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EVOLUTION OPERATORS AND STRONG SOLUTIONS
OF ABSTRACT LINEAR PARABOLIC EQUATIONS

PAOLO ACQUISTAPACE
Scuola Normale Superiore, Piazza dei Cavalieri, 7, 56100 Pisa, Italy

(Submitted by: G. Da Prato)

Abstract. We consider the linear non-autonomous Cauchy problem of parabolic type in
a Banach space F, under general assumptions which allow the domains of the operators to
be non-constant in ¢ and not dense in E. We study the regularity properties of the evolution
operator, and prove existence, uniqueness and sharp regularity results for strong soluticns.
Applications to parabolic partial differential equations are also given.

0. Introduction. Let £ be a Banach space. We are concerned with the linear parabolic
non-autonomouns Cauchy problem

w'(t) — A(t)u(t) = F(t), telsT]
{ ©.1)
u(s) = .

Here, T > 0, s € (0,T) and z € E, f : [5,T] — E are prescribed data, whereas {A(f)} is
a family of closed linear operators in E, which are generators of analytic semigroups and
whose domains D 4(;) may change with ¢ and be not dense in E. In [3], we studied existence,
uniqueness, and maximal regularity of striet and classical (i.e., continuously differentiable)
solutions of (0.1), and in [4] we constructed the evolution operator U(t, &) for problem (0.1},
In both cases, the initial point was s = 0, but the general situation s € [0, 7] requires no
substantial changes. Here, under the same assumptions of those papers, we consider the
variation of parameters formula

u(t) = Ut )z + f Ut fir) dn te (s, 0.2)

and show that u is the unique strong solution (see Definition 1.6 (c) below) of (0.1), if

and only if z € Dy and f € C([s,T), E). Furthermore, we prove very precise regularity
results, both in time and in space, for the function (0.2); such results generalize those of [7],
(14], and [2], and are sharper than the similar.ones obtained in [1] under hypotheses which
are independent of ours (see Remark 4.5 below). In addition, we shortly consider classical
solutions, showing that formula (0.2} holds for them too, under very general conditions on
the data (compare with [4, Remark 2.3]). We note that, as in our previous papers, (3]
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434 P. ACQUISTAFACE

and [4], our assumptions are generally weaker than those known in the literature; detailed
comparisons and references can be found in [3, Section 7).

Let us describe the subject of the next sections. Section 1 contains some preliminaries,
Section 2 is devoted to a careful analysis of the properties of the evolution operator U/, s).
In Section 3, we prove existence and uniqueness of the strong solution of (0.1), whereas in
Section 4, we study its time and space regularity. Section 5 is concerned with the represen-
tation of classical solutions by formula (0.2), and finally, in Section 6, we discuss the validity
of Hypotheses I and II (see Section 1 below) in some concrete examples,

1. Notations, Assumptions, and Preliminary Results., Let Y be a Banach space,
and let a, b € R with a < b. If u € [0, 0o, we consider the spaces

Bu(e,5,Y) = {f t]a,8] - Y| ﬂfgls)b(t = aflf(O)lly < oo},

Culla, 8], Y) i= B,(a,b,Y) N Clla, b, Y),

Culla, b, Y) 1= {f € Culla, 8], Y) [t — (t — a)* /() € C([a, 8], V) },
which are Banach spaces with the obvious norm

1 Fl Buta,byy = aggb(t —a)?||f(t)lly

(of course, Cp([o,8],Y) means C(a,b],¥) whereas Co(Ja,b],Y) is strictly contained in
C(la, 8], Y); we will stmilarly denote By(a,b,Y) by B(a,b,Y)). Next, for o €]0, 1], we will
use the Hélder spaces

C*(@8,Y) = {/ € Olla, 0L V) flowuaipy = _sup MO =SCly o)

age<t<t  (t—8)2

W0t V)= {f € 0@ B ¥) | lim swp (flom(acinr) =0}

endowed with their usual norm. For o = 1, we will use both the Lipschitz space

Lip(le, ) = {1 € Clla, 0V hsp(asgory = _sop WS o)

with its usual norm, and the Zygmund classes

C*}la,8],Y) = {1 € C((a,8, ) [ {flo- aplv)
= sp MO =249/ + 7Oy _ ),

a<a<t<h t—s

R*[a,b),Y) = {fecC"? a,b,Y)|lim sup C1([o,ctr]y) =0
([ ] ) - { ([ ] ) , T'Ilo a<sc<b r[f] 1([ y r]l ) }
with the obvious norm

1171

O*nl([a,b],}’) = “f”C([a,b],Y) + [f]C*'l([a,b],Y} .
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We will also work with the usual Lebesgue spaces LP(a,5,Y),1 < p < oc. Finally, C1([a, 8], V)
(resp. C'(Ja,8],Y)) is the class of functions f € C([a,b],Y) (vesp. f € O(]a, b],Y)}, which
are continuously differentiable in [a,b] (resp. in |a,d]) with respect to the Y-norm. The
Banach space C!([a,}],Y) is endowed with its natural norm.

Let £ be a Banach space and let A: Dy € E — E be a closed linear operator, generating
an analytic semigroup {e®4 }s>0. Then, this semigroup is strongly continuous at s = 0, if
and only if D4 is dense in & (see [14]). By endowing D4 and D42 with the graph norm,
they become Banach spaces continuously imbedded into F; hence, we can consider the real
interpolation spaces between Dam, m = 1,2, and E, introduced in [13] and [8] (see also [9]).

Definition 1.1. For 5 €|0,1] and m = 1,2, we set

Dy (B,00) 1= (Dam, E)1-p,00 , ' (1.1)
Dam(B) = (Dam,E)1_p (see [8, Def. 2.2]). (1.2)
The following characterizations hold (see [14, [9], and [11]):
Diam(8,00) = {z € B : [zl = sups™™|(* — 1)) < o0}, (L3):
Dpm(8,00)={z€E : [:r]g’)ﬁ = Eggsm(l“ﬁ)nAmeanE < oo}, (1.3)q
Dum(B,00) = {z € B : [(]; = sup |\P[|(AR(A, 4))™a|| < 00},
A€p(A) (1.3)g
Dm(#) = {& € Dan($,00) : lims™ || ~ )™z = 0}, (14);
Dm(8) = {2 € Dam(B,00) : lim s™U=B) | Am et Ag) 5 = 0}, (1.4),
D4 (8) = {z € Dam(8,00) : |A|—*°1§11§1€9(A) I I{AR(M, A))™ 3z = 0} . (L4)s
Moreover, the corresponding norms
l2lms = lole + [l i=1,23 (L5);

are all equivalent to the norm of the interpolation space (Dam, E)1-p.00. Thus, we will
denote by [2]D 4m (g,00): [|%]|D4m (8,00)» a0y of the seminorms (1.3); and of the norms (1.5);.
When § = 0, the sets (1.3); reduce to the whole E and the sets (1.4);, (1.4)3 reduce to
Dan(= D), but the set (1.4)3 becomes a space containing D4. When 3 = 1, the sets
(1.4); reduce to {0}, but the sets (1.3); become strictly larger, in general, than Dym (see
[6, Corollary 3.18]). Thus, we are led to the following definition.

Definition 1.2. We set
D m(0) :=Da, Dam(0,00) :=E, Dgm(1) := {0},
Dygm(l,00) := {z € E| [m]g'}l = Eg}gs_m“(e“" —1)™z||g < oo}
By [6, Theorems 2.5.4 and 3.5.3] we have also
Dym(l,00)={z € E| [m]f,i)l = 31;1()) |A™e* 4|z < oo}

={z€ B[ == sup [AI™ [{AR(A, 4))™e] 5 < oo}
Agp(A4)
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As before, we denote by [#]p,m(1,00) any of the seminorms [m]i;?,h and set
bl pam (1,00) = 12l £+ [2]D4m (1,00) -

Remark 1.3. (a). If # € [0,1[, Dam(8) coincides with the closure of D4 in the norm of
D ym(8,00) (see [6, Prop. 3.186]).

(b). We have D42(f,00) = D4(28,00), Dg2(8) = Da(23) for each 8 € [0,1/2], and
Dya(B,00) = {z € Dy | Az € D4(26 - 1,00)}, Dpz(8) = {x € Da| Az € D4(28 — 1)} for
each § €]1/2,1] (see [6, Theorem 3.4.6]). Thus, Daz(8,00) and D4:2(8) are relevant just
when g =1/2.

{c). The following continuous inclusions hold (0 < < ¢ < 1) :

Dy = D4(1,00)
_ 1
{:EGDA :A:L‘EDA}‘—P< >‘—>DA2(§,OO)‘~—>DA(O')
Dy2(3)
—+ Dyle,00) = Da(f) = Dy — E,
without equality in general; however, if E is reflexive, then Dy = D4(1,00) and Dy = E

(see [6, Corollary 2.2.15] and [12]). It is also easily seen that (compare with [6, Corollary
3.L.8))

{reDy:AzeDy}={z€Das(l,00) : ltiln(‘leeMx — 2| pA(1,00) = 0} .
Let us list now our assumptions, which are the same as in [3], and [4]. We fix a Banach

space E and a positive number T

Hypothesis 1. For eacht € [0,T], A(t) : Dau) € E — E is a closed linear operator and
there exist M > 0 and 0y €]n/2, 7| such that

(i) p(A(t)) D 8p, = {2 € C:|argz| <} U{0} Vieo,T],
(i) IR AW zcor <

Hypothesis II. There exist B > 0, k € N*t, ay,..., 0k, 81,..., 8 with 0 < 8; < a; < 2,
such that

YA€ Sy, Ytel0,T).

k
AR, A [A(O)™" - A(s) ] | eezy < B _Zt—s JH A

VA€ S — {0}, VO<s8<t<T. Wealso assume (which is not restrictive)

§ = 1rgnz'i£k(m - fi) €)0,1[. (1.6)

Remark 1.4. (a). Hypotheses I and II will be always assumed throughout this paper.
Comments and comparisons with other kinds of assumptions can be found in [3, Section 7).
(b}. An immediate consequence of Hypothesis I is the estimate

A ™S A oy < e(m)E™™ Vi€, T), VE>0, YmeN, (1.7)
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which follows by the usual representation of ¢$4(t) by a Dunford integral (see [3, formula

(L17)]).

Tn the next sections, we shall handle functions ¢ ~ g(t) such that, at each time ¢, g(t)
belongs to Dy, or D 4(5(8,00), or D 4(1), and so on. Thus, we arc led to define, with
slight abuse of notations, the following spaces (u € [0,00[, m =1,2,0<a<b < T:

Byu(a,b, Dan) 1= {g € By(a,b, E) |t — A{t)™g(t) € B,(a,b, E)}, (1.8)

and Cy(la, b, Dam), Cu([e,b], Dam) which are defined similarly; they are Banach spaces
with norm

9l By (a,6,04m) = aggb(t — a)*lg(t}l| D pgsym - (1.9)
Similarly, we also define the space C(Ja, b], D 4m ). Next, we set for 8 € [0,1]:

B(a,b, D aw(8,00)) := {g € B(a,b, E) | [g] B(a,b,Dam (8,00) = SUp [9()]Dacym (Bio0) < 00}

(1.10)
which is a Banach space with norm

91l Ba,b,D.am (8,00)) = N9l B(a.b.B) + (9] B(a,6,D4m (8150}) - (1.11)

Finally, for # € [0,1[, we will consider the closed subspace of B(a, b, Dan {8, 00)) defined
by:

C([a, b], D am(B)) := closure of C([a,b], Dam) in B(a,b, Dgm(8,00)). (1.12)

The space C([a,b], Dam(8)) can be characterized as follows:

Clla,b), Dam (8)) = {9 € C([a, 8], E) :

lim sup s™(a—8) “A(t)mqesA{t)g(t)”E — U} Vge Nt; (1.13),
8l o<y <h

C(la, 0], D 4m (8)) = {g € C([a,8], B) | lim sup 5|4 — )g()|le = 0}; (1.13)
AU <t

O(la,8, Dam(8)) = {g € C([a,b], E) | 9(t) € Daym(8) ¥t €[0,T} and

lm sup sup ™A A(t+ h)meAEHg(e 4 h) - A ADg(1)] = 0} . (1108

The proof of (1.13);, 7 = 1, 2,3, is rather involved and will be omitted.

Remark 1.5. In the autonomous case, A(t) = A, the space O([a,b],Dm(f)) has an
obvious intrinsic meaning; however, it coincides, as (1.13); easily shows, with the definition
(1.12). Similarly, under the assumptions of [2], we have Dy = Da(oy, so that for m = 1
we also get Daw)(8) = Da)(8); hence, again, the space C([a,b], D4(8)) has an intrinsic
meaning. But also in this case, using (1.13)2 and a refinement of the argument of [2, Prop.
2.3], it can be shown that such space agrees with (1.12).

We conclude this section by defining our solutions.
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Definition 1.6.

(a) A strict solution of (0.1) is a function v € C*([s,T), E}  C([s,T), D4) such that
u(s) = 2, u' ~ A(Ju() = / in [5, ]

(b) A classical solution of(O.I) is a function u € C([s, T}, E)NC(]s, T}, B)NC()s, T], Da)
such that u(s) =z, v’ — A(-)u(-) = f in]s, T).

(c) A strong solution of (0.1) is a function u € C([s,T|,E) such that there exists a
sequence {un} C C([s,T],E)N C([s,T), D4) satisfying as n — oo :

Up = u in C([s,T|,E), un(0) = in E, u, — A(-)u,(-) = f in C{([s,T),E).

2. The Fundamental solution. In {4], an explicit representation of the evolution
operator for problem (0.1) is given in the case s = 0, but only notational changes are needed
for general s € [0, T[. Namely, denote by @, the integral operator

(Qsg)(E / Qt,r)g(r)dr, 0<s<t<T, (2.1)
where
Q(t,8) = A(5)2eDAM [A($)™1 — A(s)7Y], 0<s<t< Ty (2.2)
then by [3, Lemma 2.3 (i)], it follows that
(¢, 8)|| ) < k(t—8)°~1, YVOLs<t<T, (2.3)

where 6 is defined in (1.6). Hence, Q, € L(LP(s,T, E)) Vp € [1, oo], moreover, the Neumann
series Y° | Q% converges in £(LP(s, T, E)), so that (1 — Q)™ is well defined and

[(1-Qs)7 g (1) = g(t) + E/ @Qnlt,r)g(r)dr, Yge L?(s, T, E), (2.4)
@r(t, 8), being defined inductively by

i
Qu(t,8) = Q(t,5), Qnlt,s) = f Qs (t,1)Q(r, 8) dr | (2.5)

(see [4, Lemma 1.2]). Following [4], we can define the evolution operator U(%, s) of problem
(0.1) by

¢
U(t, s) 1= elt—o)Als} +/ Z(r,s)dr, 0<s<t<T, (2.6)
8

where

Z(t,s) = {(1—Q.., [AC)t=240 — Ae)e=240] } )
3 [ 10n(6,0) - Qult ] A4 g o
n=1v?e

+ i Qnl(t, 5) [e(“")“"(") —~ 1] , 0<s5<t<T.
n=1

In the next propositions, we list the main properties of Z(¢,s) and U(¢,s). First of all,
however, we need the following lemma concerning the kernels @y (t, s).
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Lemma 2.1. For0 < s<r <t <T we have:

) S 1@nlt )ll2im < elt — 51,
n=1
() D 1Qnlt,5) — Qulr )l emy < e(m)t —r)"(r — 8)=7"1, V7 €0, 8],
n=1
(i) Y |@nlt,r) — Qut, )l z(my < eln)(r — s)7(t — )27, Vn €0,4].
n=1

Proof: (i) It is [4, Lemma 1.2 (i)]. (ii) For n = 1, the estimate follows by [3, Lemma 2.3
(i1)]; for n > 1 we write

i T
Qn(t= 3) - Qn(?‘, ‘9) = / Q(ta Q)Qn-—l(q, 3) dg + / [Q(t:Q) - Q(T’ Q)]Qn——l (Qa 3) dg,

and using (i), we easily obtain the result. The proof of (iii) is similar to (ii).
Lemma 2.2, For0<s<g<r<T we have:
() 11Z(r, )l 2(Dacsr (8.001,5) < €(B)(r = 8)™F~1, Vg € [0,1],

(i) 12(r,8) = Z(q, 9)| 2(Dagy (Br00),B) < (Byn)(r — q)" (g — 5)PH0 17
v3e(0,1-6], Ynel0,d,

(i) 12(r, ) ~ 2(g, )l 2(Dacry(8.00).8) < elBym)(r — ) (g — 8)™+57177,
VAEL—6,1], Yne (B +é—

(iV) ”Z( ) Z(Q: 's)llﬂ(DA(,)(l,oo),E) < C("?)(T - Q)ﬂ ’ V"? €10,‘5[,

v) 12(r.q) = Z(r,8)|| e(my < e(n)lg — 8" (r — @)°~'77, V¥ €]0,].

Proof (i) The result follows by using [3, Lemma 1.10 (i) and Prop. 2.6 (i)} and (4, Lemma
2 (i)- (121)]

(n) (iil)-(iv) By (2.7) we can write:
Z{r,8) — Z(g,s) = (2.8)
[A(T)G(T—S)A(‘P‘) _A(q)e(r_s)A(q)] + /T {A(q)2e(p_8)A(Q) — A(S)ge(p—B)A(S)] dp
: q

7

[]8

+ Qn(rp) [A(p)e(f"f’)f‘(*’) - A(s)e(p—am(s)] d

+

e T
3
|

NE

[Qn(r, D) — Qnla, p)] [A(p)e(p—s)A(p} _ A(S)e(p—-s)A(a)] ip

3
Il
-

[~]8

+ [Qn(r,p) — Qu(r, 0)|A(s)eP~ 4} g

3
Il
—

s

+ [Qnlr, D) — Qnlr,8) — Qn(a,p) + Qnlg, s)] A(s)e®@=)4() dp

Sy STy

2
L

o0

+ Z Qn(r:s f Als)e®=4E) dp + Z (@n(r,8) = Qnlg, )] [e@~4E) —3] .

The results follow in a tedious but standard way, using [3, Lemma 1.10 (i)] and Lemma 2.1
above,
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(v) We write: ‘

Z(r,0) - Z(r,s) =
_/ N [A(?.)%pA(r) __A(q)2epA(q):’ dp — [A(q)e('r—a)A(Q) _A(S.)e(rﬁs)A(s)]

/ ZQH(T » [ —3 [A(p)zeuA(p) _A(q)2e'uA(q)] du dp

=1 q

—/ E Qn{r:p) [A(q)e(P—SJA(Q) _ A(S)e(p—s)A(s)] dp

qnl

/ Z Qn(r, ) [Alp)er46) _ (S)B(p—s)A(s)] dp

=1

/ Z [@n(r,p) — @n(r,q)] / A(g)?e @) dudp

=1

/ E [Qu{r,p) — Qn(r, )] [A(q) (p—s)A(q) _A(S)e(p—a)A(s)] i
7 n=1

=3 [Qnlrg) - %&H[AW@M@@

n=1

- Z f [@n(r, 1) — Qu(r, s)] A(s)elr=24() gp — Z Qnlr,q) / THBA(q)epA('T) dp
n=1v3 r—gq

+ i Qn('f'a Q) [e(r—s)A(q) - B(THS)A{S)] Z [Q-n rq Qn 7y 8)] [ (r—s)A(s
n=1 :

again a straightforward computation using [3, Lemms, 1.10 (i)] and Lemma 2.1, leads to the

result.

We can now list the main regularity properties of the evolution operators U(t, ), defined

n (2.6).
Theorem 2.%. Set A :={(t,s) € [0,T]? : { > s}. We have:
() (t,5) = U(t,s) € B(E, L)) N C(A, £(E)) and

Ut,t) =1, Ult,r)U(r,s) =Ult,s), ¥0<e<r<t<T;

(ii) ligl [U{t,8)z — 2||g = 0 if and only ifz € Dy, and
8

ltiﬁl \U(t,8)x ~ z||g =0 ifandonlyif z€ Das);

(i) |U(t,8) = Ulr, 9)llem Sc{log(1+;—)+(t—r) }, VO<s<r<t<T;

() Ut r) = UG, 8)lemy S c{log (1+ —:—:—r) +(r—s)6}, VO<s<r<t<T,
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(v) £ — U(t,8) € C'(]s, T] .[I(E)) NC{()s,T), L(F,D4)) and — U(t 3) = A(Q)U(t, s);

' HIOTreover,
AUt 8)l|omy < et — 8)L, YOS s <t ST

(vi) t = AU, 8)A(s)"! € B(&, L(EY NC(A, L(E));
(vii) 1;%1 AU (t, 8)A(s) "'z — z)| g = 0 if and only if = € D (3, and

ltllrgl |A()U(t,8)A(s) e — 2|z = 0 if and only if z € Dasy;

(viii) (AU (¢, s)A(s)™" ~ Ut 8)l|z(m) Se(t—8)°, YOS s<t < Ty
(ix) if 2 € Dags), then

E~ E{%h_—l[U(t,s +h) —U(t, )A(s) o= —U(t,s)s Y0<s<t<T,
and
E- 1}:11%1 R YU(t,s + h) — U(t,8)|A(s -+ h) la = —U(t, 8)z, VO< s <t <T.
Proof: (i) The first part follows by [3, Lemma 1.10] and Lemma 2.2 (ii)—(vj—(i); next,

obviously, U(t,¢) = 1. The last assertion will be proved after part (v).
(ii) We have

t
U(t, S)SU — = [e(t—S)A(ﬁ) _ e(t—B)A(t)] x+ [e(t—-‘i)A(t) —_ ]_] A +/ Z(r’ S):ﬂ dr i
so that by (3, Lemma 1.10 (i)] and Lemma 2.2 (i}

Ut )z — zllz = O((t — 8)°) + [~ 4® — 1)z as 574,

and the first part follows by [14, Prop. 1.2 (i)]. The proof of the second part is even simpler.
(iii) We write

¢ ¢
Ult9) = Ulro) = [ Ale)e@4 dp+ [ 2(q,5)da,
r r '
and the result follows by (1.7) and Lemma 2.2 (i}.
(v) Formula (2.6) clearly implies that U(-, s} € C1(])s,7), L(E)) and

a

5 U(t8) = A(s)e®2A0) L Z(t,5), 0<s<t<T. (2.10)

Consider for each m € N7, the problem

{ U (£) = Am ()t () = 0, t €[5, 7]

um(8) =z € E, (2.11)
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where Ay, (2} := mA(t)R(m, A(t)) € L(E) is the Yosida approximation of A(t). It is easy
to show (see [3, Prop. 4.5]) that problem (2.11) has a unique solution w,, € C([s,T], E).
Moreover, we can introduce the kernels Qum (¢, 8), @n,m(t, s} as well as the integral operator
Qs,m simply by replacing A(t) with Ay, () in the corresponding expressions, defining Q(¢, s},
Qn(t,8) and Q; e, in (2.2), (2.5) and (2.1). Then we can define

t
U (t, 8) = elt=2)4m(s) 4 / Zp(r,8)dr, ' (2.12)

)

where again, Zp(t, s) is defined by replacing Qs, A(t), @n(t,8) With Qs m, Am(t), @nm{t, 5)
in the definition (2.7) of Z(r, s). Now it is easy to see, following [4], that the solution of (2.11)
must be given by

Um(t) = Up(t, 8}z, T € [s,T),

so that, by (2.12)
A (YU (L, 8) = %Um(t, 8) = A ()l Amltl 4 7 (1.6), t € [s,T). (2.13)

Now, by (2.12), (2.13), (2.10) and the results of [3, Sections 4-5], it is readily shown that if
0L s<t<T, we have:

Un(t,s) = U(t,s) in L(E) as m — o0,
A ()i (2, 8) — %U(t,s) in L(E) as m — oo.

This easily implies that U (2, s) € L(E, D)) and A(t)U (8, 5) = %U (¢, 8). Finally, by (2.10),
(1.7) and Lemma, 2.2 (i), we get
o
—U(t,8)
” ot " pm

) =AU, )l ez < elt — )7,

and (v) is proved,
We prove now the last part of (i). For r > s, we have U(r, 8)z € Day Ve € E, so that
by [3, Theorem 6.3}, the problem
w'(t) — A(t)u(t) =0, t€)r,T)
(2.14)
u(r) = U(r, s)z,
has a unique classical solution. But by (v), the functions vy (t) := U(t,s)z and v3(f) :=
U(t,r)U(r, s)z both solve (2.14), and therefore vy = vy; this proves the identity U(Z,s) =
U(t,r)U{r,s). Note that, in fact, vy is a strict solution of (2.14), since by (v), it belongs to
CY([r,T), E) N C([r, T], D4); this implies, by [3, Prop. 3.7 (i)] and by the arbitrariness of
r > g, that
At)U(t,8) € Dagyy VO<s<t<T. (2.15)

(iv) Suppose first ¢ — r < r — 5. Then, we write:

t—a
Utr)=Ult,8) == | Alr)ets) dg + [ei=940) _ gt-940)]

t—r
+ [0~ 2090140 - [ 2(0,5)da.
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By (1.7), [3, Lemma 1.10 (i)] and Lemma 2.2 (v)-(i), we get for any # €]0,§[

r— 28

0 r) = Ut )l o) < eln) g (1475 ) + (=00 + (o= o=

as t —r < r — g, we get the result in this case. On the other hand, if { —» > v — 5, we use
the last assertion of (i), writing

Ult,r) ~Ult, o) =U(t,2r — s)[U(2r — s,7) — U(2r — 5,38)],

and the desired estimate follows.
(vi) For each z € E, t — U(t, 8)A(s) "'z is the classical solution of

W(t) - Af)u(E) =0, te€]sT)

(2.16)
u(s) = A(s) "z,
and by [3, Theorem 6.3], we have t — A(t)U (¢, 8)A(s) 'z € C(]s, T, E) and
AU (L, 8)A(s) 1z||g < ¢flz|lz YVO<s<t<T, (2.17)

s0 that t — A(t)U(t,s)A(s)~! € C(]s, T, L{E)) Vs € [0, T[. On the other hand, if 0 < r <
s < t, we have, choosing any ¢ €]s,{[,

AU (t,8)A(s) 'e — ABU (L, A(r) 'z = AU (t, 8) [A(5) ™ — A() Y =
+ AU, q)[U(g,8) — Ulq, ) A(r) e,

so that by (v), Hypothesis II and (iv), we get
| AU (¢, ) A(s) e — A(t)ULE, nA(r) '),

<ofe-a=n + -9 g (14

220) oo~ s
=ol) ||z||lz as s—7|0.
This proves that s — A(@)U(t,s)A(s)~! € C([0,¢[, L{E)) Yt €]0,T]. The proof of {vi) is
complete,
~ (vii) The function ¢t — U{t,s)A(s) 'z is a strict solution of (2.16) if and only if z €
D45y ([3, Theorem 6.1 and Prop. 3.1 (ii}]); this proves the second part. In addition,
t — U(t, s)A{s) "'z solves the integral equation
ADU(E, ) A(s) 1z = (2.18)
Qs(A(YU{-, 5)A(s) ™ x)(t) + A4 A() M, s € [0, 7], t€[s,T],

([3, Theorem 6.3 (i)]). Since (2.17) holds, we have by (2.3) and (2.18), as s 1 ¢,
ARU(t,8)A(8) 1z — 2
= O({t — 8)°) + A1)~ [A(s) ™ — A(t) "] & + [e(t—s)A(t) _ 1] z
= O((t - 8)) + [e(t—s)A(t) - 1] 2,
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s0 that the first part alse follows.
(vili) Let z € E. By (2.6) and (2.18), we can write

AU, 8)A(8) 2z — U(t, 8)x = Qs ((AC)U (-, 9)Als) 1) (8)
_|_A(t)e(t—s)A(t) [A(s)_l _ A(t)_l] z+ [e(t—s)A(t) - e(t—a)A(s)] T — /t Z(r,s)zdr,

8
and recalling (2.3), [3, Lemma 1.10 (i)] and Lemma 2.2 (i), the result follows.
(ix) If b €]0, (¢ — 8)/2(, we write

AUt s+ h) — U(t,8)]A(s) te = U(t, s+ R)A™ L — U(s + h, 8)]A(s) ‘2
=-U(t, s+ h)h™? /S+h A(MU(r,5)A(s) 1z dr,

and by (i) and (vii), we obtain
R U(t, 54+ h) —U(t, 8)JA(s) le = o(1) = U(t,s)z as k0.
If h €] — s,0[, we write:
RMU(t, s+ hy — U(E, s} A(s -+ h) "2z = Ult, 8)h ™ [U (s, 5+ h} — 1]A(s + h) 'z

= =U(t,9)h™? AU (r,s +h)A(s + h) " ladr
stk

and again (i) and (vii} yield
AUt s +h) - Ut 8)]A(s+h) e =o(l) - U(t,s)z as h10.

Theorem 2.3 is completely proved.

3. Existence of strong solutions. We are concerned here with existence of strong
solutions of problem (0.1). We start with an obvious necessary condition.

Proposition 3.1. Let u be a strong solution of (0.1) with z € E, f € C([s,T], E); then
z € Das)-
Proof: Evident by definition.

Next, we establish the usual variation of parameters formula for any strong solution.

Proposition 3.2. Let u be a strong solution of (0.1) with € D (), f € C([s,T), E); then
© is given by

u(t) =Ult,s)z +/t Ut,r)f(r)dr, tels,T]. (3.1)

Proof: By definition, there exist three sequences {u,} < C'([s,T], E) N C([s,T], Da),
{#n} C Da(sy and {fn} € C([s,T], E} such that

Up = U, fn— f in C(3,T],E), 2o =z in E as n— o0, (3.2)

wl, — AC)un () = fr in [5,T], Un(s)=2n. (3.3)
By [4, Theorem 2.1}, we can represent uy, as
t

un(t) = U(E, s)an + f U(t,r) fulr) dr, 1€ [5,7), (3.4)
E:

and as n — oo, by (3.2) we get the result.
We prove now our existence result.
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Theorem 3.3. Let 2 € Dy, f € C([s,T], E); then problem (0.1) has a unique strong
solution u, which is given by (3.1).

Proof: Uniqueness was proved in Proposition 3.2, To show existence, we choose any se-
quence {fn} C C*([s, T, E) such that

fal(s)=f(s) VrneN, f,—f in C([s,T],E) as n — oco.
Next, we select {z,} C D A(s) Such that
- A(s)zn + f(38) Em VneN, z,—z in E as n— oo;
thig can be done by taking, e.g.,
T 1= n*[R(n, A(s))]*[z — A(s) 7 f(s)] + A(s) " f(s), nEN,
Now, by [3, Theorem 6.1], the problem
V(8 = AQUE) = fald), t€ [5.T], va(s) = 2

has a unique strict solution u,, which can be represented by (3.4), due to [4, Theorem 2.1].
As n — oo, formula (3.4) reduces to (3.1), so that by definition, the function (3.1} is indeed
a strong solution of {0.1).

4. Regularity of strong solutions. We collect here some regularity properties of the
strong solution u of problem (0.1). As u is given by formula (3.1), we will study separately
the two functions

(Usa)($) i=Ult, o)z, ¢ [5T], (4.1)

(Us * f)(t) := /t Ult,r)f(r)dr, te[sT). (4.2)

We start with the function (4.1). Our first result concerns time regularity.

Theorem 4.1. Let x € E and 3 €]0,1[. We have:
(i) Usz € Co(]5,T], E) N C1{]s, T, E) and (Usz)’ € Cy(]s,T), E);

(if) # € Dagsy if and only if U,z € C([s,T), E), and in this case (Usz)' € Cy (s, T, E);
(i) & € Dags)(8,00) if and only if U,z € CP([8, T, E) and (Usz)' € C1-5(s, T, E);
(iv) = € Dae)(B) if and only if U,z € h?([3,T), E) and (Uyz)' € C1—s{[s, T}, E);
(v} & € Dpgey2(3,00) if and only if Upx € C*¥([3,T), E);
(vi) & € Dy(s)2(3) if and only if Usz € h*1([s,T], E);
{vii) = € Da(s)(1,00) if and only if Uz € Lip([s, T), E) and (Usz) € Co(ls, T], E).
Moreover, in each case U,z and (U,z)' depend continuously on x in the corresponding norms.

Proof: (i) Immediate consequence of Theorem 2.3 (i)-(v).
(ii) The first part is contained in Theorem 2.3 (ii). On the other hand, if z € Dagsy, then
by [3, Theorem 6.5], the problem

{ w(t) — AQDu(t) =0,  te]s,T]

u{s) ==z, (43)
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has a unique classical solution; by Proposition 5.1 below and by Theorem 3.3, such solution
is U,z. Hence, again by [3, Theorem 6.5], we get the following representation formula:

(Usz) = A)(Us2)(t) = (1 — Q5)~* (A(~)e(‘*3)‘4(‘)$) ()
= Qs (AQ)(Usm)) (1) + A(R)e Wz
= Qu (AQ)Ua2)) (1) + [A@)e=40 — A()eli=IAO)| 5
+ A(s)elt 4@ g ¢ €]s, T],

where Q, is the integral operator defined by (2.1)-(2.2). Recall now that s (A()(Usz)) €
Bi_s{(s, T, E) by () and [3, Propesitions 2.1 (vi), 2.6 (iii)(g). 2.4 (vii)]; thus, by (3, Lemma
1.10 (i)], we obtain

(t — 8)(Uyz)'(t) = O {{t — 8)°) + (¢ — 8)A(s)elt" )z as ¢,
which implies, by [2, Lemma 2.4 {vi)],
(t—8)(Usz)' () =0(1) as t]s.
(iti) If Usx € G#([s, T}, E), then we write

(4.9)

(U,2)(t) — (Usz)(s) = [e(t"s)A(") ~ 1] z+ f t Z(r, )z dr,

a3
and by Lemma 2.2 (i) and (1.3); we get z € Da(s)(8 A 8,00). If § < 6, we obtain z €
D a(s)(B,00); otherwise, again by Lemma 2.2 (i) and (1.3)1 we get & € Da(s)(B A 26, 00).
A finjte number of iterations of this argument leads to the conclusion. If, conversely, « €
D 4¢5)(8,00), then we have

11 t
(Us2)(2) - (Us)(r) = f A(s)ela— Az dq ¢ / Z(g,8)zdg, s<r<t<T, (46)

which by (1.3); and Lemma 2.2 (i), easily implies
(Usz)(t) — (Uaz)(r) = O((t —7)7) as t—r 0.
Moreover, from (4.4), we deduce (by [3, Propositions 2.1 (iv), 2.6 (iii}(d), 2.4 (iv) and
Lemma 1.10 (i)])
(t — )\ P(Usz) (t) = O(1) as t| s <=z € Dae(f ).

(iv) Quite similar to (iii) (compare with [3, Remark 6.7]).
(v)If s <r <t <T,we have

Ut,8)x + U{r,s)x —2U (t_—;—_r, s) x = 4.7

(t+r)/2 plt—r)/2 (t4r)/2 -
/ f A(s)ze(”“*"’_a)A(“)m dpdg -+ / [Z (q + t_2r_’ 3) - Z(q, 3)] zdg;
r 0 r

hence, by (1.3)2 and Lemma 2.2 (iii), we conclude that

tr

Ult,s)a +Ulr,8)z — 2U (—2—,s)x=0(t—r) as t—-rlO(:»meDA(a)z(%,oo).

(vi) Quite similar to (v).
(vii) Similar to (iil).
Concerning space regularity of the function (4.1), we have the following result:
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Theorem 4.2. Let z € E and f €]0,1]. We have:
(i} Usz € C1(]s,T), D4); .
(ii) = € Da(s) if and only if Uya € C([s,T], Da), and in this case U,z € C1([8,T), D4)

(i) & € Dags)(8,00) if and only if U,z € B(s, T, Dy{B,00)) and U,z € Ci—5(]s,T), Dy);
(iv) = € Da)(f) if and only if U,z € C{[s, T, D4(8)) and Uyz € Cy_p([5,T), D4 );
(v} =€ Dys)2(3,00) if and only if Uz € B(s, T, D 4 (3,00));
(Vi) © € Da(s)2(4) if and only if U,z € Clls, T, Daz(3));
(vii) x € Dg(s)(1,00) if and only if Uz € Co(]s,T],D4).

Moreover, in each case, Usz depends continuously on z in the corresponding norms,

Proof: (i) Immediate consequence of Theorem 2.3 (v).

(i) The “if” part is obvious. Conversely, if x € Daay = Dygey2 and {z,} C D A(s)2 18
such that z, — z in E as n — oo, then {Uyz,} C C([s,T], D) by [3, Theorem 6.1], and
Uszn — Usz in B(s,T, E) by Theorem 2.3 (i), so that U,z € C([s, T], D 4). The second part
Is a consequence of Theorems 4.1 (i) and 2.3 (v).

(iii) Again, the “if* part is evident. Conversely, let & € D (.)(8, 00); then, by Propositicn
5.1 below and Theorem 3.3, U,z is the classical solution of problem (4.3}, so that, as in
(4.9),

ADUsz)(t) = Qs (A(YWsz)(F) + A(t)el— 1AM g, (4.8)
Hence, if £ > 0, we have, recalling (2.1) and (2.2)

E1B AR LAY (1) = 18 / t At)2elEFtAW (4141 - A(r)" A(rU(r, s)z dr

4 g1 [A(t)e(wm(t) _ A(s)e(f+*)ﬂ(5)] T+ £178 4(5)e(E+DA(9) 5
(4.9)
thus, by (3, Lemmas 1.11 (i), 1.10 (i) and Theorem 6.4], we get, after casy calculations,

sup €' A@) A OT B, < ¢ {(t~ 8)° + 1} |2l Dace, .00

so that U,z € B(s, T, D 4(f3, 00)). Moreover, by Theorems 4.1 (i) and 2.3 (v) we immedi-
ately obtain the second part.

(iv) The “if” part is clear. Conversely, fix € > (; if t — 5 < ¢!/6 by (4.9), as above, we get
for small £

||51_'@A(t')efA(*)Uam(t)”E <e¢ [(t — 3)5 + ”El_ﬁA(s)e“(“)m”E] < ce,
whereas, if t — s > €!/¢ we have directly for small &
1€ =P AW AOTa(0)]| 5 < €' PNAWU G, o)l
<e(t- S)ﬁ_lfl_ﬁ < 66(3_1)561_5 < ee;

hence, Usz € C([3, T],Da(8)) by (1.13);. The remaining part of (iv) is quite similar to (iii)
(compare with [3, Remark 6.7]).
(v) The “if” part is obvious, If x € D A(s)3(1/2,00), we use {4.8) and write for £ > 0

EA(L) Aty = ¢ f tA(t)%“*‘"’)A(*) [A($)™! — A(r)™Y] A(r)U(r, 5)z dr 410
a 4.10
ny [ A(t)2elE+D A0 _ A(s)ze{e+t)A(a)] @+ EA(s)2elEH0A() 5,



448 P. ACQUISTAPACE

as, in particular, € Da(s)(1—8/2, 00), we proceed as in (4.9} and readily obtain the result.
(vi) Quite similar to (iv), using (4.10) instead of {4.9).
(vii) Quite similar to (iii).
Let us consider now the function (4.2); again we study its time and space regularity.
Theorem 4.3. Let f € L°°(s,T, E)., We have
1
() U, * f € C*Y([s,T], E) N B(s,T, DAz(E, 00));
ey s - = 1
(i) if f € C([5,T], Da) then Uy x f € k¥ {[s,T], Da) N C{[5, T}, DAz(i)).

Moreover, Uy % f depends continuously on || f||Leo(s,7,ry in the corresponding norms.

Proof: By (2.6), we easily have for s <r <t < T

Uy £18) 4 Us# () ~ 20y % f(-30) =

It (t+r)/2
[vear@a-2 [ v 9r0d

rop(Er)2 p(E—T)/2 (4.10)
[ [ Atgpere 040 g) dudpdg
] L] 0

+ f: /r(t+r)/2 [z (p+ t_Tr,q) — Z{p, q)] flq) dpdg;

hence, by Theorem 2.3 (1) and Lemma 2.2 (ii), we deduce

Uoe 10+ Us w50 =20+ S5 < el =0l limiomms

i.e, Uy f € C*1([3,T], E). Next, let s <t < T, for each £ > 0 and for a.a. ¢ €]s, ], we can
write by Theorem 2.3 (v) and (2.10)

EAQP 4OV (1,0)1(0) = AW SU(1,0) (0
= EA()efAW [A(q)e(t_q)A(q) _ A(t)e(t—q)A(t)] O
+ A2l S T AW £(q) + £A()e*4 P Z (L, ) f ().

We now integrate over s, ¢[: by [3, Lemma 1.10] and Lemma 2.2 (i), we easily obtain

t
sup eaceess [ U(t,q)f(q)qu < ol fllpee o,
&0 8 B

ie, Uy % f € B(s,T, DAa(%,oo)).
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(i) For s < r <t < T we split (4.10) as

Uy % () + Uy % f(r) — 20, *f(tﬂ)=

[ 940 1] s da + [0~ 1

[ f (P, 4)f(q) dpdg — 2 f o [et+)/2-04@) 1] 1(q) dg
2 [ ga) - 1 -2 [ / 0 00 @) dod
* / / o /O(H)/z Alg)*ete-049 f(q) dudpdg

o pltn/2 _ .
+fs [,‘ [Z(“t—g—rﬂ)—z(p,q)] f(@dpdqmgﬁ.

Fix ¢ €]0,1[ and choose 7. €]0,¢2/%], such that (compare with (1.13)3, (1.13)1) :

sup ||[eP4@ 1] 7(g)]| 5 < & Vp €lO,ndl, (4.12)

s<gT
sup IIPZA(q PAD f()||; <€, Vpelo,nl? +4., (4.13)
/(@) —fPllg <e if lg—pl < ne. (4.14)

We will show that if 0 < ¢t — r < 9., then

Us 5 f(£) + Uy # £(r) = 20, % f(22

Sce(t—r). (4.15)
E

By (4.12) and (4.14), recalling Lemma 2.2 (i)-(ii), we have
iz + 2l + MMalle + | sliz < ce(t —r),

Ille + sllz < et —r)'T8, |Is|le < et — r)1+0/2,
50 that

Lce(t—r)+ ||zl if O<t—r <y, (4.16)
E

We have only to estimate || 7 ||z for 0 < t~# < #,. We distinguish two cases: (a) r—s < nl/2, 2
,(b) r— 8 > nH? In case (a), by (4.13), we have easily ||I7||z < ce(t — r). In case (b), we
write

r—nll? r (t+r)/2 plt—r)/2
I = l/ +/ wl / f A(Q)Be(p+u—q)A(e)f(q) dudpdg =: I + Ir 3,
8 T T 1]
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and again, clearly, ||I72]p < ce(t — r]; on the cther hand,

{t+r)/2 (t—r)/2
elptu—r)A(g) (r-q)A{q)
|7, 1||E</ / / ”E(E) HA %¢ f(q)” dgdudp
<en~ V3t —r)? Sce(t—'r)

so that ||f7]|z < ce{t —r) if 0 < t — r < .. By (4. 16), we obtain (4.15); ie., Uy x f €
h*([s,T], D4). (Since U, * f(t) € Daqy Yt € [s,T) by (i)). Next, fix ¢ > 0 and choose
ne €]0,€'/¢], such that (compare with (1.13);)

sup ”52A EA(q)f ”E <e¢ Yge[sT). (4.17)
0<§<0,

We have two cases: (a) ¢ — s < %, (b) t — 8 > .. In case (a), for each q €s,T[ and ¢ > 0
we have, similarly to (4.11),

EAW 40T (1,0)f(g) = EAMAD [A(g)el=41) — A(D)et-04®)] s(q)
+ [EAyeH-040 _ gagpe(er-040] s(q)
+£A()*e DA £(q) -+ £A1)eHA B 2(t, 4) £ (9),
and consequently, by {3, Lemma 1.10] and (4.17), we have, provided ¢ < %,

Jeawrese [*vt.050

<cft—s)% +ee<ee.
E
In case (b), we split

t . i1 t
eA(yetn [ U(t,q)f(q)dq=sA(t)“e““’[ 4 / ]U(t,q)f(q)dq = i+,
8 8 —Ne

and as above, we have ||J2||g < ce provided € < #,; concerning Jy, for each ¢ €]s,t — 7|,
we have, by [3, Theorem 6.6]:

e 4OUt, ) £ <

5 ey N—b6—1
J (t+9‘?4}1§?<_p$t AP0 ) (DD sy 5,00) < 67 =) (g}l

go that if £ < 61/67]5

t—1e
iz <o [ € -7 @ da < o6 e,

Hence, we have shown that if £ is sufficiently small,

sup < ce;

sStsT

Le., by (1.13)1, Us * f € C([s, T}, D az(3)).
Recalling formula (3.1), the above theorems obviously imply the following regularity result
for the strong solution of problem (0.1).

£
£ [ U6,0)1(0)dg .
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Corollary 4.4. Let € Dagsy, f € C([5,T), E), and Ilet u be the strong solution of (0.1).
We have:
(i) = € Da(s)(B,00), B €]0, 1], if and only if u € CA([s,T], YN B(s, T, D (B, 00));

(i} # € Dasy(B), B €]0,1], if and only if u € R ([s,T], B) N C([s, T, 2a(®);

(ili) = € Da(s)2(},00) if and only if u € C*([s,T], E) N B(s, T, D 42(5, 00));

(iv) if, in addition f € C([s,T],D4), then x € D 4(s)2 () if and only ifu € h**([5,T], D)

ﬂO([S,T},DAz(%)).

Moreover, v depends continiuously on the data z, f in the corresponding norms.

Remark 4.5. In the autonomous case, A(t) = A, parts (1)-(ii) of Corollary 4.4 were proved
in [14, Theorems 3.1, 3.2, 3.3]; an extension to the non-autonomous case with constant
domains is in [2, Theorems 6.5, 6.6, 7.4]. A similar result is proved in [1, Theorem 6.3
under assumptions which are independent of ours, as pointed out in [3, Section 7]. However,
parts (iii)-(iv) of Corollary 4.4 are new, even in the autenomous case; in that situation, for
instance, part (ii) implies by interpolation, that u € C*~%([s, T], D a(8)) V8 €]0, 1], provided
€D A(s)z(%, 0o); this result was known only under the stronger assumption x € D4 (see
[14, Theorem 3.4(c)]).

Remark 4.6. Corollary 4.4 has a counterpart when the evolution problem (0.1) is consid-
ered in LP- rather than in C-spaces (see [9, Theorem 28]).

Remark 4.7. It can be shown by using (4.7) and (4.9), that if x € D) (8, 00), 6 €]0,1],
then the strong solution u of (0.1) satisfies

t— =0yl e, ' t— )¢ < o0,
tEss]l;%)T]{( sy~ lule 1([(t+a)/z,t].ﬂ)}+tEs]123T]{( 8)' O lulB((t45)/2,8,D 42 (172,000} } < 00

This property is closely related with certain function spaces introduced in [3, Definition 1.4].

Remark 4.8 A further increase of the smoothness of the data turns the strong solution wu,
given by (3.1), into a strict or classical one (see [3, Theorems 6.1-6.4], [4, Theorem 2.1] and
Theorem 5.2 below).

B. Classical solutions. In this short section, we make a few remarks concerning classical
solutions of (0.1} which exist under very general assumptions on the data (see [3, Theorems
6.3, 6.4]).

Proposition 5.1. Let u be a classical solution of (0.1), If x € D 4(s) and f € C([s,T], E},
then v is also a strong solution of (0.1).

Proof: By Theorem 3.3, the strong solution » of (0.1) exists. Let {v,} C C1([s,T],E) N
C([s, T}, D4) be such that

vp(s) > zin E and v, — v, fr:=v, — A()va() = f in C([s,T), E) as n — oo.
Then the function 4, := 4 — vy is a strict solution of

{u'n(t) ~ A(Bun(t) = f(8) — fult), tes+¢T)
Un(8+¢) =uls+¢) —vn(s+e),
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where ¢ €]0, T — s[. By [4, Theorem 1.1], we get the estimate

t
[un(t)lz <c {HU(SH) —vn(3+€)llg+/ 1£(r) = fn(r)ll g df} , LE€[s+6T).
s+€ .
As n — oo, we deduce
lu(t) —v(@)|z < clu(s +€) —v(s+ ez Ye€lQ, T —s], Vi€[s+ e, 7],

and as € | 0, we obtain u = v,
We extend now the representation formula (3.1) te (certain) classical solutions of (0.1).

Theorem 5.2. Let u be a classical solution of (0.1) with z € D) and f € C(]5, 7], E) N
Ll(s,T,E). Then u is given by (3.1).

Proof: By assumption, « € C([s, T}, E) and in addition, « is a strict solution of

(10 At = F0), tels+eT]
u(s+¢€) =uls + €},

where ¢ €]0, T — s[; therefore, by [4, Theorem 2.1],
t
w(t) = U(t, ¢ -+ cjuls +¢) +f Ult,r)flr)dr, Ye€]0,T—s[; Vi€ [s+¢T)]
a-t€
Thus, by Theorem 2.3 (i)-(ii), as ¢ | 0, we get (3.1).

Remark 5.3. The same result holds for the classical solution of (0.1) if z € Da(s) and f
belongs to I,(s, T, E) for some p € [L,1+8[; L.e., [ € B,(5,T,E) and there exists the limit

t i
fa (r)dr = tim [ f(r)dr, t s, Tl,

(see [3, formula (1.1)]). Indeed, in this case, we write for a €]s, 1

t t t
[ vensmar= / U(tr) UG o)f) dr +UGs) [ 1(7)

so that by Theorem 2.3 (iv), we easily check the existence of the limit

/ Ut ) i) dr = lin f Ut r)f(r) dr, t€ls, )

Hence, formula (3.1) still makes sense and it is easy to see, by the same argiument as before,
that the classical solution w is given by (3.1).

6. Examples. Let (2 be a bounded open set of R™, n > 1, with boundary A1 of class
C? m > 1. We introduce the differential operators

E(t,2,D):= Y a,(t,z)D7, (,2)€[0,T]x, (6.1)
[y]<2m
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B(t,2,0) = {Bj{t,&, D)}y, = { 3 bj-g(t,m)Dﬂ}jzlwm, (t,z) € [0,T] x a0,

i8] <my
(6.2)
where my,...,My € N with 0 < my < my < -+» < My £ 2m — 1, under the following
assumptions:
ay €4 ([0,7),C), | < 2m; byg € (P15™ Cmr ([0, 7], C(30))
lﬂlsmjajzla---am: (63)

where g, 5r €]0,1] (r=0,1,...,2m ~m;; j=1,. Cm);
if my = 0 we assume b;g = 1.
[ (ellipticity). There exist 8y €]x/2, 7] and » > 0 such that
v (1€ 4+ 127) < | Spyicam (6, 2)E7 — (~1)meitram (6.4)
V(t,z) € [0,T] x, Y8€E[—by,0), VEER", ¥reR.

(root conditoin). If (t,z} € [0,7] x 89, 0 € [~0p, 6], £ €R™, r€R
with (£,7) # (0,0), (€|#(x)) = 0, then the polynomial

§ = Dlyl=am O (6 2)(€ + (@) — (—1)metfp2m
has exactly m roots gf(t,:r:, 9,&,r) with positive imaginary part (here v(z} is the unit

\ outward normal vector at z and (-]} is the scalar product in R").

{complementing condition). If (t,z) € [0,T] x 30, 8 & [0y, 8y, (6.9
£eR™, reR with (¢,r) #(0,0), (&|v{z)) =0, then the m polynomials 7
¢ = Tipiam, binbo)E +cv@)P, j=1,...,m, (6.6)
are linearly independent modulo ¢ — ]'[;71’21 (¢ — g;" (t,z,0,&7).
Consider the non-homogeneous elliptic boundary value problem
{ Ay—E{t, Du=f in Q, (6.7)
Bj(t,-,D)u=gj on 00}, 7=1,...,m,

with fixed ¢ € [0,7T] and prescribed data f, g1, .5 Gm. The following result is well known
(see [16, Theorems 5.5.2-4.9.1] and [10, Theorem 4.1]).

Proposition 6.1. Let p €]1,00[. Under assumptions (6.1),...,(6.6), there exists Ay >
0, such that if |A| > X and |arg(A — Ao)| < 6y, then for each f € IP()) and ¢g; €
Wam-m;=1/p0(a(]}, § = 1,...,m, problem (6.7) has a unique solution u € W2mP((}),
moreover, there exists M, > 0, such that

2m
DA = 20[ 2| DTl oy <
r=0
m 2m—mgy
M, {IIfIILv(n) 20X - Ao|1“‘m”’)"“’mllD’éjllm(n)} )
=1 r=0

where §; is any function in W*™~™4?(Q)) satisfying

gjlan = g_? (.7 =1,... am)'
A refinement of the above result is the following one {[15], see also [5, proof of Theorem
1.2]).
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Proposition 6.2, Under assumptions (6.1),...,(6.6), there exists Ay > 0, such that if
|A| > Ay and |arg(A — Ay)| < 6y, then for each g €]n, o0 and for each f € L9()) and
g; € Wam—m;=1/4.4(pQ)), j = 1,...,m, problem (6.7) has a unique solution u € W2™4(();
moreover, there exist Ny > 0, K; > 1, such that

2m~—1
_ 1—r/2m r _ - n/2mg 2m
g |A = Aq] 1D “"C(ﬂ) + | A= A4 mille% ”D u”Lq(nnB(mo'lA_A”«-ljzm))

n/2mq
< Nl {iue% ”f”m(nnB(mo,K,,lA—,\ll—liﬂm)

m 2m—m;

7
+3 ) A= MM gp DTG :
J=1 r=0 | 1’ :!:oe% " gE"Lq (ﬂﬁB(wo.Kq|A—)\1|—1/2m))}

where {; is any function in W*m—™i:4((}) satisfying

&jlan =gy (Jz 1,...,m).

Set now £ := C({}), and for ¢ € [0, 7],

DA(*) = {u € nqe]n,m[wgm’q(n) : E(t: 'y D)u € O(ﬁ)‘l

B;(t,-, D)u =0 on 99, j=1,...,m} (6.8)
Aty = E(t, -, D)u — (A1 + Du.

Then, we have

Theorem 6.3. Under assumptions (6.1),...,(6.6), the operators {A(t)} defined by (6.8)
satisfy Hypotheses I, II of Section 1 in the space E = C(Q2), provided u €]0,1), pusr €
11— {(mj+r)/2m,1] forr=0,1,...,2m — m; and j = jo,...,m, where

Jo =min{j : m; > 0}. (6.9)

Proof: By Proposition 6.2, we immediately obtain that if A € Sy, and f € C(f}), then

u=R(A, A(t))f exists and
¢
lullo@y < T |)‘|”f”0(ﬁ)’

so that Hypothesis I is fulfilled. Concerning Hypothesis I, if we set for f € C({})
vi=A(s)Mf, wi=R(\A®D) — A(s)]w,

then we have to estimate the E-norm of
u—v= AR A1) [A1)™! = A(s)7] f.

Now, u,v € [) W3m4(0)) and solve respectively,

g€, 00(

{ A+M+1u—E@EDu=dv-f 0 (6.10)

Bi(t,,Dju=20 ondl, y=1,...,m,
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{ (M+1Dv—E(s,,\Dyv=—f inf(],
Bji(s,,D)v=0 ondfl, j=1,...,m,

lwzm’qm) and solves the non-homogenous problem

(6.11)

50 that % — ¥ €\ ¢jn.00

A+ +D(u—v)—ER,,D){u—v)=[E{,,D)— E(s,-,D)]v in Q,
(By(8,, D) = B;(t,,D)v ifmy; >0
By(t,, D)(u—v) = ondfl, 7=1,...,m
0 ifm, =0
Hence, Propositon 6.2 yields (by extending the coefficients b;a(¢,2) on [0, 7] x Q)
(A1 [|u — vllgqy < |

Colh + 1|"-/5’W{ sup H[(E(t, . D) — E(s,, D)]fu|
roEfl

La(QNB(wo, Ky | A=A~ 1/2m))

m dm—mgy

4 Z E ! |A + 1|1—(mj+r)/2m

J=Jjo v=0
- 5w |D71B; (6 D) = By(o s D)ollpaiantes yn-ol-110m) 1,
To€E

where jo is defined by (6.9). By an easy calculation, we find
A+ 1] |lu—vlle@ <
CqlA + 1|"'/2m"’{|t = I+ 1727 0] pam- (g3) + [t = 8|#1 D> ]| ey

m 2m-—mj

+ 30 3 A At lmen)/amen/amalg gt [y Gams g

F=jo r=0
m
£ 30 It = st Doy ).
i=Jo

On the other hand, by (6.11) and Proposition 6.1,

||'U||cﬂm—1(ﬁ) + “Dzm?}”mm) s Cq||f||c(ﬁ)s

and therefore, we deduce

v —vllc@) <

m 2m-—my
call oy § It = oA+ 1PPma=t 4 B 5 37 [ — sftor A 4 1~ Omstn/m &

J=go r=0

Here, g €|n, 00| is arbitrary. Hence, if we choose u > 0, pjr + (m; +7)/2m > 1 we get
Hypothesis II, with the pairs (e, 3;) given by

(ﬂ.,f), (Ju':f?" 1-- (mj' +r)/2m) ('r =0,1,. vy 2m - ™y, .7. =j0:-- 'wm) (6'13)
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for any ¢ > 0.

Remark 6.4(a). The above result is not optimal, since there is an (arbitrarily) small gap
between the regularity of the coefficients of E(¢, 2, D) and the maximal regularity we can
obtain according to the results of [3] for the strict solution u of the parabolic problem (0.1),
with {A(t)} given by (6.8). Indeed, fix for simplicity u €]0,1/2m] and pjpr == 1 — (mj +
r/2m+u(r=0,...,2m—m;, § = jo,...,m); then the best result we can get for u provided
all assumptions of [3, Theorem 6.1] are fulfilled, is du/0t, E(-,-, D)u € C*([0,T],C(())
where § is defined by (1.6); now, in this case, by (6.13), § = y — € for an arbitrary ¢ > 0.
Thus, the coefficients are C* in ¢, but the time derivative of w is just C#~ ¢,
(b) This gap disappears if we choose E := L?(Q1), p €]1, 00[, and

(6.14)

DA(t) = {u € W2m,p(n) : B:f(t: “ D)u =0ond, j=1,.. 'am}1
A(t) := E(t,, D)u — (Mo + Du;

in this case, by repeating the proof of Theorem 6.3, we obtain Hypotheses I and II, with
the pairs (o, 3;) given by

(1,0), (i, L — (mg +7)/2m) (r=0,...,2m —mj = jo....,m),

Thus, choosing p and pj, as in (a), we get now é = y, so that the regularity result is optimal.

Remark 6.5, Theorem 6.3 applies also to elliptic systems satisfying the assumptions of [10,
Section b], provided the coefficients of all zero-order boundary operators are independent of
t. This restriction is indispensible; consider, for example, the system

d? 0
E(D) = (da: 2 )
0 1+4;

with the boundary conditions

B(t,D) = ((1] 1;,”)

dz
in the interval |0, 7/2[. If we set E = [C([0,7/2])]* and
Dagy = {u €[00, /2] : g (0) + (L+ Dua(0) = s (/2) + (1 + hua(r/2)

= uy(0) = wy(r/2) = 0}
Aty = (uf,ug + ug),

then it is easy to see that {A(z)} fulfills Hypothesis I and in addition we have
t— R()\A() € CY([0,T), L(E)) YA€ Ss, VT >0,
where fp is any number in |7/2,#[, and
D = {u €[00, 7/2])? : w1 (0) + (1 + t}uz(0) = ur(m/2) + (1 + tua(m/2) = 0}

(actually, it can be shown that {A(¢)} satisfies the assumptions of [1]).
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Now, by [3, Lemma 7.10], the range of the operator %A(t)‘l must be contained in ﬁA(ﬂ
for each £; but, on the other hand, choosing f (z) = (1,4sinz cos? z), we check that

[A) fl(=) =
2 v 1 2 T 2 1 T, x 1 .
(—? + (I +5- ;)m i t[(; - ~2-):1: + Z-], sin z +cosm[z-— a(w +sm:z:cos:c)})
and hence,

[%A(t)-lf] @=(-C-Det T, o).

Since this function does not belong to D A(t), Hypothesis II cannot hold.

Acknowledgements. Thanks are due to B. Terreni for the uncountable number of his
suggestions and helpful remarks.
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