E D (see the Introduction); in 
particular, x = u(0) is in D(A (O)), and moreover 

lim 
t-r0 

c = A(0) x +f(0): 
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on the other hand 

U(,f) - .Y AtO ’ -A(O) ’ = 
I t A(t) u(r) + A(0) 

, A(t) u(r) -A(O)s 
t 

u(t) -x A(r)-’ -A(O)-’ 
t - t A(f) u(f) E W(O)). 

As t + O+ we conclude that 

THEOREM 2.6. Under Hypotheses I, II, let x E E and fE C( [0, T]. E), 
and suppose that the strong solution of Problem (P) exists; then the uectors .Y 
and f (0) satisfjl the following condition: 

3ht,.N~&‘l(O)). ~{.Y,~,,.EE such that 

Xk + x. .t-k -f('h 

A(O)~~,+,~,-[~A(i)-'~~=~A(O)x,~D(A(O)). (2'3) 

In particular, x E D(A(0)). 

Proof: It is an obvious consequence of Theorem 2.5 and Definition 0.3. 

3. SOME BASIC RESULTS 

This section contains all auxiliary results which will be needed in the 
following sections. Our first two lemmata have been proved in [ 1.5. Lemma 
4.11; see also Tanabe’s book 133, Lemma 5.3.23. 

LEMMA 3.1. Under Hypotheses I. II, III ,ce have 

Proof: Since 
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we have 
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=-[A(r)R(1,A(r))-A(r)R(i.,A(r))]~A(I)-lA(r)R(I.A(r)) 

-A(r) (R&A(r)) $A@-’ -$4(r)-‘] A(t)R(A,A(t)) 
L 

-A(r)R(1,A(r))~A(r)~’ [A(r)R(~,A(t))-A(r)R(~,A(r))l: 

but 

/IA(r) R(J., A(O) --A(r) RF A(r))ll,,E, 

and the proof is easily completed. 
The next lemma concerns the operator P(t, s) defined in (1.2). 

LEMMA 3.2. Under Hypotheses I, II, III t+‘e have for 0 <s < r < t < T: 

IIW, s) - P(r, s)ll 2,E, < C(d)(t - r)6 (5 - s)-‘+‘~~~~~’ VdE ]O.Yjr\a[. 

Proof We start from the equality 

P(f,s)-P(r.s)=~j.e.“‘l’[gR(I.A(t))-kR(I.A(r))] dA 
‘7 

+ & [fl15!” @‘$R(A,A(r)) dl da, 
“T 5 ) 

which, by Lemma 3.1, implies 

II pk ~1 - P(h s)lly ,E, 

<C (t-r)(r-s)p2Co+(t-r)“(t-x)m’+/ 
L 

.,-I 
apzcada (3.1) 

-r--S I 

~C[(t-r)q((t-s)~‘+(r-s)-‘+n-(f-s)~’+n]: 
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since t - r < t - s and T ~ s < I - s. we get the estimate 

IlP(I.s)-P(r.s)I/,,,, 

~c[(t~r)~(t-sS)~‘+“~;4 [(r-r)(r-s)-‘y s 

+ (5 - s) Iin [(I-rr)pss) q 

~c(f-r,*(t-s)~~(T-s)~‘+~~~. 

from which the result follows. 
Our next statements concern the properties of all the operators and vector- 

valued functions appearing in formula (F). 

(a) The Function t b P(t, 0) .Y 

PROPOSITION 3.3. Under Hypotheses I. II we have: 

(i) If x E E, then P(t,O)xE C(]O, T].E)nLP(O. T;E) VIE 
[ 1, (1 - a)-‘[. 

(ii) rf .YED,,,,@. co). /3E [a, l[. then P(~.O).YEL.~(O. T;E) 
VpE [l. (1 -P)-‘[. 

(iii) ZJXED(A(O)), then P(LO)XEL”(O, T;E) and, as t-0’. 

Under Hypotheses I, II, III we hate: 

(iv) Ifx E E then P(t. 0) x E C”(]O. T], E). 

(v) ZfxED(A(0)) then, as t--T+O+. 

P(r, 0) x - P(s, 0) x 

= O(([ _ 5)afio) _ [er.4Ku _ er.4(0) 
1 [ $A(r)'l A(O)x. 

I=0 

ProojI (i) Suppose t > r > E. The equality 

P(kO)x-P(r,O)~x=&!~,e~‘r[~R(A^,A(r))-~R(I,A(r)) .vdA 
I I 

+&I [e.“-e-“]$R(&A(r))xdl (3.2) 
. i 
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implies the continuity of t + P(t. 0)x on IO, 7’1. The LP-integrability when 
pE [l, (1 -a)-‘[ is a consequence of (1.3). 

(ii) We have 

P(t. 0) x = P(t. O)[x - e’.4’o) x1 +P(t.O)[A(O)-’ -A(t)-‘]A(0)e’-““‘x 

+~/.,~~R(I,A(t))A(O)e’““lx~~ 
‘) 

+ [ 1 - erAtr’] i A(t)-’ A(0) e’.4’o’x, 

which implies, by Lemma lJ(iii), 

this proves (ii). 

(iii) As in (ii) we have 

+ [l -e’““‘]~A(t)-I A(O 

therefore as t + 0 + 

P(t, 0) = O(f) - [e’““’ - 11 [ $AW’] lroAW 

= O(ta) - [et.4(o’ _ ll[ $W’] ,yoAK’L~, 

and recalling (i), (iii) follows. 

(iv) Suppose t > 7 2 E. By (3.2) and Lemma 3.1, 

11 qt, 0) .x - P(7?0) XII, 

<C[(t-7)q&-‘+(t-7)&~*+a R(A, A(7)) da dl 
E 

< C(&)(t - 7y. 
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(v) Suppose I > r > 0. By (3.2). as in (iii) we get 

P(r, 0) x - P(r, 0) x 

l . e.\t I 2 =- 
II L 271i- y 

( ~R(i,A(t))-~R(i.,A(r)) (A(O)-’ -,4w’/ 
I J 

r 

+-&L.A(r))[A(r)-’ -A(V’j ++ 

L 

I < 

~R(i,A(r))-~R(i.A(r)) 

I 

-$/l(r)-’ -&l(r)-’ 1 - [R(~,A(I))-R(~.A(~))]~A(~)~’ 

-R&A(t)) $/l(t)-’ - i A(’ 1 ( 

r 
R(~,A(r))[A(O)-‘--Am’] ++M(;)) 

consequently it is easy to deduce that, as I - r + 0 +. 

P(t, 0) x - P(s, 0) x 

= O((r - r)ti) + O((r - s)‘l) - [e’““’ - er-l’r) I[ ;A(‘)-‘] A(O)x. 
1-O 

and the proof is complete. 

(b) The Function t ++ e’.““‘x 

Proposition 3.4. Let x E E. Under Hypotheses I, II we haue: 

I 
and (‘) 

e’““‘x E &4(r)) Vt E IO, T]; e’.““x E LX(O, T; E)n C’(]O, T], E) 

d 
27 

“““x = A(r) erAtr)x + P(t, 0) x Vt E 10, T]. 

,e~,4,1j~ii,“l’:‘ix E C([O, T]. E) if and only if x E D@(O)); in this case 

(iii) rf /3 E IO, a], then er.4(r’x E C”([O, T], E) if and on[v if 
x E ~.4,o,cp9 a )* 
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(iv) If/? E ]u, 1[ and x E D,,,,(p, co), then er’rcr’x E P([O, r], E). 

(v) Zfx E D(A(O)), then as t+ O+ 

e'.4"' -1 
t 

x=0(1)+ “““:-l x- [erA(O’-- l][ $A([)-‘1 A(0) x 
t=0 

and 

A(f) e’.““.u = o( 1) + e’-“““((0) x - [A(t) er-r’l’ [ ;A(r)ll ,_04W~ 

= o(l) + erAco’A(0) x - tA(0) e’-‘(O) [ $W-‘] lmoWW~. 

Under Hypotheses I, II, III bve have: 

(vi) er”‘r’x E C’-“( 10, T], E). 

Proof (i) Obviously, e’.“‘)x E D(A(t)) Vt E 10, T]. Next, e’.““x E 
Lcc(O, T; E) by Lemma 1.5(i): finally, suppose I, r > E and let r + f. By 
Lebesgue’s Theorem 

er.‘“l _ e’.41” ,K = er.ru, _ e’4t” -K + e’.lt” _ er4tr) -K 

t-r t-r t-r 

+ A(r) e’.““x + P(t. 0) x. 

We have to prove that A(f) e’“‘” x + P(t, 0) x E C(]O, T], E). The continuity 
of P(t, 0) x follows by Proposition 3.3(i). while the equality 

A(t) er-4cr)x - A(r) e”“‘x = & 1: le’.‘[R(L, A(t)) - R(,l, A(s))] x di, 
” ,’ 

+ &! [Pi - eT.’ ] R(A, A(r)) x dL 
) 

implies the continuity of A(f) efffu’x, via Lebesgue’s Theorem. 

(ii) It is enough to show that 

lim 11 e’““‘x - x/IE = 0 
t-o+ 

if and only if x E D(A(0)). 

We have as t--t 0’ 

er4(“x -x = O(P) + [e’.‘(O) - 11 x; 
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now it is easy to verify that 

lim )I e’.“” x - .I$- = 0 
I-Of 

__- 
if and only if x E D@(O)). 

and (ii) follows. 

(iii)-(iv) Let xE II,,,,@, co) and suppose I > r > 0. We have, as 
t---r&O+. 

k 

IA(f) _ er.4 (7) 

lx 

= 

le 

M(f) _ efAtr)] x + ((,f.41rb _ er.W) _ (ef.4(Ol _ er.4'0')] .y 

+ [erAlo, _ erA(O)] x 

1 . 
=Zni., IL J 

ef.4 1 ~~R(I,A(o))[x-e”“‘O’x 

+ [A(0)p* -A(o)-'] A(0)e"A'o'x do 
I 

-R(l,A(o))-$--A(o)l] A(O)e”““xdc7[ 

+J~&+j~ [~R(I,A(r))[x-e”“’ + [A(O)-’ -A(r)~‘]A(O)e’.““.u] 

-R(,I,A(~))$A(T)-*] A(o)er,4(0)x] drdo] d,l 

+ e’.“O’ [e’f-“.4’O’ _ 1 ] x 

= O((t - r)a+B) + O((t - 5)fi) = O((t - r)d). 

so er.4’f’x E C4([0, T], E). Suppose now that e’-““‘x E C”( [0, T], E); then, in 
particular, by (ii) we get, as t + 0 +. 

= O(f) + O(P) = O(PAU), 

hence we deduce that x E DA(o,@ A a, co), and (iii), (iv) are proved. 
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(v) Suppose t > 0. Then, as t + O’, 

et.4(r) _ 1 

x 
t 

= etA(r) - l t [ A(O)-1 -A(t)-’ +t[ ;A(t)-j;,J A(O)x 

+ [ 
et.4u) -1 IA(O) _ 1 

t A(t)-‘-e t A(O)-’ 
I 

A(0) x 

+ et’4’0’ - l t 
?c _ [et.4w _ ef.4’O’ 1 [$w] ‘4(0)x 

r=O 

- [etgco’ - l] [$A(f)p’J,,A(0)x 

= o(1) + O(F) + @‘(‘; - l x - [e’“‘O’ - l] [ &-‘I A(O)x. 
r=o 

Similarly we have, as t -+ 0 +, 

A(t) e’““‘x 

= [A(f) etAcr) A(O)-’ -A(t)-’ 
t + [$W’] ,,1 A(O)-y 

+ [efA’t’ - er.4(0)] A(0) x + efA”‘A(0) x 

- [fA(r) etAIf’ -,(O)e’“‘“‘] [$A(t)m’]t=oA(0)x 

- fA(0) etA”) [ $4-1]t=oA(0)~~ 

= o(l) + O(P) + erAco’A(0) x - rA(0) er.4co) [$W’] ,=o4W. 

which proves (v). 

(vi) By Proposition 3.3(iv), P(t, 0) x E C” (IO, T], E), so by (i) it is 
enough to prove that A(t) efA’*‘x E CV(]O, T], E). Indeed, if t > r > E we have 

11 A(t) erAcf) x -A(t) erl”)x(IE 

G IIW) e ‘A(t’~ - A(t) etA”‘xIIE + llA(r) e”““x -A(r) er4(“x(lL 

~c[(t-r)&-~+‘2+(f-r)&-z]. 

The proof is complete. 
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(c) The Operator Py(t) = jb P(t. s) q(s) ds 

PROPOSITION 3.5. Under Hj’potheses I. II r3.e have: 

(i) PEJ(LP(O.T:E)) VpE ll.+col; PEr(C([O,TI.E)). 

(ii) IfoE C(l0, r],E)nL’(O, T:E). rhen PcpE C(J0. T].E). 

(iii) rf cp E C(]O, T]. E) n L"(O, T: E), p E ]a-‘. fee 1, then PVJ E 
C( [0, T], E) and Pq(0) = 0. 

Under Hypotheses I, II, III u’e hatle: 

(iv) rf v, E C(]O. T], E) n L’(0, T; E), then Pyl E C6( 10, T). E) 

vd E 10, ?I[ n 10, a]. 

(v) Ifa,EL”(0,T;E)thenP~ECb([0.T],E)V6~ ]O.qln]O.al. 

ProoJ (i) A standard calculation shows that 

IIPVII < KT” Il~lILF~O.T:E, LP(O.T:E) --. c( VPE [L +a], 

where K is the constant appearing in (1.3). Hence it is sufficient to prove 
that Pep E C( [O. T]. E) whenever (p E C( [O. T]. E). This is a consequence of 
Lebesgue’s Theorem and of the following equality. which is true for any 
t>r>Oast-r+O+: 

= I” P(t, s) q(s) ds + 1’ [P(t, s) - P(G s)] v(s) ds 
‘T -0 

+ (e 
A(l-S) - e.4(r-s)) $R(I, A(r))] q(s) dl ds. (3.3) 

(ii) Let t > 0, and let us show that 

lj? IiPdt) - ‘ds)i,E = O. 

We can suppose t, r >, E and, for example, t > r; then we have 

IIPPW - pP(r)llh 
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so we have to show that the last term on the right-hand side goes to 0 as 
7+ t-. First of all we prove that 

J\y- II P@l s) - P(7, s)l &NE = 0 vs E 10, t[. (3.4) 

We start from the equality 

for each ,I E y the first integrand on the right-hand side goes to 0 as r -+ t- 
and is dominated by const . ] 1 I --n . exp(Re A(t - s)); hence its integral over y 
goes to 0 as r+ I-. For each 1 E y the second integrand also goes to 0 as 
7+ t-, and we have 

II & [e-"'-S' - eJ'(T-s)] kR(A, A(7)) p(s) 
II E 

< Ce Re.l(r-3) ,A[-” 
VA E y, v7 E Is, t[* 

Now the (integrable) functions {F,(A)},,,,,,, , defined by 

F,(A) = CeRe.i’r-s’ IA/ -O, 1 E Y, 

converge to F,(A) as r --t t-, and moreover j,F,(A) dil + j,F,(A) dA as 7 --) t-. 
This implies that (3.4) holds. 

Next, we can write 

j-' [P(t, s) - P(7, s)] p(s) ds = 1’ x,o,r,(W(f~ s> - P(73 ~11 v(s) ds, 
0 0 

and we have 

Ilx~o.&)[W~ s) - f'(7, s)l cp(s)llE < G,(s) vs E 10, t[, Vr E 10, t[, 

where 

c ’ w2)-1+a IIdSIlE if s E IO9 e/2[, 

c* [(f-s)-'+Ll + (7-S)r'+al Ilu)llc,,GQ.r,.E, if s E [s/2, 7[, 

0 if sE [r,I[. 

409 '99.'I 3 
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The functions ( G,(s)},,,o,r, have the following properties: 

lim G,(s) = G,(s) vs E 10, t[, 
r-t- 

lim I.r G,(s) ds = I( G,(s) ds. 
r-t-,g -0 

This shows that 

J\n$.; [P(r,s)-p(r,s)l~(s)dslI~=O. 

and (ii) is proved. 

(iii) It is suffkient to prove continuity at t = 0. The estimate 

implies the result. 

(iv) Suppose t > r > E. Then (3.3) and (3.1) imply that 

IIf+P(t) - mr)llE < co - rY Ildlcc,E,r,,~, 

+Cju’ [(t-r)n(t-s)m’+j.‘-iom2+edo] .Ilp(s)llFds 
“r--s 

G C(t - rY lIPlICW,.E, 

+ C[(t - r)q . E-’ + (f - 5). 6p2+a] IIv111L~c0.0~2:E, 

t - E/2 
+C (t-r)qlog~+(r-E/2)a+(t-r)0 

I 

- (f - &/2Y 1 Il&c,e:2.r,.E, 

< C(E, f3)(f - r)* vs E 10. ?I[ n IO. a]. 

(v) Suppose t > r > 0. As in (iv) we get 

Il~a)(f)-~a)(~~ll~~~IIa)llL.r~o.~~E~ (t--r)“+!q(f-r)*(f-s)~‘ds I 

+jJ-) -2+a duds 1 
< C(cS)(t - r)b Vd E 10, VI f-l 10, aI* 



ABSTRACTPARABOLIC EQUATiONS 33 

(d) The Operator Q 6 (1 + P)-’ 

Let us consider now the operator 1 + P; the next proposition proves that it 
is invertible and describes the properties of Q = (1 + P) - ’ (see Remark 1.6). 

PROPOSITION 3.6. Under Hypotheses I, II bve have: 

(i) Q exists and QEY(LP(O,T;E)) VpE [l,+co]; QE 
;“‘(C([O, Tl, ~9). 

(ii) I~~,EC’(]O,T],E)~L~(O,T;E), then Qa,EC(]O,T],E). 

Under Hypotheses I, II, III n’e have: 

(iii) rf u, E L’(0, T; E) n C”(l0, T], E), 6 E 10, q[ n 10, a], then 
Qu, E C”(lO, 7-1, ~3. 

(iv) Ifo E C’([O, Tl, E), 6 E 10, q[ n 10, al, then Qa, E C”(lO, Tl. E). 

Proof: (i) We confine ourselves to the case of C( [O, Tl, E), since in the 
case of Lp(O, T; E) the proof is identical. 

For each w > 0, define a new norm over C( [O, T], E) by 

Obviously 

Ilf II w.s, G llf II ccIo.rl.E, G ewr Ilf Lx Vf E C( [0, T], E), Vo > 0; 

(3.5) 

moreover it is easily seen that 

IIPVII ,,,<K m’e-“r-“a 
! dt. lk4l,.m Va, E C([O, Z-1, E). 

0 

Set M(o) = j,’ e-wrr-L+a dr; it is clear that 

lim M(o) = 0, 
w-CL 

hence there exists w. such that K . M(o) < 1 VW > wo. Choosing w > w. we 
conclude that (1 + P) is an isomorphism over C( [0, Tl, E) with the norm 
II . IL.m* By (3.5) we get the result. 

(ii) The following argument is in [ 15, proof of Lemma 3.21. We have 
(1 + P)-lf=f + xF=, (-P)"f; define 

P,(t, s) 4 P(t, s). pn(t7 s) = if p,(t, P) P,- ,@, S) 4 Vn> 1; 
‘5 
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then it is easy to verify by induction that 

[(-W./-l(f) = p,(i. s)f(s) ds, 

and again by induction we get 

Hence 

z lIPAh s)ll cc [KTal@)]” n A 
P,Ej<(f-~)-‘+D T-” x 

n=1 n=, Qu) 
= (t-s),-a; (3.6) 

and if we set 

R(f? s) 6 g P,(t, s) 
n=1 

we check 

Hence it suffices to show that t N 1; R(t, s)f(s) ds is in C(]O, T]. E). By 
(3.6), via Lebesgue’s Theorem, we get 

it R(t, s)f(s) ds = f 1’ P,(t, s)f(s) ds, Vt E 10, 7-l. 
-0 n=l 0 

so that it is enough to prove that the series on the right-hand side converges 
uniformly in [E, T] for any E > 0. But 

and (ii) follows. 

(iii) It is a consequence of (ii), Proposition 3S(iv) and the integral 
equation ( 1.5 ). 
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(iv) It is a consequence of (i), Proposition 3.5(v) and the integral 
equation (1.5). 

(e) The Operator T&t) 4 Jb ect-S’Ac”rp(s) ds 

PROPOSITION 3.7. Under Hypotheses I, II we haue: 

(i) If a, E L’(0, T; E), then Tu, E C([O, T], E) and Tq(0) = 0. 

(ii) If q E Lp(O, r; E), p E ] 1, cx,], then Tu, E C'([O, T], E) 
vi3 E IO, 1 - l/p[. 

(iii) If q E C(]O, T], E) n L ‘(0, T; E), then TIP E C”(]O, T], E) 
vs E 10, l[. 

(iv) If a, E L’(0, T; E) n C”(]O, T], E), 6 E IO, l[, then TV(~) E 
D@(t)) Vt E 10, T1, and 

A(t) TV(f) = j: A(t) e(r-s’a(r’[q(s) - p(f)] ds 

+ [erA(*) - l] v(f) Vf E 10, T]. (3.7) 

(v) rf ~1 E L’(0, T; E) n C”(]O, T], E), 6 E IO, I[, fhen PJ E 
C’(]O, T], E) and 

(TV)’ (f) = ji A(f) e(r-s’d(f’ [p(s) -q(t)] ds + e’““)cp(f) 

+ j’ P(r, s) q(s) ds Vf E 10, T]. 
0 

(3.8) 

Under Hypotheses I, II, III we have: 

(vi) If p E L’(0, T; E)n C”(]O, T], E), 6 E 10, q[ n 10, al+ then 
T(o E C’*“(]O, T], E). 

(vii) If rp E C’([O, Tj,E), 6E IO, q[ n IO, a], and v(O) = 0, fhen 
Tp E C’q”([O, T], E) and (TV)’ (0) = 0. 

Proof: (i) It is an easy consequence of Lebesgue’s Theorem. 
(ii) Suppose f > r > 0. Then 

(3.9) 
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hence 

+ c IT lldS)llE 1% 1 + .o 
[ E] ds. 

By (3.10) we have 

where q =p/(p - 1). This proves (ii). 

(iii) Suppose t > 7 > E. Then (3.9) yields, V6 E 10. l[. 

II nu - W(r)ll, 

G C(f - 5) ll(4llC~,,.,,.E, + C(t - r)ju lIrp(s)ll, (t-s)-‘+” ds 

+C~~~f-~o~‘du~~~(s)l~,ds 
7-s 

1 + c ds < C(E, s)(t - r)*. 
I 

(iv) Fix f > 0 and observe that 

z-co(f) = if e(f-sL4w [p(s) - p(t)] ds + [et.4rf’ - l] A(t)-’ p(f). 
‘0 

The fact that Z+(t) E D@(t)) is easily proved by observing that the integral 
in (3.7) is absolutely convergent since, choosing E < t, we can write 
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IIW e (t--s’A(t’ b(s) - dt)lllE G 
if sE]O,e], 

if sE ]e,t[. 

(v) Suppose t > r > E. Then 

Q(t) - P(r) 
t-r 

1 f =- 
I t-r T 

e(t-sMU) [q(s) _ ,&)] ds + e(t-;‘yt: - ’ A(t)-’ v(t) 

e(t-s’A’t) _ e(r-s)AW 

t-r 
[v(s) - v(r) 1 ds 

eU-r)A(t) _ 1 

+ 
t-r 

le =‘(” - 11 A(t)--’ [p(r)-q(t)] 

e(t-r)A(t) -1 
+ Ie TA(t) 

t-r 
- etA(” ] A(t) ’ p(t) 

e(t-r)AU) -1 
+ 

t-r 
k IAtt’ - l] A(t)-’ q(t) 

+J 

T ,(?-s,.4ct, _ e(r-sL4(r) 

p(s) ds a= i Bi. 
0 t-r i=l 

Terms B, , B, and B, on the right-hand side go to 0 as t - r + 0’ ; moreover, 
by summing terms B, and B, we check 

e(t-r).4(t) -1 
t-r 

A(t)-’ e1.4”‘p(t), 

which converges to e’A(t’qo(t), as it is easily seen. 
Term B,, by Lebesgue’s Theorem, goes to 1; P(t, s) v(s) ds. 
Finally, term B, is equal to 

-= 1 
J f 

eA’t-S’ _ eA(T-s) 
- 

o 27ri.). t-r R@, A(t))[&) - v(r)1 dl ds; 

now we have, as t - r-+ O+, 
e.u-S’ _ e.u-s) 

t-r W, AW)lrp(s) - v(r)1 

+ AeAcf-r’R(A, A(t))lp(s) - q(t)] VA E y, vs E 10, tl, 
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II 
e.t”-” 

- e.“r-r’ R(A.A(f))[@) -q(r)] 11) t-7 
< Ce Re.L’l-s) IIrp(d - d7)ll, 4 W,@)? 

where the (integrable) functions { ‘u,(k)},,,,,,, satisfy, as 7 + t -. 

vi,(n) --( Yl@) VA E 7, 

j !I$@) d,I --t )_ ~~(1) dL. 
Y -Y 

This implies that, as r -+ t-, 

1 

-1 

e.t’t-s) _ e.l’r-s) 

271i y t-r 
R(A A(f))l@) - d7)l dl 

““-S’R(l,A(t))[p(s) - q(t)] dA vs E 10, t[. 

A similar argument proves that, as t-+ t-, 
eT 1 _ e.“f-” _ e.t’r-s) 

1 -! o 2ni y t-r 
RN A(O)I - rp(r)l dl ds 

.f 1 . 
- 

-I I o 27ri. y 
leA”-“R(A, A(t))[cp(s) - q(t)] d)3. ds 

and this proves that, as r -+ t , 

P(t) - W(r) + 
t-r J 

“~(t)e’~-~‘.~“‘[~(~) - p(t)] ds + P”)(D(~) 
0 

+ I“ P(t, s) p(s) ds. 
-0 

It remains to prove that the derivative of Tyl(t) is continuous at every 
I > 0. By Proposition 3S(ii), t w jh P(t, s) o(s) ds is continuous; now we will 
show that the remaining terms are Holder-continuous in 10, r]. Suppose 
t > r > E. Then 

I 

.f 
4) e 

0 
‘r-s’R’f’[~(s) -p(t)] ds -!:A(r) e’r-s’A’T’(q(s) -p(r)] ds 

= i ‘A(t) e”-s)A’r)lcp(s) - v(t)] ds 
7 
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+ 
1 
‘1 [I e(r-s)a(f) -A(T) e(t-s)A’r)] [q(s) - p(t)] ds 

+ [efAcT’ - erA( [p(7) - p(t)] 

+ j: [A(T) e(f-s)A’r) -A (7) e’rps)A’r’ 1 (v(s) - p(t)] ds, 

which implies 

0 
(f-s’A’f’[cp(s) - q(t)] ds -11 A(7) e(r-r)A’r’[p(s) - q(s)] ds 11 

E 

< C(e)@ - 7)’ + C(t - 7) j;’ “;~~;);!j’E ds 

+ C(&)(f - 7) -= 
J 

ds 
E/2 (f - S)2-apa 

+“‘g (’ +&+df)-g(r)iiE 

+ C(f - 7) jr” ““‘;f I;;;)“’ ds + C(E) j_I 
-0 

\t-S $ (7 - s)’ ds 
.Eiz.T--s 

< C(&)(f - 7)s. (3.11) 

On the other hand 

e’““‘rp(f) - e7.4(r)q(7) 

= ef.‘(fb[(D(f) _ p(7)] + [ef.4(f) - ef.4”‘] ~(7) + [e’-4”’ - e’.‘“rb] q(7); 

hence 

11 e’““‘a)(f) - e’““‘q3(7)llE 

~C(&)(f--)“+C(f--5)[&-‘+a +E-‘l~b~~C~,s.~,.E, 

< C(E)@ - 7)T (3.12) 

and (v) is proved. 

(vi) It is a consequence of (3.1 l), (3.12) and Proposition 3.5(iv). 
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(vii) Suppose f > r > 0. As in (3.11) we have 

and as in (3.12) we get 

lie *Ac*~rp(t) - erA(T’fp(r)j(E 

~cIlul(~)-~(~)llE+c 1 < C(r - ry. 
By Proposition 3.5(v) and (iii) the proof is complete. 

4. CLASSICAL SOLUTIONS 

In Section 2 we have shown under Hypotheses I and II the uniqueness of 
the classical solution of Problem (P). We will prove now that under 
Hypotheses I, II, III a classical solution of (P) does exist, and can be 
represented by formula (F), provided x E D@(O)) and f is Hlilder- 
continuous in IO, T]. 

THEOREM 4.1. Under Hyporheses I, II, III suppose x E D@(O)) and 
fE C( [0, T], E) f7 C”(]O. T], E), u E IO, 11: then the vector-valued function 
u(t) defined by 

.I 
u(f) = etA(*)x + I e”-S’““‘[( 1 + P))’ (f- P(., 0) x)) (s) ds. t E 10. T]. 

-0 

(4.1) 

is the unique classical solution of (P). Moreover, u E C’*OA”(]O, T]. E) 
VJ E IO, Ir[ n 10, a]. 

Proof: First, we observe that u E C([O, T], E) by Propositions 3.4(ii). 
3.3(i), 3.6(i) and (ii), 3.7(i); in particular u(0) = x. Next, by Propositions 
3.4(i), 3.3(iv), 3.6(iii) and 3.7(iv), we have u(f) E D@(t)) Vt E 10, T]. It 
remains to show that 

u E C’-‘6(]0, T], E) vf3 E IO, VI n IO, aI 
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and 

u’(t) -A(t) u(t) =f(t) Vt E 10, T]. 

Propositions 3.4(i) and (vi) imply that elA(‘)x E C’qq(]O, T], E) and 

d 
ze 

tA(*)~ = A(t) e’““‘x + P(t, 0) x. (4.2) 

Define 

g = (1 + P) - ’ (f- P(.. 0) x), 

and observe that f- P(., 0) x E L’(0, T; E) n CuA”(]O, T], E) by 
Proposition 3.3(iv), so that Proposition 3.6(iii) yields g E L ‘(0, T; E) n 
($1:(6]0, T], E) VS E 0, I?[ n 10, cz]. Thus, by Proposition 3.7(vi) Tg E 

+ (IO, T], E) V6 E IO, rl[ n IQ al and 

2 Tg(t) = f’ A(t) ecr pS)A’f’ [g(s) -g(r)] ds + e’.4cr’g(t) 
-0 

+ 
! 
*’ P(r, s) g(s) ds. 
0 

(4.3) 

By (4.2), (4.3) and (3.7) we deduce 

u’(l) -A(t) u(r) = P(t, 0) x + 1’ P(t, s) g(s) ds + g(t) 
.o 

Vt E 10, T], 

and the proof is complete since (1 + P) g = f - P(.. 0) x. 

Remark 4.2. If in Theorem 4.1 we suppose x E: D@(O)) and 
fE L’(0, T; E)n CO(]O, T], E) only, then the function u(t) defined by (4.1) 
is still the unique classical solution of Problem (P), and all properties stated 
in Theorem 4.1 still hold (with the same proof). 

Remark 4.3. In Theorem 4.1 it suffices to suppose that f E C( [0, T], E) 
and there exists f, E 10, T] such that the oscillation w(.) off satisfies 

J 
4 u(r) 

-dr < +w. 
0 5 

(4.4) 

This assumption, together with x E L+(O)), still guarantees that (4.1) is the 
unique classical solution of Problem (P) (but not, of course, its Holder 
regularity). We omit the proof, which is similar to the previous one; in 
particular condition (4.4) assures the absolute convergence of all Dunford 
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integrals involved. This generalizes a result of Crandall and Pazy ]5 1 relative 
to the case A(t) =A = constant. 

We note that the only assumption fE C([O, r], E) is not sufficient to 
guarantee the existence of the classical solution, even in the case A(t) = A 
and x = 0. If, for instance, E is reflexive and A(r) = A is unbounded, then a 
continuousf does exist, such that Problem (P) has no classical solutions (see 
Baillon [3] and Travis [35]; see also Da Prato and Grisvard 171). 

5. STRICT SOLUTIONS AND MAXIMAL REGULARITY 

In Section 2 we have shown under Hypotheses I and II the uniqueness of 
the strict solution of Problem (P); moreover, we know that condition (2.2) is 
necessary for the existence of such a solution. 

In this section we will show that under Hypotheses I, II, III condition 
(2.2) is also sufficient for the existence of a strict solution of Problem (P), 
provided f is Holder-continuous in [0, T]. 

THEOREM 5.1. Under Hypotheses I, II, III let x E D@(O)) and 
fE C”([O, q El, 0 E IO, 11, and suppose that x and f (0) verlyy 

A(O)x+f(O)- [~ao-~]~~oA(0)JEDo). (5.1) 

Then the vector-valued function u(t) defined by (4.1) is the unique strict 
solution of Problem (P). Moreover, u E C’~6”“(]0, T], E) V6 E 10, q[ n IO, a]. 

Proof. By Theorem 4.1 u(t) is the unique classical solution of Problem 
(P), so it is enough to prove that u’(t) exists at t = 0 and u’ E C([O, T], E), 
for this will also imply that A(t) u(t) E C([O, T], E) and 

Put 

u’(t) - A(t) u(t) = f (t) Vt E [0, T]. 

g=(l+P)-‘(f--(.,0)X), 

then, by Proposition 3.4(v), as t -+ O+, 

u(t) -x etA”’ - 1 1 .I 
-= t t x+- ! t -0 

e(f-S(A(t)g(s) ds 

=0(l)+ e 
IA(O) _ 1 

t x- [&4(O) - 11 [-&-‘]t=oa(W + f Q(f). 
(5.2) 
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Since f~ C’O([O, T], E), by Propositions 3.5(iv) and 3.3(iii) we check, as 
t-o+, 

14(f) _ 1 

f Tg(t) = f I-(-Pg +f-f(0) - P(., 0) x)(t) + e t 4cf-(0) 

= o(ts) + o(t”) + +j: [e’f-s’A(” - e”-S’.4’0’] [ -P(s, 0) X] ds + O(P) 

+ 4 (-t [efA(0) -ect-s).4co’] [iA(t) A(O)xds + O(f) 
I=0 

= O(py + efAw -&I I 1 AWx 
1x0 

+ e’“‘o’ - l t A(O)+(O) -[;A(t)pl]l;oA(0)x] 

vd E lo, V[ n 10,4. 

By (5.1) and (5.2) we deduce that 

W(0) = A(0) x +f(O). (5.3) 

On the other hand we recall that 

u’(t) = A(t) efA(‘)x + P(t, 0) x + 1’ A(t) e’r-s)A(r)[ g(s) -g(t)] ds 
‘0 

+ erdcr)g(t) + 1’ P(t, s) g(s) ds Vt E 10, T-1; 
‘0 

now Proposition 3.4(v) implies 

A(t) e rA’t)x = o( 1) + e’““‘A(0) x 

- tA(0) erA”) [-&W’]t~oA(o)x 

(5.4) as t+O+, 



44 ACQUISTAPACE AND TERRENI 

while Proposition 3.3(iii) yields 

P(r, 0) x = o( 1) - [et.““’ - 11 [$W’]~~oA(0)-~ 

= o( 1) _ [et”(‘) - l] [-$A(t)-m’]tE,,A(0)x as t-O+. 

(5.5) 

Moreover, recalling Propositions 3.3(iv) and 3.5(v) we have, V8 E 10. q[ CT 
]O,a], as f’O+, 

if A(t) e’f-s)A(f’[ g(s) - g(t)] ds 
-0 

= e;A(t) e(r-sMu) 
I [-MS) + &(f) +.I+) -f’(t) 

- P(s, 0) x + P(t, 0) x] ds 

= O(t”) + O(f’) + if [A(t) e(t-s)a(f’ -A(s) e(fms’.4cs’] 
-0 

x [-P(S, 0)x + P(t, 0)x] ds + [fA(s)e”“A’s’ O((r - sy ha) 
-0 

+ A(O) ef”‘O’(l _ e(t-S).4(0) 11 [$4W1]f;04W~~ 

so that 

\fA(t)e"-"A'f)[g(s)-g(t)] ds 
-0 

= ($1) + (tA(()) pva - ewyp(o) - 111 [$4W’]f~040)x 

as t-bO+. (5-b) 
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Next, by Proposition 3.3(iii) we have, V6 E IO, rt[ n ]O, a], 

eucr)g(t) = efAcf’[-Pg(t) +f(t) -f(O) - P(t, 0) X1 + e*““!f(O) 

= o( 1) + ef.4(Olf(O) + etA(0)[etA(O) - 11 [-$A(‘)-‘],=,A(O)” 

as t+O+; 

hence 

e’““‘g(t) = o( 1) + efAtolf(0) + et’(‘) [etAqo)- l] [&a(t)-‘],=OA(0).r 

as t+O+. (5.7) 

Finally, since g E L”(0, T; E) by Proposition 3.3(iii), estimate (1.3) yields 

I‘P(t,s)g(s)ds=O(t”) as t*O+. 
-0 

(5.8) 

Now (5,4), (5.5), (5.6), (5.7) and (5.8) imply 

u’(t) = o( 1) + efA(0) 
[ 
A(O)x +f(O) - ;i;W [ d l]~=oA(o)~] 

+ [$A(~)-~]~=~A(o).T as t+o+, 

and the result follows by (5.3). 

Remark 5.2. As in the case of classical solutions, Theorem 5.1 still 
holds (except for the Holder regularity of u’(t)) assuming fE C( [0, T], E) 
and condition (4.4) instead of Holder continuity forf. 

About maximal regularity of the strict solutions we have the following 
result: 

THEOREM 5.3. Under H-vpotheses I, II, III ler x E D(A(0)) and 
fE cY[o, Tl, E), 6 E lo, V[ n lo, al, and suppose u is a strict solution of 
Problem (P). Then u E C’*‘([O, T], E) if and only if the vectors x andf(0) 
verif41 the following condition: 
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ProoJ Consider the following problem 

Z’(l)--A(r)z(t)=A(O)x+f(O)- s(t)-’ [ dt ]t~,,40)J. IE 10. TI. 

z(0) = 0 

which has a unique strict solution z(t) by Theorem 5.1; z(f) can be 
represented by 

z(f) = l‘t e(t-s).4(qo) ds, t E [O, z-1, 
-0 

(5.10) 

where h(t) is the solution of the integral equation 

h(t) + [’ P(t, s) h(s) ds =j-(0) + A(0) 
‘0 

x- [$4(t)-‘]t~oA(o)x. (5.11) 

Now define 

w(t) 4 u(t) -A(t) ’ A(0) x - z(r); (5.12) 

we claim that IV E C’*“([O, T], E) for any u E IO, q[ n IO, a]. Indeed, u(t) is 
the strict solution of 

w’(t) -A(f) w(t) =f(t) -f(O) - -f&r)-’ - [-$4(r)‘] 
L r=o 

] A(O)x, 

f E [O, T]. 

w(0) = 0 

and can be represented by 

w(t) = IL ecr -s)A “‘k(s) ds, f E [O, T], 
‘Cl 

where 

k(r) + (-I P(t, s) k(s) ds 
-’ 0 

=f(f) -f(O) - [-&f)- - [&w ],;J AWx; 

thus by Proposition 3.6(iv) we have k E C”([O, T], E) for any (T E IO, V[ f? 
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10, a] and, in particular, k(0) = 0. Hence our claim is proved by Proposition 
3.7(vii). 

Then, by (5.12) we deduce that u E C’96([0, r], E) if and only if 
z E C’,d([O, T], E). Newt, by (5.10) and Proposition 3.7(v), we have 

z’(t) = [IA(f) ews)JJw [V(s) - WI) - W - W))l ds 
-0 

+ e'"("[h(t) - h(O)] + eracr)h(0) 

+ /-I P(t, s)[h(s) - h(O)] ds + f P(l, s) h(0) ds 
-0 -0 

= f [ T(h(t) - h(O))] + efAc"h(0) + P(h(0)) Vt E [O, z-1. 

Since, by (5.11) and Proposition 3.6(iv), h E C”([O, r], E) Vo E IO, q[ n 
IO, a], we deduce, by Propositions 3.7(vii) and 3.5(v), that 
z E C’**([O, T], E) if and only if e’““‘h(0) E C’([O, 7’1, E). Therefore, by 
Proposition 3.4(iii) we conclude that u E C’*‘([O, T], E) if and only if h(0) E 

D,,o,(J, a). 
The proof is complete, since 

6. STRONG SOLUTIONS 

We know from Section 2 that under Hypotheses I and II there is at most 
one strong solution of Problem (P), and a necessary condition for the 
existence of such a solution is the following: 

!l{x,},,.c_D(A(O)) and (~~n}nEN~Esuchthat: 

x, + x in E, Y,, -f(O) in E, 

A(O)x, +.Yn - [$l(f)-q~o/l(o)xn EDO). (6*1) 

In this section we will prove that condition (6.1) is also sufficient for the 
existence of a strong solution. 

Condition (6.1) seems somewhat involved: thus we will see some simpler 
conditions which imply (6.1), being therefore sufficient (but not necessary) 
for the existence of a strong solution. First of all we need the following 
lemma. 

409?99 I 4 
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LEMMA 6.1. Under Hypotheses I, II let x E D@(O)) and g E 
C’((0, T], E), 6 E 10, 11; define 

u(t) 4 erA”‘x + [’ e’r-s)lr’r)[ g(s) + esAts)z] ds, t E [O, T]. 
-0 

Then u E D (see the Introduction) if and only if A(0) x + g(0) E D(A(0)); if 
this is the case, then we have 

v’(t) -A(t) v(t) 

= P(t, 0) x + erA(” z + g(t) + (-r P(t, s)[ g(s) + esACS’z] ds 
-0 

E C([O, Tl, q, t E [O, q, 

~(0) =x E D(A(0)). (6.2) 

ProoJ: Obviously o E C([O, T], E), by Propositions 3.4(ii) and 3.7(i), 
with v(O) =x. Moreover, by Propositions 3.4(i) and 3.7(v) we have 
t’ E C’(]O. T], E) and 

u’(t) = A(r) erACt’ x -t P(t, 0) x + [‘A(t) e(t-s’a’t’[ g(s) - g(t)] ds 
-0 

+e ‘Ac”g(t) + (-I P(t, s) g(s) ds 
'0 

+ (A@) e(t-S)?t’t)[eSa(S) _ eSA’t) + eS”“’ _ ef.A(f)] z ds 
‘0 

+e 2tA(t’z + .’ P(t, s) esA”‘z ds, 
J 

t E IO, T]. 
0 

Hence Propositions 3.4(v) and 3.3(iii) yield, as f + Of, 

v’(t) = o(I) + e’-4ct’A(0)x - fA(t) erair)z - [elA(” - l] z + erA”‘g(0) 

+ tA(t) e fA(f)Z _ [ [ef.4(t) _ e2fA(f)] z + eZf.4c’)Z] 

= z + o(I) + erA”‘[A(0) x + g(O)]. 
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Similarly, Proposition 3.4(v) implies, as t --) 0 +, 

L)(f) - .K 
=0(l)+ e 

ra(t’ _ 1 efAu) _ 1 

t 
t x + 

t 
A(t)-’ g(0) + etA(‘)z 

14(O) 
=z+o(l)+ e’ t - l A(O)-’ [A(O)x+g(O)]. 

This shows that u E C’([O, r], E) if and only if A(O)x + g(0) E D@(O)). 
Next, we have for each t E IO, T], 

A(t) u(t) = A(t) e’““)x + \’ A(t) e(t-s’A(‘) [ g(s) - g(r)] ds 
‘0 

+ letA”) - 

+ eSA’fl _ ef.4(f)]z ds + [e2fAU) _ etAW] z, 

which implies, as t+ O+, 

A(t) u(t) = -g(O) + o(1) + e'"'O'[A(O) x + g(O)]. 

Hence A(t) r,(t) E C([O, T], E) if and only if A(0) x + g(0) + D@(O)). 
Finally, it is clear that if A(0) x + g(0) E D@(O)), then v’(t) and A(t) v(r) 
are in C([O, T], E) and 

u’(t) -A(t) u(t) = P(t, 0) x + etA”‘z + g(t) 

+ ,(I P(t, s)[ g(s) + esAfs’z] ds, rE [O, T]. 

Observe that the continuity of the right-hand side also follows directly by 
Propositions 3.3(iii) and 3S(iii). The proof is complete. 

THEOREM 6.2. Under Hypotheses I, II, let x E &l(O)) and 
f E C([O, T], E), and suppose that x andf(0) trerijjr (6.1). Then the erector- 
valued function u(r) defined by (4.1) is the unique strong solution of Problem 
w. 

Proof: Let (x,},,~ c D@(O)) and ( Y,,}~~~ c E the sequences appearing 
in (6.1). Define 
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Consider the functions 

p,(t) = [I + P] -’ -P(r, 0) x, - e’.‘(‘)z,, 

- I “P(I, s)[eSAcs’z,] ds + y, -f(O) +f(t) 
I 

, tr E N. 
-0 

By Propositions 3.6(i), 3.3(iii) and 3.5(iii), q~,, E C([O, T], E). Since 
C’([O, T], E) is a dense subspace of C([O, T], E), for any n E N there exists 
g, E C”( [0, 7’1, E) such that 

Put 

II&l - ‘Pnllcc,o.r,.E, G l/n- &m = (o,(O) = 4’n - z,. 

v,(t) A etA”‘x, + f e(r-s).4(r’ [ g,(s) + era(“zn] ds: 
-0 

by Lemma 6.1 v,, is the strict solution of the problem 

up -A(t) v,(t) = [( 1 + P) g,](t) + P(t, 0) x, + e’““‘z, 

+ (-I P(t, s) esAcs’zn ds, t E [O. 2-l. 
-0 

c,(O) = x,. 

(6.3) 

Now as n+ +a~ we have 

[( 1 + P)g,](t) + p(t, 0) x, + er”‘r’z, + 10’ p(t. s) e*‘(“z, ds 

= I(1 + mg, - rp,)l@) +4’n -f(O) +.m) -f(t) in C( [0, T], E); 

x, + x in E. (6.4) 

On the other hand it is easily seen that 

g,(s) + e-‘zn 

= g,(s) + [ 1 + P] ’ [ 1 + P] esAfs)z, 

= (g, - fP,)(s) + 11 + PI -’ (Y, -f(O) +fb> - m 0) q! SE IO, T]; 

therefore, as n + +a~, 

g,(s) + esAtr’z, -+ (1 + P)-’ [f(s) - P(S, 0) x] in L ‘(0, T; E), 
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which implies, as n -+ too, 

J 

.I 
u,(t) + erAtr'x t e”-S’““‘[(l +P)-’ (f-P(.,O)x)](s)ds 

0 

in C([O, T], E). (6.5 1 

By (6.5), (6.3) and (6.4) we conclude that u is the strong solution of 
Problem (P). 

About regularity of strong solutions, we have the following result: 

THEOREM 6.3. Under Hypotheses I9 II, let x E D@(O)) and fe 
C([O, T], E), and suppose u is a strong solution of Problem (P). Then we 
have: 

(i) u E C”(]O, T], E)for any 6 E 10, 1 [; 

(ii) if PE IO, a[, then u E @([O, T], E) if and onfy if 

x E D.A,O,uL 00); 
(iii) if/3 E [a, l[, and x E D,4fo,(j?, oo), then u E C”([O, T], E)for any 

6E lO,P[. 

Proof: (i) It is a consequence of Propositions 3.4(i), 3.3(i), 3.6(i) and 
3.7(iii). 

(ii) If x E D,rco,@?, co), then by Propositions 3.4(iii), 3.3(i), 3.6(i) and 
3.7(ii) u E C4([0, T], E). Suppose conversely u E C4( [O. T], E); then 
Propositions 3.3(i), 3.6(i) and 3.7(ii) imply that 

.I 
I e +““(“[(l t P)-’ (f- P(., O)x)](s)ds E Cb((O, T], E) V6E ]O,a[; 

-0 

hence, by the representation formula (4.1) one deduces that 

e’““‘x E P([O, T], E), 

and Proposition 3.4(iv) implies x E D,.,,,,@, 00). 

(iii) It follows by Propositions 3.4(iii), 3.3(ii), 3.6(i) and 3.7(ii). 

Remark 6.4. Here are some conditions, simpler than (6.1), which are 
sufficient, but not necessary, for the existence of a strong solutions of 
Problem (P). 

Obviously (6.1) is true when D@(O)) is dense in E; thus in this case the 
strong solution of Problem (P) always exists whenever x E E and 
fE ‘710, 7-1, E). 
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More generally, (6.1) holds for any x E D(A(0)) and f~ C(l0. TI. E). 
provided 

(6.6) 

indeed, if (6.6) holds, then 

x + A(O)-‘f(0) E D(A(0)) = D(A(q2), 

hence there exists {W n nEN~D(A(0)2) such that w,-x+A(O)-‘f(O) in E } 
as n + a~. Defining 

x, = w, -A(O)-‘f(O), ?‘, =f(O) Vn E N. 

it is easy to verify that (6.1) is true. 
Finally, we observe that (6.6) is obviously true if there exists (tnJnENz 

[0, T] such that 

tn -+ o+, W(t,)) c W(O)) Vn E N; (6.7) 

for instance, this is the case when D@(t)) does not depend on t. Hence (6.7) 
is also a sufficient condition for (6.1) to hold whenever x E D@(O)) and 
fE w, n E). 

Remark 6.5. A classical solution of Problem (P) is not necessarily a 
strong solution. Indeed, suppose that the hypotheses of Theorem 4.1 hold, 
but condition (6.1) is not true: then the classical solution of Problem (P) 
does exist, but it is not a strong solution, for if it were, then by Theorem 2.6 
condition (6.1) would also hold: a contradiction. 

7. EXAMPLES 

(a) First Example 

Set E= Cl@ 11, IIuIL = su~,,[~,~~ 1 u(x)1 , and define for each t E IO, r]: 

D@(t))= {uEC*[O,lj :u(0)=0,a(t)u(1)+/3(t)u’(1)=0} 

A(t) u = u” (7.1 

a(.) and /?(-) being two real functions in C’IO, rj such that 

a(0 > 0, PO) > 0, ,,y&, (a + P) > 0. (7.2 

) 
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PROPOSITION 7.1. We have 

(i) Do)= \WW~ 11 :~(o)=~(l)=ol if P(t) = 0, 
I (u E C[O, 11 : u(0) = 0) if P(f)# 0. 

In particular, D(A(t)) is never dense in E. 
(ii) a(A(t))s ]-c.o,O]; moreover, if 0 < 8 < IT and ,I EC,& 

(LEC-{O}:larg1I<8},thenIEp(A(t))und 

Proof: (i) Obvious. 

(ii) If A E C, with 161 < z, then the problem 

Au -u” =f E E, x E [O, 1 I, 

u(0) = 0 

a(t) U(1) +/3(t) u’(l) = 0 

has the unique solution 

u(x, t) = j-; K,(x, r)-/-(r) d7, 

where (assuming Re fl> 0) 

sh&r a(t)sh&(l-x)+&$(t)chfl(l-x) 

fl a(t) sh fl + fi P(t) ch 4 
if 5 <x, 

sh fix a(t) sh fl( 1 - r) + fl /l(t) ch &( 1 - r) 

fi a(t) sh fi + 4 B(t) ch 4 
if r > x. 

Then 

IIWAWUI, G llfll~ . Xs;~,, ,,’ IKtk 4 d7. (7.3) 
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Setting p = Re @, u = Im $, we have p > 0 and 

hence 

i 
’ I K,(x, r)l ds ,< [shpxchp( 1 - x) + chpxshp( 1 - x)] 

0 

a(f) + I fi I * P(t) 
Xpl~l.la(t)sh~+~B(t)ch~l 

shp a(f) + I fll B(f) 
=P(a(a(t)sh~+~P(,)ch~l’ 

On the other hand a direct calculation shows that 

= qII,a+,P) cos u - up sin a] + i[ (a + p/l) sin ff + u/3 cos a] } 

+q([@P-a)cosu+u/3sinu] +i[(a-P/3)sinu+u/Icosu]} 

> f ( [(a + p/?) cos (5 - u/3 sin a] + i[ (a + p/?) sin u + up cos a] } / 

- ~1[W-a)cosu+uPsinu]+i[(a-@)sinu+uI3cosu]\ i 

=$[(a+pjj)2+u2/?2]li2-~[(a-p/?)2+U2/?2]"2 

> shp[a’ + p*/3* + @a/3] ‘I’, 

which implies 

I a(t) sh \/II + fl P(f) ch fl I > shpla(f) + dW)L (7.4) 
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and consequently 

p Ifi1 shP[aw + P/w)1 
(7.5) 

Since ) arg \/;i 1 < 812 < 7~12, we have 

O<p<lflI< [I+tg’$]li.p VtlEZ,; (7.6) 

hence the result follows by (7.3) and (7.5). 

PROPOSITION 7.2. IflP > E > 0 and 1 -E EC, then t w R(l,A(t)) is in 
C’([O, T], S?(E)) and satisfies 

Proof: We can rewrite u = R(A, A(t))f as 

VW, A(t)h’-l(x) 

_ sh$x a(t) 1; A&l-r)f(s)dr+fij3(t) J’; ch@( 1-r)f(r) dr 

fl a(t) shfl+@(t) chfl 

--$;sh\/;i(x-r)f(r)dr, 

and an easy calculation yields 

= sh fix P’(t) 40 - a’(t) P(t) 
[a(t) sh 4 + @P(t) ch fl]’ 

. [‘f(r) sh @r dr. (7.7) 
-0 

Thus, remembering (7.4) and (7.6), we get 

II 
F 
; W, A(t)) /I 2’(E) 

< s;p,, Ish fix . 2. 
c 

P Wp12 [a(t) + P/WI’ 

= s;p,, [sh’px + sin’ OX]” . 
C 

pshp[a(t) + P/WI2 

shp +p c 
” pshp[a(t) + pLWl* ’ pIa(t) + P/WI’ 

1 .- 
&Al 

and the result follows easily. 
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PROPOSITION 7.3. Zf c&p E c’*n[o. 7-1, ‘I E 10, 1 ]. then t F+ R( l,A(f)) is 
in C’.q( [0, T], 2 (E)). 

Proof. It is an easy consequence of (7.7). 

PROPOSITION 7.4. Let cp E D(A(0)) and fE C([O. T], E) = C( [0, TI x 
[0, 11). Condition (5.1), with A(0) replaced by A(0) - 1. holds if and on& if 

P(O) + 0 and j-(0,0) + p”(0) = 0 

m = 0 and f(o,O)+ql”(O)=f(O, 1)+@(1)+$$ (D’( 1) = 0. 

Proof: Condition (5.1) in the present situation can be rewritten as 

[A(O) - 11 v +f(R -I+ ;R(WN] [A(O) - 11 v E W(O)); 
I=0 

if it holds, then by (7.7) and Proposition 7.1(i), it becomes 

i 

p”(0) +f(O, 0) = 0 if p(O) # 0. 

p”(0) +f(O, 0) = 0 

t 

P’(O) ql”(I)Sf(O, l)+--&jpU)=O if P(O) = 0. 

The converse is also easy. 

PROPOSITION 7.5. Let cp E D(A(0)) and fE C( [0, T], E) = C( [0, T] X 
[0, 11). Condition (6.1) wilh A(0) replaced by A(0) - 1, is always true. 

ProoJ Condition (6.1) in the present situation becomes 

i 

~bPnlnPN~ i g, lnm z Cl09 11 such that 

v)n - (D and g, -fu% * ) uniformly in [0, 1 ] ; 

vn E W’(O)) Vn E N; 

P(O)-1l(D,+g,+ lA(O)-llyl,EW(W VnEN. 
I=0 
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By Propositions 7.4 and 7.1(i), it can be rewritten as: 

/ 3iV)nlncw 1&lnsN~ cP4 11 such that 

9, + 9 and g, -“w4 .> uniformly in [0, l]; 

9,(o) = 9,(l) = 0 i Qn E N 

P’(O) ’ I W~(O)+g,(O)=9~(l)+g”(l)+cr(O)P~(l)=O ,’ / if /3(O)= 0. 

9,(O)=NO)9,(l)+P(O)9Xl)=O 

I 
Qn E N, 

9:(O) + &(O) = 0 

\ if p(O) # 0. 

Now if f~ C([O, T] x [0, 11) and v, E D@(O)) it is clear that such a 
condition can always be satisfied. 

Remark 7.6. R([(d/df)R(l,A(t))],=,) c D@(O)) if and only if p(O) f 0 
or o(O) = p’(O) = 0. Indeed, suppose p(O) # 0; then, if x E E, the function 
ye [Wdf) R(L AO))l,=of is in D@(O)) since Y(0) = 0; on the other hand 
if p(O) =/3’(O) = 0. by (7.7) we derive that [(d/dt)R(l,A(r))],=,~O. 
Suppose conversely that R([(d/dt) R(1, A(t))],=,) c D@(O)); then if 
/3(O) = 0, by (7.7) and Proposition 7.1(i) we must have 

which implies p’(O) = 0. This shows in particular that condition (6.6) is 
actually stronger than (6.1). 

By Propositions 7.1, 7.2, 7.3, 7.4 and 7.5 it follows that the operators 

V(t) - 1 ~te,o,n with A(t) defined in (7.1), verify Hypotheses I, II and 
possibly III of the Introduction. Hence all results of the previous sections are 
applicable to the problem 

1 

Ut(k x) - u,,(t, x) + w, x) =f(h x), it. x) E [O, 7-l x (0, 11: 
U(f, 0) = 0, tE [O, q; 

a(t) u(t. 1) + P(t) u,(t, 1) = 0, fE [O, q; 

40, -x) = 9(x), x E IO, 11, 

where II E C, fE C( [0, r] X [O, 1 ]X 9 E C]O, 1). 
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(b) Second Example 

Let R be a bounded open set of R”, tt > 2, with boundary of class C’. 
Consider the differential operator with complex-valued coefficients: 

+ q- b,(t, x) D,! + c(r, x) I, 
,r, 

(t. x) E [O, TI x a 

under the following assumptions: 

(A.l) (Strong uniform ellipticity). There exists E > 0 such that 

Re 2 a,(& x) &cj > E ) (I2 V< E R”, V(t. x) E 10, z-1 x 0. 
i.j=l 

(A.2) For each t E 10, r] the functions a,(& .), bi(t, -), c(t, .) are in 
C(a), with bounds independent on t. 

Consider also the boundary differential operator with complex-valued coef- 
ficients: 

‘(t, XV D) = 5 Pi(t, X) D,, + a(ty X) I, (t, x) E 10, T] x x4 
i=l 

under the following assumptions: 

(B. 1) (Normality condition, see [ 11). For each x E XI let v = v(x) 
the outward normal unit vector of (3R at x. Denoting with B(t, x, D) the prin- 
cipal part of B(t, x, D), the following condition holds: 

B(t, x, 1’) # 0 V(t. x) E [O, T] x xl. 

(B.2) For each t E [O, T], the functions Pi(t, .), a(t, .) are in C’(i32). 
with norms bounded independently on t. 

Suppose, moreover, that A(t, x, D) and B(t, X, D) satisfy the following con- 
ditions: 

(AB. 1) (Complementing condition, see [ 1, 21) For each x E XI, let < 
be an arbitrary (real) vector tangent to 132 at x, and let v be, as above. the 
outward normal unit vector of 30 at x. Then, condition (A. 1) implies that, 
for each t E [0, rj, the equation in the complex variable r 

c a,(& x)(C + rvi)(rj + 5vj) = 0 
i.j=l 
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has exactly one root r + = r+(t, x, 0 with positive imaginary part (“root 
condition”; see Morrey [2 1, p. 255 I). The complementing condition says that 
the polynomial r H @t, x, < + rv), where L? is the principal part of B, must 
not be divisible by (r - r+); in other words, it is required that 

&x,r+s+v)#O V(t, x) E [O, 7-l x a2. 

(AB.2) The functions aJ., x), b,(.,x), c(., x), pi(.,,u), cz(.,x) are in 
C’[O, T] uniformly in x, i.e., their derivatives with respect to t have moduli 
of continuity which do not depend on x. 

(AB.3) The functions aij(.,x), b,(.,x), c(..x), pi(.,-u), a(.,.~) are in 
C’*VIO, T], q E IO, 11, uniformly in x, i.e., the Holder norms of their 
derivatives with respect to t are bounded independently on x. 

Define now 

and set for each t E [0, T] 

D@(t)) = (u E C(a) n H2*9(R) for some 4 > n : A(t. a, D) 2~ E C(a) 

and B(t, ., D) u = 0 on aan) 

‘4(f) u = A(t, ., D) f4. (73) 

We observe that, by Sobolev’s imbedding Theorem, the condition 
B(t, ., D) u = 0 on 8B is meaningful; moreover, well-known regularity results 
in LP-spaces (see Agmon [ 11) imply that 

D(A(r)) s (-) H2*P(f2). 
PEIl.X[ 

Note that D@(t)) may be not dense in E, since the boundary condition may 
reduce to a Dirichlet one if Pi(t, x) = 0 in [0, T] x &?, i = l,..., n. Following 
Stewart [30], we will verify now that under the previous assumptions there 
exists A,, > 0 such that the operators {A(t) - &}lE,o,r, satisfy Hypotheses I, 
II and possibly III of the Introduction. We will sketch most of the proofs; 
details can be found in [30]. First of all, consider two differential operators 
A(x, D) and B(x, O), independent on t, and satisfying Hypotheses (A. l), 
(A.2), (B.l), (B.2), (AB.l), and from now on let q > n be fixed. If A E C, 
consider the stationary problem 

h4 --A(., D) u =f in R, 

B(.,D)u=g on %.R, (7.9) 

fE L9(fa g E H’ - “9’9(an). 
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It is well known (see Agmon [ 1 ]; see also Theorems 3.8.1-3.8.2 and Lemma 
5.3.3 of [33]) that this problem has a unique solution u E H’,4(R), provided 
2 belongs to a suitable sector (depending on q) ZB,,.,, 6 (1 E C : 111 2 /I,, 
( arg A 1 < @,I, with 1, > 0 and 8, E ]7r/2, n]. Moreover, the following estimate 
holds: 

Consider now a function 4 E CF(R”) with support contained in B(0, 1) and 
such that 4 = 1 on B(0, i). For each x0 E fi and r > 0 define 

In [30, p. 3061, the following key inequality is proved: 

LEMMA 7.7. Under the above assumptions, there exist A0 > 0. 0, E 
142, R], r0 > 0 and C, > 0 such that, for each K suflciently large, the 
solution u of (7.9) satisfies the following inequality for each 1 E ZOO.,I,, and 
r~r.,g(Kr,/2)I~I-““: 

Proof: See the proof of Theorem I in [30]. 
A first consequence of Lemma 7.7 is the following 

PROPOSITION 7.8. For each t E [0, T], let A(t) be the operator defined bj 
(7.8). Under Hypotheses (A.l), (A.2), (B.l), (B.2), (AB.1) and (AB.2), there 
exist 8, E 1742, )rc], A,, > 0 such that ZBO,.,u G p(A(t)) and 

Prooj Suppose u E D(A(t)); then by Lemma 7.7 it follows easily that 

IAl Ilull C(iT) G CllP -A(t)1 Gn: 

thus it remains to prove that A -A(t) is surjective. Take f E C(fi): then in 
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particular f~ L9(0), and therefore there exists u E HZV9(a) satisfying the 
problem, analogous to (7.9), 

[A -A(f, ., D)] u =f in f2, 

B(t, ., D) u = 0 on af2. 

It follows that u E C’(a). and this implies A(& ., D) 14 = Au -fE C(a). This 
shows that u E D@(t)) and the proof is complete. 

Remark 7.9. Under the hypotheses of Proposition 7.8, if u(t)4 
R(A, A(t))f, Lemma 7.7 yields in particular: 

PROPOSITION 7.10. Under Hypotheses (A.l), (A.2), (B.l), (B.2), (AB.1) 
and (AB.2), suppose 1 E COO,.lO. Then the function u(t) = R(A,A(f))f is 
d@erentiabZe in C(fi) for eachfE C(B), and 

ProojI Fix f, s E [0, r]; then u(f) - u(s) is a solution of 

[A -A(f, *, D)]@(f) -u(s)) = [A(f, -1 D) -A(& ., D)] u(s) in 0, 

qt, . . D&4(f) - 24)) = - [W, .3 0) - w, *, D>l u(s) on 80, 

(7.11) 

and by Lemma 7.7, (7.10) and (AB.2) it can be deduced that 

IAl II40 - ~(~)IlC(lT) = O(lf - St) llfllcra, as S’f. (7.12) 

Let now k(f, x, 0) and h(t, x, 0) be the differential operators whose coef- 
ficients are the derivatives with respect to f of the corresponding ones of 
A (t, x, D) and B(r, X, D); let ,u(t) be the solution of the following problem, 
similar to (7.9): 

[A. - A(f, .) D)] w(t) = A(f, ., D) u(f) in Q, 

B(f, *, D) w(t) = -B(r, ., D) U(f) on %R. 
(7.13) 

Then if we apply Lemma 7.7 to v(t, s) & (a(t) - u(s))/(f - S) - w(f), by 
using (7.12) we easily get 

IAl * II44 sKrn, = 41) Ilfllcta, as s--1 f. 
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This shows that (d/dt) u(t) exists in C(n). and 

Applying again Lemma 7.7 and (7. lo), one sees that 

PROPOSITION 7.11. Under the hypotheses of Proposition (7.10), suppose 
moreover, that (AB.3) holds. Then for each t, s E [0, T] we have 

ProoJ Set w(t) 4 (d/dt) R(&, A(t))f: Then n’(t) - W(S) is the solution of 
the following problem, similar to (7.11): 

[A0 -A([, *, D)j(w(t) - w(s)) = [A(& ‘) D) -A(S, a. D)] w(s) 

B(t, ‘) D)(w(t) - u(s)) = -[i(t, ., D) - B(s, .) D)] w(s) 

By Lemma 7.7 and Proposition 7.10 one deduces that 

in 0. 

on %R. 

II w(t) - w(s)ll c(a) G c It - SIT Ilfllccn, * 

By Propositions 7.8, 7.10 and 7.11 we conclude that all results of the 
previous sections are applicable to the problem 

u,(r, x) - A(t, x, D) u(t, -y) + Au(t, x) =f(t, x), 

B(l, x, D) u(t, x) = 0, 

40, *y) = cp(-u), 

where ,4 E C, fE C( [0, T] x fin), cp E C(n). 

(t, x) E IO, T] x R, 

(t. x) E IO, T] x 32, 

x E n, 

Remark 7.12. The same example can be discussed in a more general 
situation, i.e., by considering an unbounded open set R and a differential 
operator A(t, x, D) of order 2m > 2. The assumptions (A. l), (A.2), (B. 1). 
(B.2), (AB.l), (AB.2) and (AB.3) have to be suitably modified, and in this 
case the Banach space E will consist of the functions u E C(a) tending to 0 
as Ix/ + +co. For the details see [30]. 

Remark 7.13. The first example is not a special case of the second one. 
Indeed, assumptions (B. 1) and (AB. 1) do not hold, since the principal part of 
B(t, x, D) vanishes at x = 0. 
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