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Chapter 1

Introduction

The last decades have seen the growth of network science mostly due to
the birth and development of the Internet. The access to large databases,
web networks and the possibility of heavy computer simulations have pro-
moted new approaches in the research methods which are now more based
on mathematical quantitative analysis. Obviously, the economical factors
linked to the so-called Digital/Web/Internet Economy have played a huge
role in stimulating the applications and the implementation of the new tech-
niques to a wide variety of fields. In fact, this variety may be clearly seen
by considering the interdisciplinarity of this field of study, whose it is
one of the most important and interesting assets, and it reflects the melting
pot that often characterizes this as well as many others branches of applied
mathematics, especially the ones dedicated to the analysis of non-linear phe-
nomena.

Network science deals with telecommunication networks, computer net-
works, biological networks, semantic networks, social networks to name but
a few. In addition, the methods and techniques used are widely diverse and
come from graph theory, statistics, statistical mechanics, data mining etc.
(see, for example [Castellano et al., 2009]). However, because of the above-
mentioned interdisciplinarity, a network scientist has always to handle (at
least) two points of view: the first one concerning a specific model, with
specific relationships and individuals, and the second one concerning gen-
eral (or topological) properties. Think, for example, about the differences
that exist between the ties in a social network, where the relationships indi-
cate friendship, and a biological network simulating genes’ interactions. Al-
though these two worlds are totally different, once one is considering them
as a network (or as a weighted graph, for instance) they may have some
common properties, concepts, ideas and, so, sometimes the same techniques
may be used.
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6 CHAPTER 1. INTRODUCTION

Which are the characteristics of a network? Whenever one has a
system with sub-units that are linked together, one may think of a network.
One of the advantages of using this approach is that it has different levels,
so, while the understanding of the whole system may be very complicated,
it may be also possible that the knowledge of its elemental and interacting
parts is quite deep. The characteristics or properties considered in a network
may vary depending on the point of view that one adopts as well as the level
of resolution of the tools that one uses. There are “global” properties such as
the size of the network, its diameter and properties that combine “global”
and “local” information, such as how much the network is clustered or which
are the central nodes in the network.

Based on such properties one may define different typologies of networks,
such as complex networks, which are characterized by having non-trivial
topological features, in opposition with other types of networks such as
random graphs, where patterns or structure are less predominant. Of course,
on the one hand, one may be interested in trying to understand where (and
why) these features come from: if a social structure has high clustering
coefficient or a hierarchical structure, who are the bosses in the network?
where do their power come from? On the other hand, one does not want
to waste this information, whereas would like to take advantage of these
properties to capture and predict some behaviors or dynamics more easily,
effectively and efficiently.

Why and when to use a network as model? Why to model a pop-
ulation, for example, as a network instead of homogeneously? One of the
possible answers to this question is, in our opinion, that using a network
model may allows you to describe phenomena that may not be modelled
well at the level of a homogeneous population. Think, for example, of the
adoption of political views: one would tend to have political ideas that are
somehow aligned to the ones of her friends, even if these ideas are in the
minority if considered in a nation scale. Just to name but a few applications
or examples, one can think about:

• a network consisting of a social group, like friends, sharing ideas or
opinions, in which, for example, the intensity of the relationship de-
pends on the intensity of the friendship, as in [Salganik et al., 2006]
and [Tang et al., 2009];

• diffusion of innovations as well as viral marketing, i.e. the study of
how a new product/idea can spread thanks to a word-of-mouth pro-
cess, as in [Valente, 1995], [Richardson, Domingos, 2001], [Richardson,
Domingos, 2002];

• a public service grid, in which servers and users are connected, like an
electric power grid, as in [Asavathiratham, 2000];
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• a terrorist network, in which the interest could be finding the influent
people or the ones who play a key-role in the organization, as in [Lin-
delauf et al., 2013];

• a biological network simulating genes’ interactions, as in [Moretti et
al., 2010] or food webs as in [Estrada, 2007].

Organization of this work Generally speaking, the models we may think
of are environments or structures consisting of a grid of individuals tied by
relationships, where we want to use a network approach to study a group
dynamic. In particular, we focus on models of networks in which relation-
ships allow information transfer and where passing this information may be
considered as a diffusion mechanism. The amount of passed information or
the effectiveness of this passing is measured by the influence that an indi-
vidual has over her neighbors in the network. In our models, we also try
to take into account that the combined or aggregated influence of a group
of neighbors may be different from the influence that a single individual is
able to exert. Then, we study how this diffusion dynamic in the network
may depend on the diffusion mechanism.

More precisely, this work is organized as follows.

• In chapter 2 and 3 we describe two different types of discrete models of
diffusion in networks, respectively threshold models and cascade mod-
els. The diffusion mechanism is different as well as the ways through
which neighbors’ influence is measured and aggregated. These two
model are shown to be stochastically equivalent. They are also con-
sidered in their progressive and non-progressive versions, meaning that
the nodes remain active forever or may deactivate-activate again and
again; we also describe a way to reduce non-progressive models to
progressive ones.

• Chapter 4 is dedicated to the study of “local” properties: the main
question to answer is: which are “reasonable” ways of aggregating
the influence of the neighbors? First we try to define what influence
aggregation is and then we study its properties by means of well-known
aggregation functions such as t-conorms and co-copulae.

• Finally, in chapter 5 we focus on the diffusion in a network: we con-
sider some “global” properties of the diffusion and show that some
of them are inherited from “local” properties, which have the advan-
tage of being much more tractable with respect to the mathematical
uncontrollability and computational intractability of diffusion in huge
network. In fact, we show that maximizing the diffusion in a network
is a NP-hard problem, but however we describe two algorithms for
approximating the solutions: a greedy algorithm and a Shapley-value
based algorithm.
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Chapter 2

Threshold Models

Among diffusion phenomena in networks, here we focus on those based
on threshold mechanisms. In general, the word “threshold” is used when
the probability for an event to occur changes quickly as some parameter
varies. Although the notions of threshold and phase transition originated
in physics, they now play an important role in many fields of mathematics,
such as probability, statistics, computer science, and in other sciences, such
as economics and social science (see [Zapata, Gauthier, 2003], [Kalai, Safra,
2006]).

In mathematics as well as in other sciences, it is quite easy to find exam-
ples of threshold phenomena. Think, for example, about the logistic equation
used for modeling population growth:

dP

dt
= rP

(
1− P

K

)
,

where P (t) is the population at time t and the constant r defines the growth
rate, while K is the maximal load allowed in the environment. It is not hard
to prove that K represents a threshold, because if the population starts
above it, i.e. P (0) > K, then it decreases and tends asymptotically to
K. Conversely, if P (0) < K, then the behavior is increasing to the same
asymptote.

Another simple example is given by an election between two candidates,
Alice and Bob, where the result is determined by majority and every voter,
independently one from another, votes for Alice with probability p and for
Bob with probability1 1 − p. In this example, a simple application of the
Condorcet’s Jury Theorem, seen as a consequence of the weak law of large
numbers, gives us that the threshold is the probability p = 1/2. When there
are (infinitely) many voters, the probability of Alice winning the election
changes from being close to 0, in case p < 1/2, to being close to 1, in

1No abstention is allowed.
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10 CHAPTER 2. THRESHOLD MODELS

case p > 1/2. Others examples of such behaviors, especially related to
technological transitions, may be founded in [Zeppini et al., 2013].

In this chapter we focus on models of diffusion in networks (see [Prakash
et al., 2012]), where each node has its own threshold, which often is a random
variable that tries to represent the non-exact knowledge of the behavior of
the node. To understand better what we are dealing with, we may use some
examples from [Granovetter, 1978]. Think, for instance, of a riot or a strike:
each person decides to join the strike if enough colleagues have already
joined it. At the same time, each person has a specific threshold, that is
the proportion of colleagues she would have to see joining the strike before
she would do so. One advantage of this approach is that, since thresholds
are “continuous percentages”, this prevents from only classifying people in
radical or conservative, allowing a person to have a “moderate” opinion. On
the other hand, this gradualness does not compromise an individual to make
a choice and so the model to be “decisional”.

Another simple example is the application of such models to diffusion of
technological innovations (see also [Valente, 1995]). Let us consider a situa-
tion in which there are two competitive softwares providing instant messag-
ing services. A person would switch from the old technology to the new one
depending on how many friends are already using the second; more exactly,
only if a certain part of her friends have already chosen it and, in fact, they
are acting as a critical mass to her. Furthermore, not any friend has to have
the same “value” in terms of influence, meaning that possibly there are some
nodes that are “close friends” to whom she sends texts very often, and so
these tend to influence her more than other general acquaintances. Lastly,
notice that not any node has to have the same “threshold”, indeed each
node may have its own threshold depending on the aptitude or inclination
to adopt the new technology. In fact, this is a very well-studied phenomenon
in sociological models for adoption of new technologies, in which people are
categorized in adopter classes, according to their facility to adopt the new
technology.2

These examples show two common ideas, which will be also core ideas
for the models treated in this chapter:

• we have a network where each individual either has to make a (binary)
decision or has to choose between two mutually exclusive alternatives
or one of them;

• this decision is influenced by the neighbors, whose influence accumu-
lates in some way; in addition, there is a threshold mechanism such
that there is a change from an alternative to the other one only if

2See “The diffusion of hybrid seed corn in two Iowa communities (1943)” by Ryan and
Gross, as well as “Technology adoption lifecycle” on Wikipedia.
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there is a number or proportion of influencing neighbors that is great
enough.

Perhaps the most intuitive model which gathers these ideas is the so-
called Linear Threshold Model, which we will extensively study later (see
also [Chen et al., 2010], [Saito et al., 2010]), also pointing out some of what
we think are its bad aspects. In this model, the network is constituted by a
weighted graph, neighbors’ influence is simply summed up and if it exceeds a
certain threshold, then the node is activated or “convinced”; then, this same
node will become an influencing one and it will try to activate its neighbors
in the following time-steps, and so on for every node throughout the whole
network. Besides intuition, further important reasons to analyze and focus
on this specific model are that it is easily generalizable to more complex
models, its applicability to a wide variety of situations, and, finally, its
mathematical treatability and algorithmic results (see also the last chapter).

2.1 General Threshold Model

The General Threshold Model was introduced by [Kempe et al., 2003] as a
generalization of a variety of models that had been already studied, includ-
ing the very well-known Linear Threshold Model proposed by [Granovetter,
1978]. All these discrete diffusion models have in common the same core
idea: for every inactive node in the network, the influence of its neighbors
accumulates in a certain way and has to exceed a node-specific threshold in
order for the node to become active.

Intuitively speaking, the threshold could represent how hard it is to
convince a person to adopt a new technology that a part of her friends
have already adopted. The mechanism by which the influence of a group
on a node is represented is one of the key-features that makes the difference
among different threshold models. This is especially true if one tries to make
a model in which the influence of a group may not be reduced to the mere
sum of the its components.

2.1.1 Network Structure

In the General Threshold Model the network structure is represented by a
directed graph G = (V,E), where V = {1, ..., n} is the set of the nodes and
E ⊆ {(i, j) : i, j ∈ V } is the set of the arcs or edges. Associated to each
node j ∈ V , there are some objects:

• a threshold θj , which is an uniformly distributed random variable in
[0, 1];

• a set of neighbors V j , defined by V j = {i ∈ V : (i, j) ∈ E};
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• a set function f j : 2V
j → [0, 1], called activation function, that

maps every subset S of j’s neighbor set V j to a number f j(S) ∈ [0, 1],
subject to the condition that f j(∅) = 0.

Before starting to describe how the diffusion process actually works,
let us try to understand or interpret the network structure. The set S of
active neighbors of j represents the subset of j’s friends who actually try
to convince her or, in the different context of a contagious disease which
is spreading through the population, it may be read as the subset of ill
friends who could infect j. Now, the way how the influences of the group
S combine together is described by the function f j . Eventually, as already
sketched above and as it will be clearer in what follows, the threshold θj

will represent a measure of j’s propensity to accept the idea or technology
or whatever is the object of interest which is spreading through the network.

Remark 2.1. In many versions of the General Threshold Model, as in the
Linear Threshold Model in the section 2.3.1, the network structure is a
weighted directed graph G = (V,E,W ), where W = {wij}(i,j)∈E is the set of
the influence weights and each wij is in the interval (0, 1] and represents
the amount of influence that the j’s neighbor i ∈ V j exerts over j. The case
wij = 0 is excluded because it would mean that i has no direct influence
over j, meaning that either they are not friend, in which case (i, j) /∈ E, or
i’s influence is irrelevant for j, so it is not taken into account in the model.

In this general approach, the only requirement on the function f j made
by [Kempe et al., 2003] was the monotonicity, although in Conjecture 4.3
in the same paper they also considered functions that were submodular, i.e.
functions f : 2V → R such that

f(S ∪ {i})− f(S) ≥ f(T ∪ {i})− f(T )

for all S ⊆ T ⊆ V and for all i /∈ T , being V any set. In this context, it
is clear that the monotonicity is an intuitive property to require, because
it depicts a situation in which the more people try to influence a node, the
more effective the result is. Concerning the submodularity, it might also
be considered somehow intuitive: in fact, it means that the more people
have tried to influence a node, the less an additional neighbor can make the
difference, which is often referred to as a condition of diminishing returns.
Moreover, this local condition will turn out to be crucial for proving the
above-mentioned conjecture (see [Mossel, Roch, 2007]) and preserving the
global submodularity of the whole process, as we will explain in the last
chapter.

2.1.2 Progressive and Non-progressive Threshold Model

Given the network structure as described above, now we want to specify
the dynamic of the model, that is the diffusion mechanism, which defines
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how the process evolves over time. First of all, the evolution of the process
happens in steps, which means that the time is discrete and always denoted
with the letter t ∈ N. Each step will include some of the basic mechanisms
that compose the entire process.

Before starting to define the actual diffusion process, we need to dis-
tinguish between two substantially different cases: progressive and non-
progressive models. The significant difference is that in the progressive case
a node can only progress from inactivity to activity, while in the other case
going in the opposite direction is allowed as well. This distinction is visible
and clear if we are trying to model a contagious disease which is spreading
through the population: the progressive case corresponds to a disease where
a sick person acquires immunity after the infection, such as the measles,
whereas the opposite case of a flu would be modeled by the non-progressive
one.

Progressive Threshold Model

Let us consider a network structure as described above and let us define
a time-step process associated with it. In every time step, each node has
only two available states: inactive or active. Being a progressive model, the
dynamic for every node may only change from being inactive to active, and
of course this change in the state needs at least one time step to happen.
Once a node becomes active, it will remain so forever.

Formally speaking, let At ⊆ V be the set of nodes that are currently
active at time t and, by construction, the set of inactive nodes at time t is
V \At. The diffusion process evolves as follows:

• the process starts at time t = 0 with a given set A0 ⊆ V of initially
active nodes and with a vector of thresholds θ1, ..., θn, which are chosen
independently and uniformly distributed in [0, 1];

• at each time step t > 0:

– if a node j ∈ At−1 was active in the previous step t − 1, then it
will remain active, so j ∈ At;

– otherwise, given an inactive node j ∈ V \At−1, it will be activated
and then belong to At if

f j
(
(At−1)j

)
≥ θj ,

where (At−1)j denotes3 the set of j’s neighbors who are active
at time t− 1. If the condition is not fulfilled, then j will remain
inactive and belong to V \At;

3Whenever the context is clear, throughout we will use indiscriminately the notations
(At)

j or At∩V j to indicate the set of j’s neighbors that are also active at time t. Clearly,
when the second notation is used, V j ⊆ V indicates the set of j’s neighbors.
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• the process stops when no more activations are possible.

Remark 2.2. Notice that the diffusion process cannot last more than n
steps. In fact, the set sequence {At}t of active nodes at time t is increasing
in t, so there exists a step T ≤ n such that the process stabilizes, which is
exactly when no more activations are possible:

A0 ⊆ A1 ⊆ ... ⊆ AT = AT+1 = ...

Obviously, it does not mean that the steady state has to be the so-called
consensus in the whole network, which means that at the end of the process
there could still be some inactive nodes, whose neighbors were not strong
enough to influence them.

Remark 2.3. Once the random thresholds θ1, ..., θn are established at the
beginning of the process, it then evolves deterministically.

Non-progressive Threshold Model

At first glance, the Non-progressive Threshold Model could seem just a sim-
ple generalization of the progressive case, where the reversibility in the ac-
tivity state of a node is allowed. Indeed, we will show later in section
2.2 that the non-progressive case may be reduced to the progressive one.
However, the non-progressive case opens the door to many questions which
simply might not make sense in the progressive context. This also means
that non-progressive models are generally harder to deal with and this is
well highlighted by comparing the vastness of the literature dedicated to the
study of progressive diffusion models and the scarcity for non-progressive
ones (see, for example [Yang et al., 2014]).

In progressive models, once a node becomes active (or influenced or
infected), it will remain so forever; conversely, in non-progressive models
an active node may become inactive again. This might suggest that such
models are better in situations such as non-monopolistic markets ( [Fazli et
al., 2012]), where the customers can choose between two competing providers
and switch company whenever certain conditions fail to occur: for example,
in the case of instant messaging companies, a customer chooses the service
that the majority of her friend (or her closest friends) has already adopted.

Another fundamental difference between progressive and non-progressive
models is in the initially activated nodes at time t = 0, previously indicated
with A0 ⊆ V . From the point of view of progressive models, it is natural to
think of A0 as a set of seeds from which the process starts; nevertheless, in
the non-progressive case it may happen that some initially activated node
j ∈ A0 immediately deactivates in the following step and this, of course, is
not desirable at all if one is trying to maximize the diffusion in the network
by adequately choosing the nodes in A0. So, in non-progressive contexts,
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another idea of seeding spontaneously comes out: instead of activating all
nodes in A0 at the beginning of the process, each initially selected node
j ∈ A0 has an activation time τj ≥ 0 at which it becomes really active
and so “contagious”. This means that in the non-progressive models is
more common to talk of interventions instead of initially activated nodes,
where, of course, an intervention is defined by selecting a node j ∈ V and its
activation time τj ≥ 0 at the beginning of the process. In particular, notice
that the starting point of a non-progressive process is the set of interventions
instead of the set of initially activated nodes.

Remark 2.4. In the progressive case, if every τj is 0, then the idea of inter-
ventions simply coincides with the original one of initially activated nodes
A0. However, even if the times are τj > 0, if we compare two progressive
processes with the same thresholds θ1, ..., θn, the first (I) being a standard
one starting from A0 and the second (II) being the one with the correspon-
dent interventions with j ∈ A0 at times τj , then the result is that the sets

A
(I)
t and A

(II)
t of active nodes at time t may be different, but the sets of

active nodes at the end of the process R(I) and R(II), i.e. when it stabilizes,
they do coincide.
This may be seen as a special case of the Progressive Threshold Model with
quiescent times, see section 2.3.2, where only the nodes of the interventions
have quiescent times τj > 0, while the other nodes have set τj = 0.

Using a slightly different notation from the previous section, we can now
formally describe the non-progressive process. Let Ãt ⊆ V be the set of
currently active nodes at time t and I = {(j, t) ∈ V × N : t = τj} be the
set of interventions, where the pair (j, t) ∈ I corresponds to activating the
node j at time τj = t. The evolution of the diffusion process is, then:

• at time t = 0 the process starts with a set of interventions I ⊆ V ×N.
If (j, 0) ∈ I, then j ∈ Ã0;

• at time t > 0, every node j ∈ V chooses a threshold θjt randomly from
the interval [0, 1] and independently from the other nodes.

– If (j, t) ∈ I, then the node j is active in the step t, i.e. j ∈ Ãt;
– otherwise, the node j is active in the step t if

f j
(

(Ãt−1)j
)
≥ θjt .

If this inequality is not fulfilled, j /∈ Ãt. (As notation, (Ãt−1)j is
the subset of Ãt−1 constituted by j’s neighbors.)

First of all, notice that in this process every node has to choose its thresh-
old at every step t (possibly with the only exceptions of the nodes that are
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intervening in that step, for which the threshold does not affect their activa-
tion), so there is no relation between the sets Ãt, unlike it happened in the
previous case. Secondly, the process does not end nor stabilizes necessarily:
this naturally originates non-trivial questions about the possible convergence
of the process to a steady state (see [Fazli et al., 2012] and [Grabisch, Rusi-
nowska, 2011]). Furthermore, the same concept of influence of the set A0

cannot be easily generalized and it is not even clear what should be its in-
tuitive meaning; we will see in the next section what is the role of the set
of interventions and that there will be one possible answer by considering a
horizon time T ∈ N and then taking into account the sum of the number of
steps where every node j is has been active.

2.2 Diffusion Function

Diffusion Function in the progressive case

Let us consider the progressive model: given the initial set S ⊆ V and the
thresholds θ1, ..., θn, at the end of the diffusion process we will have the
set of active nodes at termination, say Rθ1,...,θn(S) ⊆ V . We have already
observed that the process evolves deterministically, once the thresholds are
given. On the other hand, if S is fixed, then Rθ1,...,θn(S) is a random variable,
depending on the random thresholds, which indicates the set of active nodes.
So, it is natural to take the average of this random variable, and in particular:

Definition 2.5. The diffusion function of the Progressive General Thresh-
old Model on G is the expected number of active nodes at the end of the
process, i.e.

σ : 2V −→ [0, n] , σ(S) := Eθ1,...,θn [|R(S)|] ,

where S ⊆ V is the set of initially active nodes, R(S) the (random) set of
active nodes at the end of the process and | · | indicates the cardinality of a
set.

Of course, assumptions on the elements constituting the model, such as
what random variables are used as thresholds or what type of function f j

are chosen, have serious repercussions on the function σ(·). Hence, it is
natural to wonder what kind of properties σ has and, possibly, what are the
consequences that a choice on the model has on it.

In [Kempe et al., 2003], motivated by algorithmic reasons related to an
optimization problem called Target Set Selection problem, which we will
consider in the last chapter, the requirements on the model were:

• the thresholds θ1, ..., θn are independent and uniformly distributed in
[0, 1];
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• the functions f1, ..., fn are monotone and submodular.

In particular, the authors managed to prove that in the special case of the
Linear Threshold Model (LT) (see next section 2.3.1), in fact the correspon-
dent diffusion function σLT (·) preserves these properties, i.e. it is monotone
and submodular as well. This naturally leaded the authors to state a conjec-
ture (Conjecture 4.3 in [Kempe et al., 2003]), claiming that every diffusion
model verifying the previous assumptions would have had a diffusion func-
tion σ monotone and submodular.

This conjecture was finally proved in [Mossel, Roch, 2007]. From our
point of view, this is especially important because it proves that some “local”
properties may preserve “globally” under diffusion processes and, since the
global diffusion process is much harder to control than its local elements, this
gives a useful tool to build monotone and submodular progressive diffusion
models. This latter characteristic will be particularly useful because it may
guarantee good properties in terms of optimization and approximation, as
we will see in the last chapter of this work.

2.2.1 Reduction: from Non-progressive to Progressive

So far, we have seen that in case of progressive models, some properties on
the diffusion process can be guaranteed. On the other hand, the situation of
non-progressive models is not as clear as in the progressive one. In fact, it
is not even obvious what may be considered as “influence of a set S” or the
“spread of the initial set S”. In other words, it is not easy to understand how
to generalize the idea used to define σ for the progressive case , since in the
non-progressive model there might not be a proper “end” for the process,
while in the progressive case the process had to unfold and end in at most
n− 1 time steps.

Remark 2.6. As already mentioned, in the literature there are not many
works about non-progressive models, nevertheless in some of them one can
find studies concerning the convergence of the considered stochastic process:
see, for example, [Grabisch, Rusinowska, 2011], [Forster et al. 2012], [Fazli
et al., 2012], [Prakash et al., 2012] and [Ning, 2012].

However, if it is assumed that the non-progressive model can only run
for τ < ∞ steps, then it is possible to reduce this process to an equivalent
progressive model. To do so, let G = (V,E) be the graph of a given non-
progressive model and let τ be fixed. Now, we define a new graph G(τ) =
(V (τ), E(τ)), specifically a layered graph, such that:

• there are τ · (n + 1) vertices V (τ), i.e. the set V is considered to be
copied τ times and we denote these copies by {Vt}0≤t≤τ . Each node
j of G is adequately copied and labeled such that jt ∈ Vt, for all
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0 ≤ t ≤ τ and, so the set of vertices of G(τ) is

V (τ) =
⋃

0≤t≤τ
Vt;

• if there is an edge (i, j) in G (with weight wij > 0), then in G(τ)

there will be an edge (with the same weight) on any (it−1, jt), for all
0 < t ≤ τ . In other words, any node jt ∈ Vt ⊂ G(τ) is connected
precisely with all nodes it−1 ∈ Vt−1 such that (i, j) was an edge in G;

• if the set of interventions is I ⊂ V ×{0, ..., τ}, then the set of initially

active nodes A
(τ)
0 ⊂ V (τ) is defined by: jt ∈ A(τ)

0 , i.e. initially active,
if and only if (j, t) ∈ I;

• the model on G(τ) is progressive.

Remark 2.7. Notice that in the progressive model on G(τ) the dynamics
is quite restricted and the activations may only follow the layered structure
of the graph: since there only are edges from the “level” t − 1, i.e. Vt−1 to
the level Vt, then the node jt is activated in the whole process if and only if
it is activated exactly at time t.

With the construction above, it may be proved that a limited/finite non-
progressive process is equivalent to its progressive equivalent (Theorem 5.1
in [Kempe et al., 2003]), more precisely

Proposition 2.8. A node j ∈ G is active at time t in the non-progressive
general threshold process if and only if jt ∈ G(τ) is activated in the corre-
spondent progressive process.

Remark 2.9. If the graph is weighted G = (V,E,W ), then the reduction to
G(τ) has also to take into account the weights wij ∈W : in order to do so, it
suffices that the every edge (it−1, jt) has the corresponding weight wij > 0.

Diffusion Function in the non-progressive case

We already observed that in the non-progressive case it is not possible to
imitate what we have done for the progressive case in order to get a diffusion
function, because the non-progressive process is not necessarily finite and
does not necessarily stabilize.

Even so, if we take a finite time horizon τ then we may consider the
diffusion function σ(τ) associated to the associated progressive model G(τ)

as defined above and simply define it as the diffusion function corresponding
to the non-progressive process, when limited to τ .

Definition 2.10. The diffusion function for the Non-Progressive Thresh-
old Model on G and a time horizon τ ∈ N is, by definition, the diffusion
function σ(τ) associated to the reduced progressive model on G(τ).
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It is worth trying to understand what σ(τ) represents for the original
non-progressive model:

• with the notations used in the previous sections, let Ãt be the set of
active nodes at time t, with 0 ≤ t ≤ τ , of the non-progressive model
in G;

• analogously, let

A
(τ)
0 ⊆ A(τ)

1 ⊆ ... ⊆ A(τ)
τ ⊆ V,

be the sets of active nodes at time t of the progressive process G(τ).

Notice that the set A
(τ)
t contains, by definition, all nodes of G(τ) that

are active at time t, which also comprises nodes of the previous layers
V0, ..., Vt−1 of the layered graph G(τ).

By definition, the set of reachable nodes at the end of the process in G(τ) is

the random variable R
(
A

(τ)
0

)
= A

(τ)
τ and the expectation of its cardinality

is the diffusion function

σ(τ)(A0) = E
[∣∣∣R(A(τ)

τ

)∣∣∣] .
Proposition 2.8 tells us that the node v ∈ Ãt is active at time t if and only

if vt is activated at time t, i.e. vt ∈ A(τ)
t \A

(τ)
t−1, so we may write4

R
(
A

(τ)
0

)
= A(τ)

τ = A
(τ)
0 t

(
A

(τ)
1 \A

(τ)
0

)
t ... t

(
A(τ)
τ \A

(τ)
τ−1

)
,

then, taking the cardinality∣∣∣R(A(τ)
0

)∣∣∣ =
∣∣∣A(τ)

0

∣∣∣+
∣∣∣A(τ)

1 \A
(τ)
0

∣∣∣+ ...+
∣∣∣A(τ)

τ \A
(τ)
τ−1

∣∣∣ .
This means that the diffusion function σ(τ) considered in the non-progressive
case counts the (expected number of) times that every single node has been
active.

2.3 Special Cases

2.3.1 Linear Threshold Model

The Linear Threshold Model is perhaps the easiest and most intuitive ex-
ample of threshold model: neighbors’ influence weights are simply summed
up and a node becomes active if this sum exceeds its threshold. Its extreme
treatability and versatility explains why it is one of the most widely studied
models, since its introduction by [Granovetter, 1978]. Indeed, in the semi-
nal work by [Kempe et al., 2003] the results about the submodularity of the

4Remind that A
(τ)
0 = Ã0, by construction.
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diffusion process (and with that approximability) were only proved for the
Linear Threshold Model and not for the General Threshold Model. Also,
it is extensively used in practical experiments and simulations as well as in
many variations on the basic models (see [Pathak et al., 2010]).

Formally speaking, let the network structure be a directed weighted
graph G = (V,E,W ) and let us assume that for every node j it holds
that ∑

i∈V j
wij ≤ 1,

where wij is the influence of i over j and V j ⊂ V is the set of j’s neighbors,
as usual. Now, the Linear Threshold Model derives from the general one,
when the functions f j are defined by

f j(S ∩ V j) =
∑

i∈S∩V j
wij ,

where S is any subset of V , so as S ∩ V j is the subset of S consisting of j’s
neighbors. Having said this, the diffusion mechanism and process remain
the same as in the General Threshold Model, in the progressive case as well
as in the non-progressive one.

Despite all the above mentioned advantages, the Linear Threshold Model
has an obvious limitation: it can only be applied when the restriction∑
wij ≤ 1 stands, which means that it cannot be used with any kind of

network. Although it might seem just a normalization condition, it implies
an unpleasant (and possibly unrealistic) consequence: if the node j has a
lot of friends, then they necessarily have to to have little weights in order
for the sum to stay below 1.

Another disadvantage is that it could be even too easy to activate/convince
a node, since that by using the sum, it is quite easy to saturate and to reach
the upper limit 1. For example, if the node j had only two friends and
both were active and had an influence weight of 0.5, even if their individual
influence is not too high, they would manage to activate j regardless of the
threshold θj ≤ 1, since the sum is 1. These and other properties will be
better analyzed in detail in the chapter dedicated to Influence Aggregation
Models.

2.3.2 Progressive Threshold Model with quiescent times

This model is a generalization of the standard progressive threshold model
with the addition of a waiting time τj for every node j ∈ V . More precisely,
the process evolves in the same way, with the exception that if a node j is
activated at time t, it will effectively become active at time t + τj . Note
that in the case τj = 0 for all j ∈ V , then this is the original progressive
threshold model.
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Perhaps surprisingly, the two diffusion models are in fact equivalent, as
proved in [Kempe et al., 2005].

Proposition 2.11. Let be R(w)(S) the distribution5 of active nodes at the
end of a general progressive threshold model with waiting times τj, with
j ∈ V , when S ⊆ V is the set of initially active nodes. Then it is the same
of R(S), which is the distribution of the general progressive threshold where
no waiting time is allowed.

From this proposition, it follows that the diffusion function σ(·) is the
same and, in particular, it will verify the same properties, such as mono-
tonicity and submodularity.

2.3.3 Competitive Influence Threshold Models

A natural extension for diffusion processes in network is a competitive set-
ting, where there are two (or more) competitive technologies in the network
that are trying to spread. Even though this might seem an intuitive general-
ization, in this environment is not hard to find examples and models where
the diffusion function σ(·) is not submodular nor even monotone, as it may
be seen in [Borodin et al., 2010].

More precisely, the framework is the following: in a weighted network
G = (V,E,W ), let IA ⊆ V and IB ⊆ V be the initial adopters of the two
different (and competing) technologies A and B; each node j in the network
may be A-active, B-active or inactive. The diffusion function σIB (IA) tries
to capture what is the diffusion of the technology A in presence of B.

Weight-Proportional Competitive Linear Threshold Model The
first model is a generalization of the Linear Threshold Model and it is pro-
gressive and happens in discrete steps, as usual, and also it has the same
limitation on the total weight over a node j, i.e.

∑
i∈V j wij ≤ 1. Using the

notation At and Bt for indicating respectively the A-active and B-active
nodes at time t, the diffusion process unfolds as follows:

• at time t = 0, let A0 = IA, B0 = IB be the sets of initially active
nodes and θ1, ..., θn the node-specific thresholds;

• at time t > 0:

– if a node j ∈ At−1 was A-active, it will remain so in the current
step: j ∈ At. Analogously, if j ∈ Bt−1 then j ∈ Bt;

– if a node j /∈ At−1 ∪ Bt−1 was inactive, then it will activate in
the current step if the weight of its active neighbors (no matter

5For ease of notation, here we omit the dependence on the thresholds θ1, ..., θn.
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if A-active or B-active) exceeds its threshold θj , i.e.∑
i∈(At−1∪Bt−1)∩V j

wij ≥ θj .

Otherwise, j remains inactive, i.e. j /∈ At ∪Bt. Now, once j has
been activated, then it will become A-active with probability

P{j ∈ At| j /∈ At−1 ∪Bt−1} =

∑
i∈At−1∩V j wij∑

i∈(At−1∪Bt−1)∩V j wij
,

which corresponds to the proportion of j’s active neighbors that
are A-active. Otherwise, j will become B-active.

This model coincides with the usual Linear Threshold Model with single
technology when IB = ∅. So, the Target Set Selection6 for this problem is at
least hard as in the case of the Linear Threshold Model, which means that
it is NP-hard, as we will see in the last chapter. Furthermore, it is possible
to find instances of this process whose diffusion functions are not monotone
or not submodular. Roughly speaking, it is worth noting that in this model,
since both A-active and B-active nodes contribute in the activation of other
nodes, it may indeed happen that the increase of B-active nodes will make
possible more activations but then these newly activated nodes will be A-
active.

Separated-Threshold Model for Competing Technologies In the
previous model, a node became active regardless the actual type of activity
(A-active or B-active) of its neighbors. So, a natural extension is: what if
each node has different sensibilities with respect to the different technologies
and the influence of a neighbor changes if the technology her is currently
supporting is different?

More formally, in this case the network G = (V,E,WA,WB) comprises
two different weights for each edge wAij and wBij , and every node j has two

(random) thresholds θjA, θ
j
B ∈ [0, 1]. The diffusion mechanism is quite similar

to the previous models:

• at time t = 0, it starts with the initially active nodes IA, IB respectively
and with the assignment of the thresholds θjA, θ

j
B for every node j ∈ V ;

• at time t > 0, being a progressive model, any A-active (respectively
B-active) node will remain so in the following time steps. An inactive
node j will become A-active if∑

i∈At−1∩V j
wAij ≥ θ

j
A,

6Also called Top-k Set Selection Problem.



2.3. SPECIAL CASES 23

and analogously B-active if the same condition holds for B-active
nodes. In case j is both A-activated and B-activated, then a ran-
dom choice (either a coin-flip or any tie-breaking function) will decide
if j ∈ At or j ∈ Bt.

It can be proved (see [Borodin et al., 2010]) that this process is monotone,
in contrast with the previous model, and this follows from the fact that here
only A-activations contribute to further A-activations and the same happens
with B-activations. However, there exist instances of this diffusion process
that are not submodular.
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Chapter 3

Cascade models

In the previous chapter, we described models of diffusion where the influence
of a group of neighbors over a node was measured and fixed, while the prob-
abilistic part of the process was given by a random node-specific threshold,
which represented the node’s sensitivity with respect to the idea that was
spreading or its propensity to become active. Of course, this was justified
because we tried to model a non-exact knowledge of each node’s sensitivity.

Perhaps a more intuitive approach is the one used to define Cascade
Models: in such models, the influence of a neighbor (as well as a group of
neighbors) over a node is directly given in terms of probability of activation.
For example, let us consider the example of a contagious disease which is
spreading through a population: it is intuitive to think that the more two
people are friends and spend time together, the more the probability that
the infection passes from one to the other increases.

In particular, in some models such as the Independent Cascade Model,
the weights of the edges in the network graph are directly connected to the
activation probability of each node. Although this might seem more intuitive
and even more reasonable, managing different probabilities has to be done
carefully: this will be especially clear later, when we will need the so-called
order-independence hypothesis in order for the General Cascade Model to
be well-defined.

For this reason, we think that the exposition of this chapter will be
clearer if organized in the opposite way with respect to the previous one:
first, we will define the Independent Cascade Model, which is conceptually
the simplest one, but allows us to explain almost all the main ideas that
will be used in more general models, which will be described after. The
last section of the chapter will be dedicated to make an equivalence between
the General Threshold Model and the General Cascade Model. The main
references for this chapter are [Kempe et al., 2003], [Kempe et al., 2005];
others will be explicitly included in the text.

25
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3.1 Independent Cascade Model

As already mentioned, the Independent Cascade Model is, with no doubt,
the simplest one as well as one of the most studied and used in many appli-
cations (see, for example, [Kimura et al., 2009], [Saito et al., 2010]) among
all cascade models and, despite its clear limitations, is very useful to capture
the main ideas that lie at the core of most of them. Roughly speaking, in
this model when a node i becomes active, it has a single chance to acti-
vate each currently inactive neighbor j and i succeeds with probability pij ,
independently from the other events in the process.

The network structure for the Independent Cascade Model is a weighted
directed graph G = (V,E,W ), where V = {1, ..., n} is the set of nodes,
E ⊆ V × V is the set of edges and W = {pij ∈ [0, 1] : (i, j) ∈ E} is the
set of activation weights. Since there are no others objects or entities (such
as thresholds) related to the structure, it is slightly simpler than the one
used for threshold models, nevertheless some assumptions will be needed
to specify exactly the dynamics of the process (also depending on if it is
progressive or non-progressive).

3.1.1 Progressive Independent Cascade Model

First of all, let us precisely define some hypotheses about the activation
mechanism of the model:

• when a node i ∈ V becomes active, say at time t, then it has a single
chance to activate each currently inactive neighbor j, i.e. no multiple
attempts are allowed and, also, the nodes are only temporarily
contagious for 1 time step. This means that once a node has made
all its attempts, being contagious, it becomes non-contagious but still
remains active;

• this activation successfully happens with probability pij , indepen-
dently of all other events, in particular from other neighbors’ at-
tempts. vice versa, with probability 1 − pij the node i fails in its
(unique) attempt;

• in case more than one node can try to activate the same node, the
order in which they will make their attempts is random.

We use the same notations of the previous chapter, i.e. At ⊆ V indicates
the set of all active nodes at time t ≥ 0 and Sj = S ∩ V j is the subset of S
constituted by j’s neighbors. It is worth noticing that At \At−1 is the set of
contagious nodes (or recently activated nodes) at time t.1 Having said

1As convention, the initially active nodes coincide with the (initially) contagious ones,
i.e. A−1 := ∅.
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this, it is possible now to define the evolution of the Progressive Independent
Cascade Model :

• the process starts with a given set A0 ⊆ V of initially contagious/active
nodes;

• at any time t ≥ 0, let i be a contagious node, i.e. i ∈ At \At−1. Given
an inactive neighbor j, that is j ∈ V i and j /∈ At, it will be successfully
activated (and, so, become contagious in the next step) by i with a
probability pij , in which case it will hold that j ∈ At+1;

• the process ends when there are no more contagious nodes.

It is worth noticing that the Progressive (General) Threshold Model ends
in at most n − 1 steps, while this model does it in at most n steps. This
little difference is due to the fact that here in the step t it is said which are
the nodes that will become active in the following step t + 1, whereas in
the threshold model the active nodes at time t were established in the same
step t. In other words, it only depends on the definition of each single step
in the two processes and, indeed, the step in the cascade model is from the
point of view of an already active node; on the other hand, the step in the
threshold model is defined from the point of view of an inactive node.

Apart from this difference, both processes share the same step-by-step-
diffusion idea and, hence, both lead to the same definition of influence of
a given initial active set S, i.e. the diffusion function σ(S). In particular,
as every progressive model, the sets of active nodes constitute a monotone
sequence

A0 ⊆ A1 ⊆ ... ⊆ An+1 ⊆ V

and all of them are subsets of the finite set V . Now, let A0 = S be the set
of initially active nodes and, associated to it, let us consider the random
variable R(S), which is given by the set of active nodes at the end of the
process. Taking the average of the cardinality of R gives us the definition of
diffusion function

σ(S) = E [|R(S)|] ,

which is the expected number of active nodes at the end of the process, when
the initial active set is S. The Independent Cascade Model was among
the first models where the submodularity of the diffusion function could be
proved in [Kempe et al., 2003].

Proposition 3.1. Given an arbitrary instance of the Independent Cascade
Model, the resulting diffusion function σ(·) is monotone and submodular.

Remark 3.2. As it happened for the Progressive Threshold Model, there
is a procedure to “convert” the Progressive Independent Cascade in a deter-
ministic process. Precisely, we start with a set S = A0 and, at the beginning
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of the process, we flip a coin with probability pij , for each edge (i, j) ∈ E,
to establish if the edge (i, j) is live or not. Somehow surprisingly, the set of
nodes that are reachable via live-edge paths, starting from the nodes in S,
coincides with the set of active nodes at the end of the process R(S), when
the activation probabilities have given the same results as the flipping coins
(specifically, see Claim 2.3 in [Kempe et al., 2003]). We will use this same
reasoning in the last chapter.

3.1.2 Non-progressive Independent Cascade Model

As every non-progressive model, this also will allow the nodes to switch
from inactivity to activity and vice versa. Another analogy with the non-
progressive case seen in the first chapter is in the set of interventions I ⊂
V × N, which is used instead of the set of initially active nodes, where
(j, t) ∈ I if and only if the node j is activated at time τj = t, by definition.

The Non-progressive Independent Cascade behaves exactly as its pro-
gressive correspondent, but here the key idea is that, at each time step, an
active node j has a probability βj of becoming inactive: in other words, ev-
ery active node j has a probability of 1−βj =: pjj of activating itself in the
following step, and if it fails and its active neighbors fail as well, then it will
deactivate in the following step. As above, j’s neighbors have probabilities
pij to activate it independently one from another and from the other events.
Again, in case of multiple active neighbors, they will try to activate j in a
random order. Besides, concerning multiple activation attempts from the
same neighbor, as in the progressive model they are not allowed in a single
time step; of course, being a non-progressive model, when a node j changes
repeatedly from being inactive to active, each time it becomes active again,
it has another (single) chance of activating its currently inactive neighbors
and, so, multiple attempts in diverse steps are allowed, in this broader sense.
Lastly, notice that here the concept of contagious node is the same as ac-
tive node, since every active node is considered recently activated and so
contagious, indeed.

Using the notation of Ãt for the set of currently active nodes at time
t, the non-progressive process of the Independent Cascade Model may be
described according to the following steps:

• it starts with a set of given interventions I ⊂ V × N;

• at each step t ≥ 0, given any node j ∈ V , then:

– if (j, t) ∈ I, then the node j is forced to become active at time t,
so j ∈ At;

– otherwise:

∗ if j /∈ Ãt is inactive, each j’s currently active neighbor i ∈
Ãt ∩ V j has a probability pij of succeeding in the attempt of
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activating it, independently from the attempts of the other
neighbors. If at least one attempt is successful, then j will
become active in the following step, i.e. j ∈ Ãt+1;

∗ if j ∈ Ãt is currently active, the set of attempting nodes is
the union of the previous one and j itself, that is(

Ãt ∩ V j
)
∪ {j}.

Therefore, as before, j ∈ Ãt+1 will remain active in the next
step t + 1 if either a node i ∈ Ãt ∩ V j successfully activate
it, which occurs with probability pij , or j itself does not
deactivate, and that happens with a probability of pjj =
1 − βj . If none of the previous events succeed, then j will

become inactive, that is j /∈ Ãt+1.

As already noticed in the previous chapter, the fundamental difference
between progressive models and non-progressive ones, in terms of diffusion
process, is that in the latter the sequence of subsets of active nodes {Ãt}t is
not monotone and, in fact, is not necessarily finite (nor convergent whatso-
ever).

Remark 3.3. If the set of active nodes at time t is Ãt, the probability that
a node j ∈ V becomes active in one step is:

P{j ∈ Ãt+1 | Ãt} = 1−
∏

i∈Ãt∩V j
(1− pij),

where j is not necessarily in Ãt nor out of it. It is worth noticing that this
probability only depends on the currently active nodes i ∈ Ãt considered
as a set and not as a sequence/vector, i.e. the order does not matter. This
feature will be somehow kept even in more general models.
Besides, because of this, one can easily see that a non-progressive model
can be written as a (time-homogeneous) Markov chain, while in a progres-
sive model the “future” closely depends on the “past” and not only on the
“present”.

3.1.3 Reduction: from Non-progressive to Progressive

Similarly to what was done in the previous chapter for the reduction from
a non-progressive (and finite) threshold process to a progressive one, here it
is possible to follow the same approach.

Now, given the structure of a non-progressive independent cascade G =
(V,E,W ) and given a finite time horizon τ ∈ N, let us define a layered graph
associated to it G(τ) = (V (τ), E(τ),W (τ)), such that:

• each j ∈ V has a copy jt ∈ Vt, for all 0 ≤ t ≤ τ ; so, V (τ) =
⋃
t≤τ Vt;
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• if (i, j) is an edge in G, then in G(τ) there will be an edge (it−1, jt),
for all 0 < t ≤ τ , with the same weight (probability) pij ;

• since any weight βj in G is associated to a “virtual” edge from j to j
itself with weight pjj in G, then, in G(τ), it will correspond to an edge
(jt−1, jt) from j at time t− 1 to j in the following time step;

• the interventions I in G correspond to setting as initial set A
(τ)
0 the

nodes jt ∈ V (τ) such that (j, t) ∈ I.

With this construction, a non-progressive independent cascade process
on G is equivalent to a progressive independent cascade on Gτ .

Proposition 3.4. A node j ∈ G is active at time t in the non-progressive
cascade threshold process if and only if jt ∈ G(τ) is activated in the corre-
spondent progressive process.

3.2 General Cascade Model

As the name suggests, the General Cascade Model is a generalization of
the Independent Cascade Model in which, in particular, we want to take
into account that the influence of a single person over another one may
be different from the influence of an entire group of people, which means
that we do not have necessarily to reduce a group to the mere sum of its
components, as if they were acting independently. This model was firstly
introduced in [Kempe et al., 2003], but more extensively studied only later
in [Kempe et al., 2005]. The fundamental idea behind the General Cascade
Model is that when a node i tries to activate a node j, its capacity of influence
depends on how many people have already tried (and failed) in activating j.
This means that we can model, for example, situations in which the more
people try to activate j, the less a single additional node can succeed in
doing it or vice versa, and this could be the case of a market that tends to
become saturated and, so, nodes’ propensity to be activated changes over
time.

Progressive General Cascade Model As the Progressive Independent
Cascade Model, here it is assumed that active nodes are contagious immedi-
ately after their activation, whereas later they become non-contagious but
still remain active. However, the main change in this model is that the hy-
pothesis concerning the independence of the attempts from different nodes
is removed.

More formally, given an inactive node j and a contagious neighbor i,
we define pj(i;S) as the probability that i succeeds in activating j, when
S is the set of j’s active neighbors that have already tried and failed their
attempt so far. By using the same notations as for progressive models, such
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as At ⊆ V for the subset of active nodes at time t, then S is a subset of At
and, in particular, it comprises both non-contagious nodes, i.e. active nodes
from previous steps, as well as currently contagious ones. This is indeed a
generalization of the Independent Cascade Model, which is obtained when
pj(i;S) = pij , for all i, j ∈ V and S ⊆ V , are taken constant and independent
from the history of the process.

Recall that in the independent model, when multiple contagious nodes
tried to activate j, their attempts were sequenced randomly. Here, in order
for the model to be well-defined, it is necessary to understand that this
approach may not be followed directly. For example, in principle, it is not
clear nor obvious how the order of the elements of the set S changes (or
should change) the probability pj(i;S). To solve this problem, it suffices to
assume the order-independence hypothesis, which states that this order
does not affect the probability of j to become active in the end. Precisely:

• let U ⊆ V j be a set of contagious nodes that are trying to influence
j ∈ V and let u1, ..., ur and uπ(1), ..., uπ(r) be two permutations of the
elements of U ;

• the hypothesis is that for any set T ⊆ V disjoint from U , representing
the non-contagious nodes that have already attempted, it holds that

r∏
k=1

(1− pj(uk;T ∪ {u1, ..., uk−1})) =

=

r∏
k=1

(
1− pj

(
uπ(k);T ∪ {uπ(1), ..., uπ(k−1)}

))
, (3.1)

where {u0} = {uπ(0)} = ∅ as convention.

Remark 3.5. It is easy to interpret this hypothesis and see that the above
expression represents what we needed: since the probability that uk fails
in activating j when T and u1, ..., uk−1 have already tried (in this order) is
1 − pj(uk;T ∪ {u1, ..., uk−1}), then the probability that at least one of the
contagious nodes u1, ..., ur succeeds in its attempt to activate j is exactly
given by

1−
r∏

k=1

(1− pj(uk;T ∪ {u1, ..., uk−1}).

In addition, the importance of the order-independence hypothesis will be
even clearer because it will allow an equivalence between threshold and
cascade models (see next section 3.3).

Having said this, the process of the Progressive General Cascade Model
evolves as usual:

• it starts with a set of initially active nodes A0 at time t = 0;
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• at time t > 0, let j /∈ At be an inactive node and

– let U = V j ∩ (At \ At−1) be the set of its currently contagious
neighbors and let us indicate its elements with U = {u1, ..., ur};

– let T = V j ∩ At−1 be the set of j’s neighbors that have already
tried to activate it, up to the step t− 1;

– for k = 1, ..., r, the node uk tries to activate j and succeeds with
a probability pj(uk;T ∪{u1, ..., uk−1}), being u1, ..., uk−1 the cur-
rently contagious nodes that have already failed in their attempt
and T the non-contagious ones that had tried and failed in pre-
vious time steps.

• the process ends when there are no more contagious nodes.

Remark 3.6. Considering only contagious nodes being the actual influenc-
ing nodes, instead of generally active ones, seems to be a clear limitation
for these models, which is present in the Independent Cascade as well as the
General Cascade. This might be especially true if one tries to focus more
on a “cumulative effect” of a whole influencing group. The point of view
of cascade models is, instead, to capture the behavior of single nodes as
part of bigger or more complex structures. Despite this intuition, it will be
possible to prove (see next section 3.3) that cascade models are equivalent
to threshold models, where the focus on “cumulative effect” is evident.

Non-progressive General Cascade Model With this model, we aim
to generalize the Non-progressive Independent Cascade Model in the same
way we have just done for the progressive model, meaning that we want
to include correlations among the attempts made by different active nodes
in the framework of the non-progressive cascade. Therefore, being a non-
progressive model, here every active node has a probability of becoming
inactive and every inactive node may be activated by its neighbors at every
time step. In practice, there is no difference between being active and con-
tagious, i.e. all active nodes are considered contagious. In other words, in
case a node remains active many times over consecutively, we will consider
that it has been activated in each one of these time step. However, at every
time step, each active node j has a probability of βj to become inactive,
which is considered to be a probability of j to auto-deactivate itself, that is
to say that pjj = 1− βj .

Concerning the correlation among the attempts of different neighbors,
here the situation is slightly simpler with respect to the above progressive
model, since in a non-progressive model each time step may be considered
almost separately from the others. As above, the probability that an active
node i succeeds in activating its currently inactive neighbor j is pj(i;S),
where S indicates the set of nodes that have already tried to activate j.
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Notice the difference between this model and the progressive one: here S
may only contain contagious (= active) nodes, while in the progressive model
S could include nodes that had tried in previous time-steps. With the usual
notations for non-progressive models, being Ãt ⊆ V the set of active nodes
at time t, we have S ⊆ Ãt. Lastly, here the order-independence hypothesis
may be weakened, since only currently contagious nodes are considered to
affect the activation probability. Hence, we only need the (weak) order-
independence hypothesis:

r∏
k=1

(1− pj(uk; {u1, ..., uk−1})) =

r∏
k=1

(1− pj(uπ(k); {uπ(1), ..., uπ(k−1)})

for all j ∈ V and for all permutation uπ(1), ..., uπ(r) of the r elements u1, ..., ur
that are trying to activate j. Notice that the (strong) order-independence
hypothesis 3.1 of the previous section implies the weak version by taking
T = ∅.

The formal evolution of the process is straightforward:

• the process starts with a set Ã0 ⊆ V of initially activated nodes;

• at time t ≥ 0, given a generic node j ∈ V , it will be active at time
t+ 1 if there exists an active neighbor i ∈ At∩V j , i.e. a neighbor that
is active in the current time step t, that succeeds in activating j. This
will successfully happen with a probability pj(i;S), where S ⊆ At∩V j

indicates the set of nodes that have already attempted.

Remark 3.7. In analogy to what already done for the Independent Cascade
Model and the General Threshold Model, it is possible to reduce a finite
non-progressive process to an equivalent progressive one and this operation
would connect the diffusion functions σ and σ(τ) of both processes and their
properties, such as monotonicity and submodularity, in particular.

3.3 Cascade-Threshold Equivalence

In [Kempe et al., 2003] and [Kempe et al., 2005] the authors show an equiva-
lence existing between the Progressive General Cascade and the Progressive
General Threshold Model. More specifically, they showed that given a cas-
cade model, it is possible to make a threshold model such that the probability
that a node j is activated at time t in the cascade model is the same as that
one of j being activated in the equivalent threshold model, and vice versa.

Hereafter in this section, let us consider a Progressive General Cascade
Model on a network G = (V,E) with activation probabilities pj(i;S), for
i, j ∈ V and S ⊆ V . Analogously, on the same network G let f j(S), with
j ∈ V and S ⊆ V , be the activation function associated to a Progressive
General Threshold Model.
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Definition 3.8. Two models Progressive Cascade and Progressive Threshold
on the network G are called equivalent if, for any set of nodes T ⊆ V and
time t ≥ 0, the probability that T is the set of active nodes at time t is the
same in both processes.

We want to give now a method by which it is possible to construct
an equivalent model, starting from a given one. First, let us start with
the probabilities pj(i;S) of a given cascade model. In order to define a
threshold model, given an inactive node j ∈ V and a set of active neighbors
S = {u1, ..., ur}, we need to define the correspondent activation function
fj(S), and to do so we make the following choice

f j(S) := 1−
r∏

k=1

(1− pj(uk; {u1, ..., uk−1})). (3.2)

It is worth noticing that the function f j(·) is well-defined because the order-
independence hypothesis on the probabilities pj(·; ·) guarantees that they
depend only on the set S = {u1, ..., ur} and not on the order of the elements
u1, ..., ur.

Before verifying the equivalence, let us make the converse procedure:
starting from the functions f j(S) of a progressive threshold, we define the
probabilities

pj(i;S) :=
f j(S ∪ {i})− f j(S)

1− f j(S)
(3.3)

for any S ⊆ V j and i /∈ S.

Lemma 3.9. If the function f j is defined by the probability pj via (3.2),
then pj verifies (3.3), and vice versa.

The Lemma 1 of [Kempe et al., 2005] may be written as follows:

Lemma 3.10. Given a Progressive Cascade Model and a Progressive Thresh-
old Model where, respectively, the probabilities pj verify (3.3) and the acti-
vation functions f j verify (3.2), then: for any time t ≥ 0 and any sets
T, T ′ ⊆ V , the probability that exactly the nodes of T are active at time t
and those of T ′ are active at time t+ 1 is the same under both processes.

Corollary 3.11 (Cascade-Threshold Equivalence).
If the Cascade model and the Threshold model satisfy (3.3) and (3.2), re-
spectively, then they are equivalent.

Remark 3.12. Concerning non-progressive models, the equivalence is quite
easy to prove when both have the same time horizon τ < ∞. In this case,
one may reduce both non-progressive processes to their progressive corre-
spondent in the layered graph G(τ) and then apply the previous corollary.



Chapter 4

Influence Aggregation
Models

In the previous two chapters we have considered a network and focused on
“global” models which are processes involving the whole structure. Here, we
take a more “local” point of view: in particular, we focus on a single node
in the network and try to understand how this node aggregates the influence
of its neighbors.

In order to understand what we exactly mean by aggregation influence
and to formalize our intuitive idea of it, we make a list of “reasonable” or
“desirable” properties, that we expect an influence aggregation function to
satisfy. Then we study the relations among these properties and this leads
us to consider some aggregation functions called t-conorms and co-copulas.
This aggregators were introduced in Fuzzy Logic and Probability : when Karl
Menger in 1942 proposed a probabilistic generalization of the concept of
metric space by substituting the distance d(a, b) with a distribution function
Fab, whose value Fab(x) is the probability that the distance between a and
b is less than x, one of the first difficulties was the generalization of the
triangular inequality. This was the birth of the triangular norms (or t-
norms). On the other hand, (co)-copulas are used to define parametric
measures of dependence between random variables. In the very different
context of Fuzzy Logic, which is a special type of many-valued logic, t-norms
and t-conorms are used as generalization of the usual and-∧ and or-∨ binary
operators of the “classical” true-false logic.

Finally, in the last section we show how starting from a “reasonable”
way of aggregating influences leads to a “local” aggregation in a network
context, by means of the activation functions introduced in the context
of threshold models. In particular, we show how two of the “desirable”
properties, monotonicity and submodularity, may pass from an influence
aggregation function to its correspondent activation function.

35
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4.1 Preliminaries

In this section we point out some introductive definitions, properties and
concepts which will be vastly used in the rest of the chapter.

4.1.1 The role of the Associativity

Since the situations we are dealing with include n ≥ 2 friends/neighbors,
then it will be natural to work with multivariate functions. However, we
want an adequately elastic framework that allows us to change between
having two friends or n > 2 friends, without meeting particular problems.
The key property, in this context, is the associativity, thus defined (only)
for a bivariate function:

Definition 4.1. Given a function1 F : [0, 1]2 → [0, 1], it is called associa-
tive if

F (F (a, b), c) = F (a, F (b, c)), ∀ a, b, c ∈ [0, 1].

Notice that this is a property that we want for our aggregation function,
mainly for two reasons: first of all, intuitively speaking it describes the
situation in which I have already accumulated the influence of two friends
when another one shows up, but we do not want the order of appearance
to matter. In other words, we want that accumulating opinions of three
people is the same that first accumulating the opinions of two and, after,
another one. Second, the associativity allows us to define easily a k-variate
functions, simply by iteration as we see here:

Definition 4.2. Given a bivariate function F : [0, 1]2 → [0, 1], we define its
multivariate iterations as

F (k)(x1, ..., xk) := F (F (...F (F (x1, x2), x3), ..., xk−1), xk), ∀ k ≥ 2,

for all x1, ..., xk ∈ [0, 1]. Equivalently, the definition may be written induc-
tively as:

F (k)(x1, ..., xk) = F (2)
(
F (k−1)(x1, ..., xk−1), xk

)
, F (2) = F.

Throughout, whenever the context is clear, we will use indiscriminately the
notation F or F (2).

As we will see later, this definition will have the great advantage that all
properties we define for a bivariate function will extend to its multivariate
versions. As notation, throughout we use F to denote the bivariate function
F (2) and F (k) for its k-variate iteration.

1Notice that here the use of functions with domain in [0, 1] is just for ease of writing.
Obviously, the only condition that one needs is that F : A × B → C is such that C is a
subset of A ∩B, whichever sets are A,B,C.
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4.1.2 Submodularity

Submodularity is an important property required in the context of spread in
networks, as we will see in the last chapter of this work. Similarly, here, we
will see that it is important when you are thinking more locally, focusing on a
single node of the network. Let us recall now the definition of submodularity
for a set function.

Definition 4.3. Given a set Ω, a set function f : 2Ω → R is called sub-
modular if

f(S ∪ {ω})− f(S) ≥ f(T ∪ {ω})− f(T )

for all S ⊆ T ⊆ Ω and ω ∈ Ω \ T .

The idea is very intuitive: the bigger a set is, the less the marginal
contribution that a new member can add is. It is known that this definition
is equivalent to:

f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T )

for all S, T ⊆ Ω. The latter definition is less immediate, but it makes clear
why and how it is possible to extend the idea of submodularity for vector
functions.

Definition 4.4. A function F : Rn → R is called submodular if for all
x,y ∈ Rn

(SubM) F (x ∧ y) + F (x ∨ y) ≤ F (x) + F (y),

where ∧ and ∨ are the min and max taken by components.

In case of regular functions, there is an equivalent notion for the sub-
modularity, which is more useful in an operational context. For references,
check [Milgrom, Roberts, 1990].

Lemma 4.5 (Topkis’ Characterization Theorem).
Let F : Rn → R be a twice differentiable function. Then F is submodular if
and only if

∂2F

∂xi∂xj
(x) ≤ 0

for all x ∈ Rn and i 6= j.2

2There are no restrictions on ∂2F
∂x2i

.
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4.1.3 Aggregation Functions and T-conorms

Aggregation functions are the very main objects of this chapter; in partic-
ular, we will focus on particular examples of aggregation functions called
t-conorms, by means of which we want to model a cumulative behavior of
aggregating influences. For general references about aggregation functions,
one may check [Beliakov et al., 2008], while for more specific references about
t-conorms, [Klement et al., 2000] may be used.

Definition 4.6. An aggregation function is a function f : [0, 1]n → [0, 1]
with the properties:

(BCs) boundary conditions: f(0, ..., 0) = 0 and f(1, ..., 1) = 1;

(Mon) monotonicity: if x ≤ y then f(x) ≤ f(y), where the order ≤ in
[0, 1]n is defined by components, i.e. x ≤ y if and only if xi ≤ yi, for
all i = 1, ..., n.

Definition 4.7. An aggregation function f is called disjunctive if for all
x ∈ [0, 1]n it is bounded by:

(Disj) f(x) ≥ max(x) = max{x1, ..., xn}.

Definition 4.8. A triangular conorm (or simply t-conorm3) is a binary
function S : [0, 1] × [0, 1] → [0, 1] which verifies the following properties for
all a, b, c ∈ [0, 1]:

(Sym) symmetry/commutativity: S(a, b) = S(b, a);

(Assoc) associativity: S(S(a, b), c) = S(a, S(b, c));

(Mon) monotonicity: S(a, b) ≤ S(a, c), whenever b ≤ c;

(Neut) 0 is neutral element: S(a, 0) = a.4

Example 4.9. The geometric mean is an aggregation function

f(x) = n
√
x1...xn,

which is not disjunctive. Any weighted arithmetic mean, with weights w1, ..., wn ∈
[0, 1] such that

∑
wi = 1, is an aggregation function

f(x) =

n∑
i=1

wixi

which is neither symmetric nor disjunctive. In fact, usually means are not
disjunctive, since they are bounded between their minimum and their max-
imum.

3Some texts use the notation s-norm for these functions.
4Definition 4.4 may be further generalized by using in the same formula a t-norm and

its dual t-conorm, respectively, instead of the min and the max.
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Example 4.10. The function f : [0, 1]2 → [0, 1] defined by

f(x1, x2) = 1− (1− x1)(1− x2)2

is a disjunctive aggregation function which is not a t-conorm, since it does
not verify the symmetry (Sym).

Example 4.11. The following are often considered the basic t-conorms, for
all a, b ∈ [0, 1]2 defined by:

• the maximum: Smax(a, b) = max{a, b};

• the probabilistic sum: Sprob(a, b) = a+ b− ab;

• the Lukasiewicz t-conorm: SLuk(a, b) = min{a+ b, 1};

• the drastic t-conorm

Sdr(a, b) =

{
1 if (a, b) ∈]0, 1]2,
max{a, b} otherwise.

Remark 4.12.

• A t-conorm is a binary operation S = ∗, therefore, it is possible to
consider the pair ([0, 1], ∗) as a semigroup.

• The monotonicity (Mon) is given in its minimal form, since a t-conorm
is monotone in both components due to the commutativity (Sym).

• The boundary condition (BC) is also given in its minimal form. In
fact, all t-conorms satisfy these additional boundary conditions which
follow directly from the properties in the definition:

(Neut) S(0, t) = t,

(Ann) S(1, t) = S(t, 1) = 1,

for all t ∈ [0, 1].

• As already observed above, the associativity of a t-conorm guarantees
that it is possible to extend a bivariate t-conorm to a n-ary operation
by induction. Whenever we do so, we will use the notation S(k) for
the k-variate function iteratively defined by

S(k)(x1, ..., xk) = S(2)
(
S(k−1)(x1, ..., xk−1), xk

)
, ∀x1, ..., xk ∈ [0, 1],

based on the (bivariate) t-conorm S(2)(·, ·).

Some of the most studied t-conorms are Archimedean and continuous,
mostly because for these it is possible to make a useful and detailed repre-
sentation in terms of simpler generators.
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Definition 4.13. A t-conorm S is called Archimedean if

(Arch) ∀ a, b ∈ (0, 1), ∃ k ∈ N : S(k)(a, ..., a) > b.

A t-conorm S is called continuous if it is continuous in every point of
[0, 1]2, with respect to the Euclidean topology of R2 and R.5

Lemma 4.14. A t-conorm verifies (Arch) if and only if it has the Limit
Property, which is defined by:

(Lim) lim
k→∞

S(k)(a, ..., a) = 1, ∀ a ∈]0, 1[;

Remark 4.15. Among the prototypical examples of t-conorm given above,
only the probabilistic sum and the Lukasiewicz t-conorm are both continuous
and Archimedean. The maximum is continuous but it is not Archimedean,
since it cannot satisfy (Lim); conversely, the drastic sum is Archimedean
but not continuous. In particular, this shows that continuity is independent
of the Archimedean property (and Limit property, as well).

In order to write the representation theorem, first we need to introduce
the concept of pseudo-inverse of a monotone function, which has a particu-
larly easy form and can be divided further in two subcases for non-increasing
and non-decreasing functions giving the following definition, respectively:

Definition 4.16 (Pseudo-inverse of a monotone function).
Given a non-constant non-increasing function ϕ : [0, 1]→ [0, 1], its pseudo-
inverse is the function ϕ(−1) : [0, 1]→ [0, 1] defined by

ϕ(−1)(z) = sup{x ∈ [0, 1] : ϕ(x) > z}, ∀ z ∈ [0, 1].

Given a non-constant non-decreasing function ψ : [0, 1]→ [0,∞], its pseudo-
inverse is the function ψ(−1) : [0,∞]→ [0, 1] defined by

ψ(−1)(z) = inf{x ∈ [0,∞] : ψ(x) > z}, ∀ z ∈ [0,∞].

Lemma 4.17 (Representation of continuous Archimedean t-conorms).
For a function S : [0, 1]2 → [0, 1], the following are equivalent:

1. S is a continuous Archimedean t-conorm;

2. S has a multiplicative generator, i.e. there exists a function ϕ :
[0, 1] → [0, 1], which is uniquely determined up to a positive constant
exponent, such that:

• ϕ is continuous and strictly decreasing;

5Obviously, being the t-conorms defined on the compact sets [0, 1]2 and [0, 1], the
continuity is equivalent to the uniform continuity.



4.1. PRELIMINARIES 41

• ϕ(0) = 1;

• it holds

S(a, b) = ϕ(−1)(ϕ(a) · ϕ(b)), ∀ (a, b) ∈ [0, 1]2;

3. S has an additive generator, i.e. there exists a function ψ : [0, 1]→
[0,+∞] which is uniquely determined up to a positive multiplicative
constant such that:

• ψ is continuous and strictly increasing;

• ψ(0) = 0;

• it holds

S(a, b) = ψ(−1)(ψ(a) + ψ(b)) ∀ (a, b) ∈ [0, 1]2.

Notice that the lemma states that a function S(·, ·) defined as above is
necessarily a t-conorm and, in addition, it is continuous and Archimedean.
For precise references, check the section 5.2 of [Klement et al., 2000].

Remark 4.18. Some basic properties of the pseudo-inverse function are
summarized as follows in the case of a multiplicative generator:

• ϕ(−1) : [0, 1]→ [0, 1] is non-increasing, continuous;

• ϕ(−1)|[0,ϕ(1)] ≡ 1 and ϕ(−1) is strictly decreasing in [ϕ(1), 1];

• ϕ(−1)(1) = 0;

•
(
ϕ(−1)

)(−1)
= ϕ if and only if ϕ(1) = 0.

For an additive generator the properties are basically the same, with the

only exception of the last one, which becomes:
(
ψ(−1)

)(−1)
= ψ if and only

if ψ(1) = +∞.
Recall that in this case ψ(−1) is a so-called proper function, because
it takes values in the extended real semi-line [0,+∞] and it is such that
ψ(−1)(x) < +∞ for at least one x ∈ [0,∞[.

Remark 4.19. The relation between multiplicative and additive generators
is expressed by the formulas

ϕ(x) = exp(−ψ(x)), ψ(x) = − logϕ(x), ∀x ∈ [0, 1]

Example 4.20. The function ϕprob : [0, 1]→ [0, 1], defined by

ϕprob(x) = 1− x,

is a multiplicative generator of the probabilistic t-conorm Sprob, which is
continuous and Archimedean. In fact, since ϕprob is a bijection, then its
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pseudo-inverse coincides with its inverse, which coincides with ϕprob itself,

i.e. ϕ
(−1)
prob (x) = ϕ−1

prob(x) = ϕprob(x) = 1− x. So, it is easy to check that

ϕ
(−1)
prob [ϕprob(x) · ϕprob(y)] = 1− (1− x)(1− y) = x+ y − xy = Sprob(x, y).

Example 4.21. The functions ψLuk(x) = x and ϕLuk(x) = exp(−x) are
respectively an additive and a multiplicative generator for the Lukasiewicz
t-conorm SLuk. Notice that, in particular:

ϕ
(−1)
Luk (y) =

{
1 for x ∈ [0, 1/e]
− log(y) for x ∈ [1/e, 1].

The generators also help when one tries to extend a bivariate t-conorm
to a k-ary function, by associativity. Indeed, from Lemma 4.4.1 of [Alsina
et al., 2006], we get:

Lemma 4.22. If S is a continuous and Archimedean t-conorm additively
generated by ψ : [0, 1]→ [0,∞], then

S(k)(x1, ..., xk) = ψ(−1)(ψ(x1) + ...+ ψ(xk))

for all k ≥ 2 and x1, ..., xk ∈ [0, 1].

Remark 4.23 (Duality t-norms/t-conorms).
In the literature, it is more common to talk about t-norms, which are ag-
gregation functions that are dual to t-conorms in the following sense: given
a t-conorm S(x, y), its dual t-norm is T : [0, 1]2 → [0, 1], often indicated
by T = S∗, defined by

T (x, y) := 1− S(1− x, 1− y), ∀ (x, y) ∈ [0, 1]2.

Almost all of the results for t-norms may become, by duality, results for
their dual t-conorms and this technique will be extensively used in the whole
chapter. For example, if S is a t-conorm which has an additive generator
s : [0, 1] → [0,∞], then its dual t-norm T has an additive generator t,
meaning that

• t : [0, 1] → [0,∞] is continuous, strictly decreasing and such that
t(1) = 0;

• for all (x, y) ∈ [0, 1]2, it holds

T (x, y) = t−1(t(x) + t(y)).

Moreover, the duality between S and T replicates on the respective genera-
tors by means of the following relation:

t(x) = s(1− x), ∀x ∈ [0, 1].
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4.2 Influence Aggregation Functions

This long section is organized as follows: in order to understand what we
mean by influence aggregation, first we make a list of “reasonable” or “de-
sirable” properties. Then we study the relations that exist among them and
this will lead us to the concept of t-conorm. We study some properties of
t-conorms and define an influence aggregation function as a particular type
of t-conorm, with a particular focus on submodular t-conorms. Finally, we
describe a family of influence aggregation functions which allows us to some-
how “gradually” move between the two most important t-conorms that we
will consider, i.e. the probabilistic Sprob and the Lukasiewicz SLuk.

4.2.1 Properties of Influence Aggregation or “What is Influ-
ence Aggregation?”

We all have an intuitive idea of influence that an agent has on another
one, and an idea of the mechanism by which influences of many agents tend
to aggregate together. In order to understand what we exactly mean by
influence aggregation and to avoid the vagueness that the intuition may
have, the first and natural approach for a mathematician is to try to figure
out what properties this vague idea has. A fundamental step in this direction
is the translation of these intuitive properties into mathematical language.
For example, our ideal concept of influence aggregation verifies that the
more influencing agents we have, the higher the total influence should be;
clearly, this mathematically will be represented by a sort of monotonicity.

In what follows, we try to translate these intuitive properties and de-
scribe them in a formal way. Then, we study how they link together, trying
to point out the relations and implications existing among those properties.
The result of this process will be the definition of influence aggregation func-
tion, which will only gather the essential and minimal properties, avoiding
redundances.

The first step, so, is to make a list of properties that we imagine to be
satisfied by the intuitive mechanism of influence aggregation when we are in
the following situation: we consider (up to) n agents all influencing a fixed
one, where the influence of a single agent is represented by a number in [0, 1].
In particular, not only we will have to study how to aggregate k ≤ n given
influences, but also we will want our framework to be enough elastic to deal
with the possible addition of further agents to those k already considered.
In other words, we will also study what happens when we pass from k to
k + 1 influencing agents.

(Dom) Because we have k ≤ n numbers in [0, 1] representing the influence
of each agent, and the result of the aggregation of those numbers, i.e.
the total influence, is another number in [0, 1], it is natural to consider
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some functions F (k) : [0, 1]k → [0, 1] as objective of our study, whose
domains are the sets [0, 1]k respectively.

(BC) In case we have no influencing agent, the total influence has to be 0,
i.e. it holds the boundary condition

F (k)(0, ..., 0︸ ︷︷ ︸
k times

) = 0,

for every k ≤ n.

(Mon) The more influence weight each agent has, the higher has to be the
result of the aggregation of all influences, i.e. we want each F (k) to
satisfy the monotonicity: for all k ≤ n

F (k)(x1, ..., xk) ≤ F (k)(y1, ..., yk),

if xi ≤ yi for all i = 1, ..., k.

(Assoc) The order through which we aggregate the various influences does
not matter and, in particular, we may either choose to aggregate k
influences and then add another one or directly aggregate k + 1 in-
fluences, obtaining the same outcome. Formally, this is what we call
associativity:

F (k+1)(x1, ..., xk+1) = F (2)
(
F (k)(x1, ..., xk), xk+1

)
for all 2 ≤ k ≤ n− 1 and x1, ..., xk+1 ∈ [0, 1].

(Neut) If we have only one influencing agent, there has to be no modifi-
cation in the total influence, i.e. 0 is the neutral element for every
F (k):

F (k)(0, ..., 0, xi, 0, ..., 0) = xi

for all k ≤ n, i = 1, ..., k and xi ∈ [0, 1].

(Ann) If we have (at least) a guru among the influencing agents, i.e. an
agent with an influence equal to 1, then the total influence is 1 regard-
less the influences of other agents, i.e. 1 is the annihilator for every
F (k):

F (k)(x1, ..., xi−1, 1, xi+1, ..., xk) = 1,

for all k ≤ n and x1, ..., xk ∈ [0, 1], regardless of the position of the 1.

(Sym) The calculation of the total influence only has to take into account
the influence weights of the agents, i.e. the strength of their tie, and
not their name. In other words, each agent only matters for the amount
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of its influence, which is often called anonymity. Mathematically, this
is represented by the symmetry or commutativity of every F (k):

F (k)
(
xπ(1), ..., xπ(k)

)
= F (k)(x1, ..., xk),

for all k ≤ n, any permutation π of k elements and x1, ..., xk ∈ [0, 1].

(Cont) The aggregation of influences has to be gradual, in other words,
little variations in the inputs correspond to a little variation in the
output, i.e. the functions F (k) have to be continuous in all point
(x1, ..., xk) ∈ [0, 1]k. Formally, for all k ≤ n, for all (x1, ..., xk) ∈ [0, 1]k

and ε > 0, there exists an open neighborhood Iε(x1, ..., xk) ⊂ [0, 1]k of
(x1, ..., xk) such that

F (k)(y1, ..., yk) ∈
(
F (k)(x1, ..., xk)− ε, F (k)(x1, ..., xk) + ε

)
,

whenever (y1, ..., yk) ∈ Iε(x1, ..., xk).

(Disj) Since we are considering an accumulation of influences, we want
that the result of aggregating various influences has to be greater than
each single influence; hence, the aggregation has to have a disjunctive
behavior:

F (k)(x1, ..., xk) ≥ max{x1, ...xk},

for all k ≤ n and x1, ..., xk ∈ [0, 1].

(Card) If we are aggregating k influences and then another agent shows
up, the passage from k to k+ 1 influences has to positively contribute
in increasing the total influence, no matter how little is the influence of
the new agent. This means that we want the mechanism of aggregation
to verify what we call cardinal strict monotonicity: for all x ∈
[0, 1]k such that F (k)(x) < 1, it holds

F (k)(x) < F (k+1)(x, ε), ∀ 2 ≤ k ≤ n− 1, ∀ ε ∈ (0, 1].

(WSM) We have already considered the monotonicity (Mon), but we also
want to take into account that even a small enhancement in the in-
fluence weight of a single agent matters, in case, of course, the total
influence has not already reached its maximum value of 1. This means
that every F (k) has to satisfy what we call weak strict monotonic-
ity:6

F (k)(x) < F (k)(y), whenever x � y and F (k)(x) < 1,

where (x1, ..., xk) � (y1, ..., yk) indicates that xi ≤ yi for all compo-
nents but there exists at least one index j such that xj < yj .

6The adjective “weak” is due to the fact that after we will consider strict t-conorms
and a concept of “strong” monotonicity. Compare the definition 4.43.
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(SubM) Another property emerges when we take a careful look at the con-
tribution of a single agent to the total influence. It may be intuitive
to consider that, in situations where influences are put together, the
passage from two influencing agents to three has to be different from
the passage from 1000 to 1001 influencing agents, if the added agent
is the same. More precisely, we imagine that in the first situation the
change is bigger than the second one. In other words, we focus on the
so-called marginal contributions of each agent, and we want them to
be decreasing. As already observed in the first section of this chapter
4.1.2, this property is mathematically represented by the submodu-
larity of every F (k), defined by:

F (k)(x ∧ y) + F (k)(x ∨ y) ≤ F (k)(x) + F (k)(y), ∀x,y ∈ [0, 1]k

where ∧ and ∨ indicates the min and max taken by components, i.e.
x∧y = (min{x1, y1}, ...,min{xk, yk}) ∈ [0, 1]k and analogously x∨y ∈
[0, 1]k.

(NSat) The last property will be somehow optional, which means that it
may be either considered or not depending on the aggregation model
that one wants to consider. It concerns the possibility to reach the
full influenceability only in presence of (at least) an agent that acts
as a guru. This may be described by what we call non-saturation
property of any F (k):

F (k)(x1, ..., xk) = 1 =⇒ ∃ i ∈ {1, ..., k} : xi = 1,

for all k ≤ n and (x1, ..., xk) ∈ [0, 1]k.

4.2.2 From binary to n-ary functions

Now that we have defined the properties that we will study and deal with,
the situation is the following: our framework comprises some functions
F (2), ..., F (n) and some properties, which may be categorized in two different
classes, the first including characteristics of each single F (k) separately, the
second linking together the functions as part of the same “family”, such as
(Assoc) or (Card). The advantage of using this kind of structure is that
it is enough elastic and adaptable to deal “homogenously” and “uniformly”
with different situations, where we have from two to n influencing agents.
Nevertheless, the clear disadvantages of this approach are that we have to
clarify how these functions are related, i.e. what we really mean with “ho-
mogenously” and “uniformly”, and that every property should be studied
for each one of the F (k).

However, these problems are solved by the following proposition, which
tells us that if we define the functions F (k) by associativity, starting from a
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given bivariate F (2) as shown in the section 4.1.1, and if this F (2) has the
above properties, then all these extend automatically to any other F (3), ..., F (n).
This, in particular, tells us that in order to study the properties in the list
above, the only thing that we need to do is studying them just for F (2), as
long as the family {F (2), ..., F (n)} is defined by associativity (Assoc).

Proposition 4.24. Let F (2) : [0, 1]2 → [0, 1] be a bivariate function satis-
fying (BC), (Mon), (Assoc), (Neut), (Ann), (Sym), (Cont), (Disj),
(WSM), (SubM) and (NSat) and let F (3), ..., F (n) be defined iteratively
by associativity

F (k) : [0, 1]k −→ [0, 1]

F (k)(x1, ..., xk) = F (2)
(
F (k−1)(x1, ..., xk−1), xk

)
.

Then each function F (k) has the above-mentioned properties (BC), (Mon),
(Neut), (Ann), (Sym), (Cont), (Disj), (WSM), (SubM), (NSat) and,
in addition, the whole family

{
F (2), ..., F (n)

}
verifies (Assoc) and (Card).

Proof. Most parts of the proof are made by induction, where the hypothesis
on F (2) is the base case.

(BC) The assumption that F (2) verifies (BC) is the first step of the in-
ductive proof. Then, it follows from the definition and the inductive
hypothesis on F (k−1) that:

F (k)(0, ..., 0) = F (2)
(
F (k−1)(0, ..., 0), 0

)
= F (2)(0, 0) = 0.

(Neut) Using the same technique, let us assume the property for F (2) and
F (k−1). Now, if 1 ≤ i ≤ k − 1, then

F (k)(0, ..., 0, xi, 0, ..., 0) = F (2)
(
F (k−1)(0, ..., 0, xi, 0, ..., 0), 0

)
=

= F (2)(xi, 0) = xi.

Otherwise, if i = k, then, using (BC),

F (k)(0, ..., 0, xk) = F (2)
(
F (k−1)(0, ..., 0), xk

)
= F (2)(0, xk) = xk.

Clearly, an alternative proof may be simply made assuming the sym-
metry (Sym).

(Ann) Proceeding exactly as in the previous step one gets either

F (k)(x1, ..., xi−1, 1, xi+1, ..., xk) =

= F (2)
(
F (k−1)(x1, ..., xi−1, 1, xi+1, ..., xk−1), xk

)
=

= F (2)(1, xk) = 1,

or F (k)(x1, ..., xk−1, 1) = F (2)
(
F (k)(x1, ..., xk−1), 1

)
= 1.
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(Sym) For k = 3 it follows straightforward from the symmetry of F (2),
indeed

F (3)(a, b, c) = F (2)(F (2)(a, b), c) = F (2)(F (2)(b, a), c) = F (3)(b, a, c)

and analogously it may be done in the other similar cases. For k ≥ 3
in general, noting that any permutation of k elements may be written
as product of 2-cycles, this implies that it is suffices to use the associa-
tivity (Assoc), in order to group together the elements two by two,
and then to apply the symmetry (Sym) for pairs of elements.

(Mon) Given (x, x′) ≤ (y, y′) ∈ [0, 1]k, where x,y ∈ [0, 1]k−1 and x′, y′ ∈
[0, 1], then using that F (2) and F (k−1) verify (Mon) and applying
induction, one gets:

F (k)(x, x′) = F (2)
(
F (k−1)(x), x′

)
≤ F (2)

(
F (k−1)(y), x′

)
≤

≤ F (2)
(
F (k−1)(y), y′

)
= F (k)

(
y, y′

)
.

(Disj) The disjunctivity, in general, is implied by (Mon) and (Neut).
Indeed, given x ∈ [0, 1]k, let us set x = max{x1, ..., xk}. Then

F (k)(x) ≥ F (k)(0, ..., 0, x, 0, ..., 0) = x = max{x1, ..., xk}.

However, the property may be easily verified by induction as follows:

F (k+1)(x1, ..., xk+1) = F (2)
(
F (k)(x1, ..., xk), xk+1

)
≥

≥ max
{
F (k)(x1, ..., xk), xk+1

}
≥

max{max{x1, ..., xk}, xk+1} = max{x1, ..., xk+1}.

(Cont) It is known7 that the continuity for monotone k-variate functions
[0, 1]k → [0, 1] is equivalent to the continuity in each component.
Hence, in our case it is suffices to use the continuity of F (2) and F (k−1)

to obtain the continuity of F (k).

(WSM) Let us consider x, y ∈ [0, 1]k such that x � y and F (k)(x) < 1.
Without loss of generality, it may be assumed that{

x1 < y1

xi ≤ yi, ∀ i = 2, ..., k.

Now, first of all, this assumption that we have just made implies two
things:

7See, for example, Lemma 2.1.2 of [Alsina et al., 2006]: Any function which is contin-
uous and non-decreasing in each component is jointly continuous.
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• (x1, ..., xk−1) � (y1, ..., yk−1);

• F (k−1)(x1, ..., xk−1) < 1; otherwise, if it were not true, then it
would hold that F (k)(x1, ..., xk) = F (2)

(
F (k−1)(x1, ..., xk−1), xk

)
=

F (2)(1, xk) = 1, because of (BC).

In addition, due to the inductive hypothesis it holds true that

F (k−1)(x1, ..., xk−1) < F (k−1)(y1, ..., yk−1).

Consequently, one has that(
F (k−1)(x1, ..., xk), xk

)
�
(
F (k−1)(y1, ..., yk), yk

)
and then

F (2)
(
F (k−1)(x1, ..., xk), xk

)
≡ F (k)(x) < 1,

which follows from the definition and from one hypothesis. Finally:

F (k)(x) = F
(
F (k−1)(x1, ..., xk), xk

)
<

< F
(
F (k−1)(y1, ..., yk), yk

)
= F (k)(y),

which is what we needed.

(SubM) Concerning the submodularity, see next section.

(NSat) As usual, the proof is inductive: F (2) satisfies the property and let
us assume that so does F (k−1). Now, if F (k)(x1, ..., xk) = 1, then using
the definition one gets

1 = F (k)(x1, ..., xk) = F (2)
(
F (k−1)(x1, ..., xk−1), xk

)
which implies either F (k−1)(x1, ..., xk−1) = 1 or xk = 1. In the first
case, from the inductive hypothesis on F (k−1), we deduce that there
exists 1 ≤ i ≤ k − 1 such that xi = 1, which implies the thesis; while
in the latter case, it is directly proved.

(Assoc) The associativity simply follows from the construction.

(Card) In this step, we do not use induction. It suffices to use the proper-
ties (WSM) and (Neut) of F (2): take x ∈ [0, 1]k such that F (k)(x) <
1 and ε ∈]0, 1]; then

F (k+1)(x, ε) = F (2)
(
F (k)(x), ε

)
> F (2)

(
F (k)(x), 0

)
= F (k)(x).
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Submodularity: from binary to n-ary functions

A very useful concept related to the submodularity is given by the following
definition and lemma.

Definition 4.25. Given F : [0, 1]n → [0, 1], ξ ∈ [0, 1]n, ij ∈ {1, ..., n}, for
all j = 1, ..., k, such that i1 ≤ ... ≤ ik, then the k-dimensional section of
F is the k-ary function F(ξ,(i1,...,ik)) : [0, 1]k → [0, 1], defined by

F(ξ,(i1,...,ik))(z) = F (x), ∀ z ∈ [0, 1]k,

where x ∈ [0, 1]n is such that

xi =

{
zj , if ∃ j : i = ij ,
ξi, otherwise.

Definition 4.26. A (binary) function g : R2 → R has decreasing differ-
ences if for all b ≤ b′ ∈ R the function

R −→ R
t 7−→ g(t, b′)− g(t, b)

is decreasing (in t).

Lemma 4.27. An n-ary function F : Rn → R has decreasing differences
if any 2-dimensional section of F has decreasing differences, i.e. for every
x ∈ Rn and different indexes i, j = 1, ..., n, any function of two variables
Fx,(i,j) : R2 → R defined by

Fx,(i,j)(a, b) = F (x1, ..., xi−1, a, xi+1, ..., xj−1, b, xj+1, ..., xn),

has decreasing differences.

For references about the lemma below, see the Proposition 2.3 in [Manzi,
2010] for the first part and the section 2.3 of [Simchi-Levi et al., 2005] for
the second.

Lemma 4.28.

1. An n-ary function G : [0, 1]n → [0, 1] is submodular if and only if its
2-dimensional sections are submodular.

2. G : Rn → R is submodular if and only if it has decreasing differences.

Proposition 4.29. Let F (2) : [0, 1]2 → [0, 1] be a bivariate function which
is symmetric (Sym), associative (Assoc) and monotone (Mon), and let
its multivariate iterations F (k) : [0, 1]k → [0, 1] for k = 3, ..., n be defined
by associativity. Then if F (2) verifies submodularity (SubM), so does every
F (k).
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Proof. By the symmetry of F (k) and the second part of the previous lemma,
it suffices to verify that, fixed a vector ξ ∈ [0, 1]k−2, the function

Gξ(a, b) := F (k)(a, b, ξ1, ..., ξk−2) = F (2)
(
F (2)(a, b), F (k−2)(ξ)

)
has decreasing differences. So, it has to be proven that given b ≤ b′ and
t ≤ t′, it holds

Gξ(t′, b′)−Gξ(t′, b) ≤ Gξ(t, b′)−Gξ(t, b)

which corresponds to

F (2)
(
F (2)(t′, b′), A

)
− F (2)

(
F (2)(t′, b), A

)
≤

≤ F (2)
(
F (2)(t, b′), A

)
− F (2)

(
F (2)(t, b), A

)
,

where, for ease of notation, we have defined A := F (k−2)(ξ). Now, using the
properties of associativity, we can replace the expression above with

F (3)
(
t′, b′, A

)
− F (3)

(
t′, b, A

)
≤ F (3)

(
t, b′, A

)
− F (3) (t, b, A)

and, eventually, by using the definition of F (3):

F (2)
(
t′, F (2)(b′, A)

)
− F (2)

(
t′, F (2)(b, A)

)
≤

≤ F (2)
(
t, F (2)(b′, A)

)
− F (2)

(
t, F (2)(b, A)

)
.

The last inequality follows from (Mon) and the hypothesis, which guaran-
tees that F (2) has decreasing differences.

Alternative proof. Defined Gξ(a, b) as above, the inequality to be proven
may be written as follows

F (2)
(
F (2)(t′, b′), F (k−2)(ξ)

)
− F (2)

(
F (2)(t′, b), F (k−2)(ξ)

)
≤

≤ F (2)
(
F (2)(t, b′), F (k−2)(ξ)

)
− F (2)

(
F (2)(t, b), F (k−2)(ξ)

)
which can be re-written, by associativity, in the following form

F (2)
(
t′, F (k−1)(b′, ξ)

)
− F (2)

(
t′, F (k−1)(b, ξ)

)
≤

≤ F (2)
(
t, F (k−1)(b′, ξ)

)
− F (2)

(
t, F (k−1)(b, ξ)

)
.

Now, in order to prove the last inequality, one only needs to observe that,
since b ≤ b′, we have F (k−1)(b′, ξ) ≥ F (k−1)(b, ξ) by the monotonicity of
F (k−1), and finally that it has been assumed t ≤ t′, so the inequality is the
mere application of the decreasing differences of F (2).

Remark 4.30. It is worth noticing that the situation of the above proposi-
tion is much more intricate if one does not assume the associativity and the
symmetry of F : see [Manzi, 2009].
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4.2.3 Relations among the properties of Influence Aggrega-
tion

Having made a list of properties, what we want to do now is trying to un-
derstand what relations exist among them. Once we realize which of them
implies the others and which are independent of the others, then it will be
possible to make a list of the minimal or essential properties, which will
constitute the basis for the formal definition of Influence Aggregation Func-
tion (see Corollary 4.63). As already observed before, thanks to Proposition
4.24, in order to fully study the implications among the properties of the
previous section, it suffices to study them just for the bivariate function
F (2) = F .8

Remark 4.31. Because of the symmetry (Sym), some properties of F may
be rewritten only considering the first component, such as:

(Neut) F (x, 0) = x for all x ∈ [0, 1].

(Ann) F (x, 1) = 1 for all x ∈ [0, 1].

(Mon) F (x, y) ≤ F (x, z) for all x, y, z ∈ [0, 1] such that y ≤ z.

Remark 4.32. As already mentioned in the preliminary section 4.1.3, a
function F : [0, 1]2 → [0, 1] exactly verifying (Mon), (Neut), (Sym) and
(Assoc) is called t-conorm. In addition, any such a function necessarily
satisfies:

• (Bc), which directly follows from (Neut): F (0, 0) = 0;

• (Disj), which follows from (Mon) and (Neut): F (x, y) ≥ F (max{x, y}, 0) =
max{x, y};

• (Ann), which follows from (Disj) and, so, from (Mon) and (Neut)
as well: F (x, 1) ≥ max{x, 1} = 1.

To summarize:

t-conorm =⇒ (Mon), (Neut) =⇒


(Bc)

(Disj) =⇒ (Ann).

On the other hand, the opposite direction is somehow illustrated by the
following result, which is the Lemma 2.1.13 of [Alsina et al., 2006].

Lemma 4.33. If F : [0, 1]2 → [0, 1] verifies (Bc), (Assoc), (Ann) and
(Cont), then it also satisfies (Mon) and (Neut).

8Throughout, whenever the context is clear, we use both notations F and F (2) indis-
criminately.
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It is not hard to check that the properties that define a t-conorm are
independent from each other:

Lemma 4.34. Consider the properties (Mon), (Neut), (Sym) and (As-
soc). There exist functions G : [0, 1]2 → [0, 1] that satisfy only three of them
and do not satisfy the remaining one.

Proof. Let us define the functions Gi : [0, 1]2 → [0, 1] for i = 1, 2, 3, 4 such
that:

G1(x, y) =

{
1/2 if (x, y) ∈]0, 1[2,
max{x, y} otherwise;

G2(x, y) ≡ 1;

G3(x, y) =

{
1 if (x, y) ∈ [0, 1/2]× [0, 1[,
max{x, y} otherwise;

G4(x, y) = 1− (1− x)(1− y)[1−min{x, y}].

It holds that Gi does not verify (Mon), (Neut), (Sym) and (Assoc),
respectively for i = 1, 2, 3, 4. However, each Gi satisfies the remaining three
properties.

In the next proposition, we verify that the rest of “desirable” properties
from the list of the section 4.2.1 is independent of the ones which define a
t-conorm.

Lemma 4.35. The properties defining a t-conorm (Mon), (Neut), (Sym)
and (Assoc) are independent of (Cont), (Card), (WSM), (SubM) and
(NSat).

Proof. We base this proof on showing some examples of t-conorms (from
the preliminary section) which do or do not verify the properties in the
statement.

(Cont) The drastic t-conorm Sdr is not continuous, while so is the proba-
bilistic Sprob.

(Card) The maximum Smax does not verify the property, while the Lukasiewicz
t-conorm SLuk does. To prove that, we first need to write the k-ary
iteration of both, which are quite immediate to find:

S(k)
max(x1, ..., xk) = max{x1, ..., xk},

S
(k)
Luk(x1, ..., xk) = min

{
1,

k∑
i=1

xi

}
.

Now, it is obvious that S
(k)
max(1/2, ..., 1/2) = 1/2 = S

(k+1)
max (1/2, ..., 1/2);

whereas, for any ε ∈]0, 1] and any x ∈ [0, 1]k such that S
(k)
Luk(x) < 1,

it holds that

S
(k)
Luk(x, ε) = min{1, x1 + ...+ xk + ε} > x1 + ...+ xk = S

(k)
Luk(x).
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(WSM) Obviously, the maximum Smax does not verify this property, since
Smax(1/2, 1/2) = 1/2 = Smax(1/2, 0), despite that (1/2, 1/2) > (1/2, 0).
On the other hand, SLuk verifies it: thanks to (Sym), without loss of
generality we can assume (x1, y1) < (x2, y2) with x1 ≤ x2 but y1 < y2

and both SLuk(x1, y1), SLuk(x2, y2) < 1. Then, by definition

SLuk(x1, y1) = x1 + y1 < x2 + y2 = SLuk(x2, y2).

(SubM) The drastic Sdr is not submodular: for example, by taking two
vectors (x, 0), (0, y), with x, y > 0 such that x + y < 1, one gets that
(x, 0) ∨ (0, y) = (x, y) and (x, 0) ∧ (0, y) = (0, 0) and so:

Sdr((x, 0) ∨ (0, y)) + Sdr((x, 0) ∧ (0, y)) = 1 + 0 >

> x+ y = Sdr(x, 0) + Sdr(0, y).

On the other hand, for the smooth Sprob ∈ C2 one can easily dif-
ferentiate twice, use the Topkis’ Theorem 4.5 and see that Sprob is
submodular:

•
∂Sprob
∂x

(x, y) =
∂

∂x
[1− (1− x)(1− y)] = 1− y,

•
∂2Sprob
∂x∂y

(x, y) = −1 ≤ 0.

(NSat) The Lukasiewicz t-conorm SLuk obviously does not verify the prop-
erty, since SLuk(1/2, 1/2) = min{1, 1/2 + 1/2} = 1, whereas the prob-
abilistic Sprob(x, y) = 1− (1− x)(1− y) is such that Sprob(x, y) = 1 if
and only if x = 1 or y = 1.

By checking accurately the previous proof, one may see that we have
proved something stronger than what is in the statement, in particular:

Corollary 4.36. A continuous t-conorm does not necessarily satisfy neither
(Card), nor (WSM), nor (NSat).

Proof. It suffices to notice that Smax is a continuous t-conorms which does
not verify the required properties.

Now that we are trying to find the relations that exist among the “desir-
able” properties, we want to show an example in order to prove that there
exists (at least) one function which indeed satisfies all of them.

Example 4.37. A first (and fundamental) example of function verifying all
the “desirable” properties of the section 4.2.1 is the probabilistic t-conorm

Sprob : [0, 1]2 → [0, 1], Sprob(x, y) := x+ y − xy.

From the proof above, it follows that Sprob is continuous, submodular and
does not saturate. There only remain to verify (Card) and (WSM).
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• (Card) is easy to prove, because

S
(k)
prob(x1, ..., xk) = 1−

k∏
i=1

(1− xi).

• Concerning (WSM), let us take (x1, y1) < (x2, y2) such that Sprob(x1, y1) <
1 and, without loss of generality, assume that x1 < x2 and y1 ≤ y2.
Then{

1− x1 > 1− x2

1− y1 ≥ 1− y2
=⇒ (1− x1)(1− y1) > (1− x2)(1− y2),

which implies Sprob(x1, y1) < Sprob(x2, y2).

Example 4.38. Another fundamental example is the Lukasiewicz t-conorm
SLuk, defined by SLuk(x, y) := min{x+ y, 1}. It is also a t-conorm verifying
all the “desirable” properties but (NSat), as already seen in the previous
proof. As also already mentioned there, it satisfies (Card) and (WSM),
and, then, the only remaining properties to be verified are (Cont) and
(SubM):

• Since SLuk is monotone, in order to verify the continuity it suffices to
prove that it is continuous in each component. Fixed y ∈ [0, 1], then

x 7−→ SLuk(x, y) = min{x+ y, 1} =

{
x+ y for x ∈ [0, 1− y],
1 for x ∈ [1− y, 1],

which is a piecewise linear continuous function.

• To verify the submodularity, let us define two subsets of [0, 1]2:

A :=
{

(a, b) ∈ [0, 1]2 : a+ b < 1
}
, B := Ac,

It is obvious that SLuk(a, b) < 1 if and only if (a, b) ∈ A, while
SLuk(a, b) = 1 if and only if (a, b) ∈ B; in addition to that, note
that the restriction SLuk|A is linear (as well as SLuk|B.) Now, let us
prove that

SLuk(x ∨ y) + SLuk(x ∧ y) ≤ SLuk(x) + SLuk(y),

for all x,y ∈ [0, 1]2. If both x,y ∈ A, then it suffices to use the linearity
of SLuk|A, that implies the submodularity9. In the other case when at
least one of x,y ∈ B, for example if x ∈ B, then SLuk(x∧y) ≤ SLuk(y)
by monotonicity, and

SLuk(x ∨ y) ≤ 1 = SLuk(x).

So, the inequality of the submodularity holds.

9In general, a linear function is obviously submodular (as well as supermodular, with
the obvious definition that takes the opposite inequality). In fact, a linear function is
modular, which means that the inequality is indeed an equality.
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Continuous and Archimedean T-conorms

In the following, we will see that the object of our interest is a subclass of
the continuous and Archimedean t-conorms. In particular, we will link the
Archimedean property (Arch) seen in the section 4.1.3 to the weak strict
monotonicity (WSM); then we will focus on the non-saturation (NSat)
and, eventually, on the submodularity (SubM).

Proposition 4.39. Let F : [0, 1]2 → [0, 1] be an associative function and
F (k) its k-ary iteration. If F satisfies (Neut) and (WSM), then it also
satisfies (Card).

Proof. Given x ∈ [0, 1] such that F (k)(x) < 1 and ε ∈]0, 1]. In particular,
from (Neut) it follows that F

(
F (k)(x), 0

)
= F (k)(x) < 1 and, so, (WSM)

may be applied and one gets:

F (k+1)(x, ε) = F
(
F (k)(x), ε

)
> F

(
F (k)(x), 0

)
= F (k)(x).

Proposition 4.40. Let S be a continuous t-conorm. Then:

S is Archimedean ⇐⇒ S is weakly strict monotone.

Proof.

(⇐) The proof follows from the following lemma, which is taken from [Kle-
ment et al., 2000].

Lemma 4.41. A number a ∈ (0, 1) is called idempotent element
for the t-conorm S if S(a, a) = a. It holds that:

1. If S is continuous, then: a idempotent if and only if S(a, x) =
max(a, x) for all x ∈ [0, 1];

2. If S is continuous and it has no idempotent elements, then S is
Archimedean.

This lemma implies that it suffices to prove that S has no idempotent
elements. Proceeding by reduction ad absurdum, suppose that there
exists a ∈ (0, 1) idempotent for S. Then, one can choose x, y such that

0 < x < y < a < 1,

and, in particular, this implies (by the lemma):

(x, a) � (y, a) and S(x, a) = max(x, a) = a < 1.

So, by using the weak strict monotonicity, one gets:

a = max(x, a) = S(x, a) < S(y, a) = max(y, a) = a,

which is a contradiction.
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(⇒) Using the representation theorem for continuous and Archimedean t-
conorms from the section 4.1.3, once we assume that S is a continuous,
Archimedean t-conorm, then it has to have a multiplicative generator
ψ, with

S(x1, x2) = ψ(−1)(ψ(x1)ψ(x2)).

Now, given (x1, x2), (y1, y2) ∈ [0, 1]2 with x � y and S(x) < 1, then
we need to prove that S(x) < S(y). Without loss of generality, it may
be assumed that x1 < y1 and x2 ≤ y2, and for the strict decreasingness
of ψ:{

ψ(x1) > ψ(y1)
ψ(x2) ≥ ψ(y2)

, and then ψ(x1)ψ(x2)︸ ︷︷ ︸
B:=

> ψ(y1)ψ(y2)︸ ︷︷ ︸
A:=

,

which may simply be re-written as A < B. As a result, the thesis
becomes ψ(−1)(B) < ψ(−1)(A).
The strictly decreasingness of ψ implies that ψ(−1) is also strictly de-
creasing on ψ([0, 1]) = [ψ(1), 1], while it is constant elsewhere, i.e.
ψ(−1)|[0,ψ(1)] ≡ 1. Now, in order to clarify the situation, it is worth
splitting the cases, depending on the position of A and B with respect
to ψ(1) in the interval [0, 1]:

• if ψ(1) ≤ A < B, then ψ(−1)(A) < ψ(−1)(B), for the strict de-
creasingness of ψ(−1);

• if A ≤ ψ(1) < B, then 1 = ψ(−1)(A) < ψ(−1)(B) = S(x), which
is true by hypothesis;

• if A < B ≤ ψ(1), then ψ(−1)(A) = ψ(−1)(B) = 1, but it cannot
be possible, since we have assumed ψ(−1)(B) = S(x) < 1.

So, the proof is completed.

Remark 4.42. From what we have seen so far, continuous and Archimedean
t-conorms verify all “desirable” properties but (NSat) and (SubM).

From the previous remark, one may easily understand the reason why
in the next sections we will concentrate on studying the relations that exist
between continuous Archimedean t-conorms and the two properties
non-saturation (NSat) and submodularity (SubM).

Non-Saturation and Strict T-conorms

First, we partition the continuous and Archimedean t-conorms right in the
two subclasses strict t-conorms and nilpotent t-conorms, in a certain
(and precise) sense “represented” respectively by Sprob and SLuk. Then, we
find that the strict t-conorms are exactly those verifying the non-saturation
property, whereas the nilpotent t-conorms saturate, exactly as SLuk does.
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Definition 4.43.

• A t-conorm S is called strictly monotone (on [0, 1[2) if

(SM) S(x, y) < S(x, z) whenever x < 1, y < z.

• A t-conorm S satisfies the cancellation law if

(Cl) S(x, y) = S(x, z) =⇒ x = 1 or y = z.

The cancellation law, as the name suggests, highlights the behavior of
(strict) t-conorms as semigroup/binary operations in [0, 1]2. However, the
following lemma gives the equivalence between the two previous properties,
and the proof may be found in [Klement et al., 2000].

Lemma 4.44. For any t-conorm S, it holds that S is strictly monotone if
and only if it satisfies the cancellation law.

The following proposition justifies the term “weak” used in the definition
of the weak strict monotonicity (WSM).

Proposition 4.45. Let S be a t-conorm. If S is strictly monotone, then it
is weakly strict monotone, i.e.

(SM) =⇒ (WSM)

Proof. Let us take (x1, x2), (y1, y2) ∈ [0, 1]2. Without loss of generality, it
can be assumed that {

x1 ≤ y1,
x2 < y2,

and S(x) < 1.

We need to prove that S(x) < S(y), and in order to do that it suffices to
apply the strict monotonicity, which may be automatically applied if we
simply prove that x1 < 1. But, if it were x1 = 1, then we would have
S(x1, x2) = S(1, x2) = 1, which contradicts S(x) < 1.

Definition 4.46. Given a continuous t-conorm S, it is called:

• strict if it is strictly monotone (SM);

• nilpotent if any x ∈ (0, 1) is a nilpotent element, i.e.

∀x ∈ (0, 1), ∃ k ≥ 2 : S(k)(x, ..., x) = 1.

Remark 4.47. Notice that if in Proposition 4.45 the t-conorm S were also
continuous, then it would be strict, by definition. By using the equiva-
lence between (WSM) and (Arch) seen in the previous section, this would
guarantee that a strict t-conorm S is necessarily Archimedean.
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Example 4.48. As already sketched out, the probabilistic t-conorm Sprob
is strict, while the Lukasiewicz t-conorm SLuk is nilpotent. To verify these
assertions:

• for Sprob it is easier to verify the equivalent cancellation law (Cl).
Indeed, Sprob(x, y) = Sprob(x, z) means

1− (1− x)(1− y) = 1− (1− x)(1− z),

from which either 1− x = 0 or 1− y = 1− z, i.e. x = 1 or y = z;

• for SLuk, since

S
(k)
Luk(x1, ..., xk) = min

{
1,

k∑
i=1

xi

}
,

then, given x ∈ (0, 1), it suffices to take k ∈ N such that k > 1/x to
obtain

∑k
i=1 x = kx > 1 and, so

S
(k)
Luk(x, ..., x) = min

{
1,

k∑
i=1

x

}
= 1,

as we wanted.

Of course, Sprob cannot be nilpotent and SLuk cannot be strict. Indeed:

• S(k)
prob(1/2, ..., 1/2) = 1−

k∏
i=1

1

2
= 1− 1

2k
< 1, ∀ k ∈ N;

• SLuk(0.5, 0.6) = min{1, 0.5 + 0.6} = 1 = SLuk(0.5, 0.7).

The example above is not a coincidence: indeed, it is known that con-
tinuous, Archimedean t-conorms can only be either strict or nilpotent. In
addition to this, not only the class of continuous, Archimedean t-conorms
may only contain strict or nilpotent t-conorms, but also the probabilistic
t-conorm Sprob and the Lukasievicz t-conorm SLuk are the two main proto-
types of such t-conorms, as precisely stated in the lemma below.

Lemma 4.49. Every continuous, Archimedean t-conorm S is necessarily ei-
ther strict or nilpotent. Moreover, there exists a strictly increasing bijection
f : [0, 1]→ [0, 1], called isomorphism, such that:

• S is strict if and only if it is isomorphic to Sprob, i.e. for all x, y ∈
[0, 1]:

S(x, y) = f−1
(
Sprob

(
f(x), f(y)

))
≡ f−1

(
1−

(
1− f(x)

)(
1− f(y)

))
;
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• S is nilpotent if and only if it is isomorphic to SLuk, i.e.

S(x, y) = f−1
(
SLuk

(
f(x), f(y)

))
≡ f−1

(
min

{
f(x) + f(y), 1

})
.

The previous lemma is closely related to the representation by (additive
and multiplicative) generators that continuous Archimedean t-conorms have,
given by the Representation Theorem of section 4.1.3. That theorem may
be summarized and further refined as follows.

Lemma 4.50.

S : [0, 1]2 −→ [0, 1]

(Cont), (Arch) t-conorm
⇐⇒

∃ ψ : [0, 1] −→ [0,+∞]

continuous, strictly increasing,

ψ(0) = 0, such that

S(x, y) = ψ−1
(
ψ(x) + ψ(y)

)
.

Furthermore:

• S is strict if and only if ψ(1) = +∞;

• S is nilpotent if and only if ψ(1) < +∞.

Though continuous, Archimedean t-conorms are well separated in two
different classes, there is always a way to uniformly approximate them as
limit of strict t-conorms:

Lemma 4.51. Every continuous, Archimedean t-conorms is the uniform
limit of strict t-conorms.

Proof. It suffices to adapt, by duality, Theorem 2.1.12 of [Alsina et al.,
2006].

Finally, we want to study better the relation between the non-saturation
property and the strict monotonicity, particularly in the case of continu-
ous, Archimedean t-conorms. Let us recall that a t-conorm S has the non-
saturation property (NSat) if S(x, y) = 1 happens only in the case x = 1
or y = 1.

Proposition 4.52. Let S be a continuous, Archimedean t-conorm. Then:

S is strict ⇐⇒ S verifies non-saturation.

Proof.

(⇐) Let us assume that S is not strict, which necessarily implies that S has
to be nilpotent. There has to exist a nilpotent element x ∈ (0, 1) such
that S(k)(x, ..., x) = 1, for some k ∈ N. This obviously contradicts the
non-saturation property, since x < 1.
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(⇒) Conversely, let us say that S(x, y) = 1 and we need to prove that x = 1
or y = 1. Suppose, by contradiction, that x < 1 and y < 1; then we
may find ε > 0 such that y < y + ε < 1. Now, being S a t-conorm, in
particular it is monotone, then:

1 = S(x, y) ≤ S(x, y + ε).

On the other hand, since x < 1 and y < y+ ε, then by using the strict
monotonicity one could conclude that S(x, y) < S(x, y + ε), which is
a contradiction.

Submodular T-conorms and Co-copulae

Studying the submodularity (SubM) of bivariate functions naturally leads
us to the concept of co-copula. Such functions, which originally came out in
Probability, also will allow us to exhibit further relations that insist among
the “desirable” properties of Influence Aggregation of the section 4.2.1. In
particular, we will concentrate on the connection between (continuous and
Archimedean) t-conorms and co-copulae and, eventually, on how this affects
their (additive and multiplicative) generators.

It is worth noticing that the focus here is on the bivariate co-copulae
(i.e. in two dimensions) and this is due to the fact that it is not obvi-
ous how to generalize this definition to n-ary functions, called n-co-copulae.
The standard extension of an associative 2-co-copula is not necessarily a
n-co-copula and this has to do with the concept of n-decreasingness deeply.
In our case of bivariate functions, the concepts of sub/supermodularity, in-
fra/ultramodularity and 2-de/increasingness all collapse in the same defini-
tion and their connections with concavity/convexity are also simpler. For
further references about this, see [Manzi, 2009], [Marinacci, Montrucchio,
2003] and [Marinacci, Montrucchio, 2008].

Definition 4.53. A (2-dimensional) co-copula is a function C : [0, 1]2 →
[0, 1] that verifies:

(Ann) 1 is the annihilator: C(x, 1) = C(1, x) = 1, for all x ∈ [0, 1];

(Neut) 0 is the neutral element: C(x, 0) = C(0, x) = x, for all x ∈ [0, 1];

(SubM) C is submodular:

C(x ∨ y) + C(x ∧ y) ≤ C(x) + C(y),

for all x,y ∈ [0, 1]2.
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Remark 4.54. The properties (SubM) and (Mon) are logically indepen-
dent, since the function10 Tmin(x, y) = min{x, y} is monotone but not sub-
modular (although it also verifies (Sym), (Assoc) and (Cont)); conversely,
the function F (x, y) = 1−(1−2x)(1−2y) is submodular but not monotone.

Remark 4.55 (Duality copulae/co-copulae).
We have heavily used the duality between t-norms and t-conorms (see Re-
mark 4.23), for adapting the results that are present in the literature (almost
always for t-norms) to our case, which involves t-conorms. Something sim-
ilar will happen with the co-copulae: in the literature is more common to
talk about copulae, which are functions C∗ : [0, 1]2 → [0, 1] dual to the
co-copulae, by means of the same duality relation of t-norms/conorms, i.e.

C∗(x, y) = 1− C(1− x, 1− y), ∀ (x, y) ∈ [0, 1]2.

It is worth noticing that in the literature, given a copula H, the associated
co-copula defined by duality is H : [0, 1]2 → [0, 1], with

H∗(x, y) := 1−H(1− x, 1− y), ∀ (x, y) ∈ [0, 1].

However (see, for example, the Definition 9.16 of [Klement et al., 2000]),
by convention, the dual copula of H is the function H̃ : [0, 1]2 → [0, 1],
defined by

H̃(x, y) := x+ y −H(x, y), ∀ (x, y) ∈ [0, 1].

Here, we will never use the concept of dual copula. Moreover, since we will
deal with some cases when a function F is at the same time a t-conorm and
a co-copula, by the (same) duality relation, its dual F ∗(x) = 1 − F (1 − x)
will be a t-norm and a copula.
Lastly, the lemma below explains how the submodularity of a co-copula (or
t-conorm) shifts to a dual property of its associated copula (or t-norm),
called supermodularity.

Proposition 4.56. Given a function F : [0, 1]n → [0, 1], let F ∗ : [0, 1]n →
[0, 1] be defined by duality as

F ∗(x) = 1− F (1− x) ,∀x ∈ [0, 1]n,

where 1 = (1, ..., 1) ∈ Rn. Then F is submodular if and only if F ∗ is
supermodular, i.e. for all x,y ∈ [0, 1]n

F ∗(x ∨ y) + F ∗(x ∧ y) ≥ F ∗(x) + F ∗(y).

10Tmin is a t-norm which is the dual t-norm of Smax.
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Proof. The proof is based on the fact that the maximum ∨ and the minimum
∧ are taken by components and, so, given x,y ∈ [0, 1]n, then:

1− x ∧ y = (1− x) ∨ (1− y),

1− x ∨ y = (1− x) ∧ (1− y).

And this implies that:

F ∗(x ∧ y) = 1− F (1− x ∧ y) = 1− F ((1− x) ∨ (1− y)),

F ∗(x ∨ y) = 1− F (1− x ∨ y) = 1− F ((1− x) ∧ (1− y)).

Now, assuming that F is submodular, then

F ∗(x ∧ y) + F ∗(x ∨ y) =

= 2− [F ((1− x) ∨ (1− y)) + F ((1− x) ∧ (1− y))] ≥
≥ 2− [F (1− x) + F (1− y)] = F ∗(x) + F ∗(y).

The converse implication follows from the fact that (F ∗)∗ = F .

Adapting Lemma 1.4.2 of [Alsina et al., 2006] and Proposition 9.8 from
[Klement et al., 2000] for co-copulae gives us:

Lemma 4.57. If C is a co-copula, then it is 1-Lipschitz, i.e.

|C(x1, y1)− C(x2, y2)| ≤ |x1 − x2|+ |y1 − y2|,

for any x1, x2, y1, y2 ∈ [0, 1].
In particular, every co-copula C:

• satisfies (Mon);

• is continuous in each variable;

• is jointly continuous (Cont).

Remark 4.58. The classes of t-conorms and co-copulae intersect but do not
coincide. Indeed, we have already checked that Smax, Sprob and SLuk verify
all the above properties and, so, they are (associative and commutative)
co-copulae. Conversely, the continuous co-copula C : [0, 1]2 → [0, 1] defined
by

C(x, y) = 1− (1− x)(1− y) + xy(1− x)2(1− y)

is not commutative and, so, cannot be a t-conorm.

Proposition 4.59. There exist (even strict) t-conorms that are not sub-
modular. In particular, the submodularity (SubM) is independent of all the
others “desirable” properties listed in the section 4.2.1 (even when they are
considered jointly).
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Proof. First of all, of course we already know that Sprob verifies all those
properties including the submodularity. On the other hand, we want to find
a function which verifies all of them but (SubM): in particular, for this
purpose, we will define a strict t-conorm S : [0, 1]2 → [0, 1] by using its
additive generator ψ : [0, 1]→ [0,+∞]. Let us consider

ψ(x) =


√

2

2

√
x, for x ∈ [0, 1/2],

1

2− 2x
− 1

2
, for x ∈ [1/2, 1].

Now, it is clear that ψ is continuous, strictly increasing, such that ψ(0) = 0
and, in addition, ψ(1−) = limx→1− ψ(x) = +∞. Then, from Lemma 4.50, it
follows that by defining

S(x, y) = ψ−1
(
ψ(x) + ψ(y)

)
, ∀ (x, y) ∈ [0, 1]2,

we obtain a strict t-conorm. In particular, this means that S necessarily
verifies all the “desirable” properties (including (NSat)), with the only
possible exception of (SubM). Surely, we want to prove that S does not
satisfy (SubM). In order to do that, we need to find the inverse ψ−1 and, as
we will see later, it will be enough to consider the restriction ψ

∣∣
[0, 12 ], whose

inverse is (
ψ
∣∣
[0, 12 ]

)−1
(z) = 2 z2, ∀ z ∈ [0, 1/2].

Now, if we take x, y ∈]0, 1/2] such that they are close enough to 0, for
example 0 < x = y = 1/100, then:

S(x, y) = ψ−1
(
ψ(x) + ψ(y)

)
= ψ−1

(√
2

2

√
x+

√
2

2

√
y

)
=

= 2

[√
2

2
(
√
x+
√
y)

]2

=
(√
x+
√
y
)2

= x+ y +
√
xy.

And, now, it is easy to verify that S is not submodular, because if we choose
x = (x, 0) and y = (0, y) with the same x, y ∈]0, 1/2] close to 0 as before,
then:

S(x ∧ y) + S(x ∨ y) = S(x, y) + S(0, 0) = x+ y +
√
xy >

> x+ y = S(x, 0) + S(0, y) = S(x) + S(y),

which contradicts the submodularity.

From the above remark, it follows that, so far, continuous t-conorm and
(continuous) co-copulae do not coincide. However, the situation changes
drastically in presence of the associativity (Assoc) as proved by the follow-
ing lemma. Notice that the opposite implication cannot be true, as already
checked in a previous remark with Tmin.
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Lemma 4.60. Each associative co-copula is a continuous t-conorm.

The next proposition finally allows us to conclude the characterization of
all functions that satisfy all the “desirable” properties in terms of (additive)
generators. But first we need a lemma:

Lemma 4.61. A function u : Rn → R is convex (respectively concave) if
and only if the function u∗ : Rn → R, defined by u∗(x) = u(1−x), is convex
(respect. concave), where 1 = (1, ..., 1) ∈ Rn.
Consequently, a t-conorm S is concave if and only if its dual t-norm T (x) =
1− S(1− x) is convex.

Proof. For all x,y, λ ∈ R, we may write

λx + (1− λ)y = 1− [λ(1− x) + (1− λ)(1− y)].

In particular, if we assume that u is convex, then

u∗
(
λx + (1− λ)y

)
= u∗

(
1−

[
λ(1− x) + (1− λ)(1− y)

])
=

= u
(
λ(1− x) + (1− λ)(1− y)

)
≤ λu(1− x) + (1− λ)u(1− y) =

= λu∗(x) + (1− λ)u∗(y),

so, u∗ is convex as well. The opposite direction of the proof follows straight-
forward, because (u∗)∗ = u. Finally, the last assertion comes from the fact
that a function u is concave (resp. convex) if and only if its opposite −u is
convex (resp. concave).

Proposition 4.62. A continuous and Archimedean t-conorm S is submod-
ular, i.e. an Archimedean co-copula, if and only if it is additively generated
by a convex function.

Proof. The proof follows from the duality with t-norms and Theorem 2.2.9
of [Alsina et al., 2006]. In particular, S is submodular if and only if T = S∗

is supermodular; in addition to this, the additive generator s(x) of S is
convex if and only if t(x) = s(1− x) is convex.

Finally, by putting together all what we have seen so far, we may write
the definition of what we call Influence Aggregation Function:

Corollary 4.63. Given n ∈ N, an influence aggregation function is a
family of functions {F (2), ..., F (n)} defined by associativity, starting from a
strict and submodular t-conorm F (2) = F : [0, 1]2 → [0, 1], as follows:

F (k)(x1, ..., xk) = F (2)
(
F (k−1)(x1, ..., xk−1), xk

)
, ∀x1, ..., xk ∈ [0, 1].
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It satisfies all the “desirable” properties listed in 4.2.1. In addition, there
exists an additive generator f : [0, 1]→ [0,∞], which is continuous, strictly
increasing, convex, such that f(0) = 0 and f(1) = +∞, and

F (k)(x1, ..., xk) = f−1(f(x1) + ...+ f(xk)),

for all x1, ..., xk ∈ [0, 1] and k = 2, ..., n.

Although generators provide a lot of useful information about a t-conorm,
nevertheless, given a t-conorm, it is not easy, in general, to find or recon-
struct its generator. Some techniques are described, for example, in [Navara,
Petrık, 2008]. However, somehow avoiding to use generators, our concern, in
the last part of this section, is how to easily understand whether a t-conorm
S is submodular.

Proposition 4.64. Let S : [0, 1]2 → [0, 1] be a t-conorm and let us define
the subset A := {(x, y) ∈ [0, 1]2 : S(x, y) < 1}. Then: S is submodular on
the subset A if and only if S is submodular on the whole domain [0, 1]2.

Proof. Obviously, if S is submodular on [0, 1]2, then, as special case, one
gets the submodularity of S when restricted to the vectors of A. Let us now
prove the converse implication. Take u,v ∈ [0, 1]2. There are three possible
cases:

• if both u,v ∈ A, then, by construction, the inequality that defines the
submodularity holds:

S(u ∧ v) + S(u ∨ v) ≤ S(u) + S(v);

• if both u,v /∈ A, then the right side of the inequality is equal to 1+1 =
2, while the left side may only be less or equal, for the monotonicity
of S;

• if u ∈ A and v /∈ A (the symmetric case is analogous), then using the
monotonicity of S gives:{

S(u ∧ v) ≤ S(u),
1 ≥ S(u ∨ v) ≥ S(v) = 1 ⇒ S(u ∨ v) = S(v) = 1,

and both together imply the thesis S(u∧v)+S(u∨v) ≤ S(u)+S(v).

In case S is a continuous t-conorm, then the previous result may be
slightly strengthened.

Lemma 4.65. Let S be a continuous t-conorm and A := {(x, y) ∈ [0, 1]2 :
S(x, y) < 1}, as above. Then: S is submodular on [0, 1]2 if and only if it is
submodular on the open subset Å = {(x, y) ∈ (0, 1)2 : S(x, y) < 1}.
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Proof. If S is submodular, as a special case we get that it is submodular
on the subset Å. Let us now assume that S is submodular only on the
subset Å and then, from the previous lemma, it will suffice to prove that S
is submodular on the entire A, in order to obtain the thesis.

First of all, notice that, from the properties of continuous t-conorms, A
may be partitioned in A = Å t [0, 1)× {0} t {0} × [0, 1), where the symbol
t denotes the union of disjoint sets. Now, let us take u,v ∈ A arbitrarily
and prove that the inequality

S(u ∧ v) + S(u ∨ v) ≤ S(u) + S(v)

holds. We have a few cases:

• If both u,v ∈ Å, then the thesis follows from the hypothesis.

• If both u,v ∈ [0, 1)×{0}t{0}× [0, 1), then, from the monotonicity of
S, we could trivially obtain the thesis in case both vectors were in the
same axes, because in that case we would have either u ≤ v or v ≤ u.
So, let us assume that neither u � v nor v � u, which means that:

u = (x, 0) ∈ (0, 1)× {0}, v = (0, y) ∈ {0} × (0, 1).

Since x, y ∈ (0, 1), then there exists a number k ∈ N such that 0 <
1/k < min{x, y} and we may define the sequences

un = (x, 1/n), vn = (1/n, y), ∀n ≥ k.

Studying the convergence11 of these vectors, we have that:

un −−−→
n→∞

u, vn −−−→
n→∞

v;

in particular

un ∧ vn = (1/n, 1/n) −−−→
n→∞

u ∧ v = (0, 0),

and obviously un ∨ vn = (x, y) = u ∨ v. Now, using that un,vn ∈ Å
and S is submodular on Å, we may write the inequality

S(un ∧ vn) + S(un ∨ vn) ≤ S(un) + S(vn).

Passing to the limit and using the continuity of S on [0, 1]2, we get the
thesis:

S(u ∧ v) + S(u ∨ v) ≤ S(u) + S(v).

11The convergence may be taken, for example, in the Euclidean norm ‖x‖2 :=√
x21 + ...+ x2n. It is not important, since in [0, 1]n ⊂ Rn all norm are equivalent and

generate the same topology.
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• The only case left is when u = (u1, u2) ∈ Å and v ∈ A \ Å, which
comprises two sub-cases: v = (0, v) or v = (v, 0), with v ∈ (0, 1). Let
us consider, for example, the first case in which v = (0, v) and then, in
order to avoid the trivial case in which u ≤ v or v ≤ u, let us assume
that v > u2. Using the same ideas of the previous step, we may define
the vectors vn = (1/n, v), with n ≥ k and k ∈ N such that 1/k < x1.
Now, let us consider

u ∧ vn = (1/n, x2) , u ∨ vn = (x1, v).

First of all, notice that both u∧vn,u∨vn ∈ Å, and then the inequality
defining the submodularity holds. Then, it suffices to pass to the limit
in order to obtain the thesis.

Remark 4.66. In the previous proposition, continuity is a necessary con-
dition. To prove this, let us consider the drastic t-conorm, which we have
already defined previously and can be re-written as

Sdr(x, y) =


x, if y = 0,
y, if x = 0,
1, otherwise.

Notice that Sdr is not continuous and that A = [0, 1) × {0} ∪ {0} × [0, 1).
Trivially, Sdr is submodular on Å, since Å = ∅. However, it is not submodu-
lar on [0, 1]2, as one can show simply by taking u = (1/3, 0) and v = (0, 1/3)
and calculating

1 = Sdr(0, 0)+Sdr(1/3, 1/3) = Sdr(u∧v)+Sdr(u∨v) > Sdr(u)+Sdr(v) = 0.

4.2.4 Comparisons and Orderings

Pointwise Order

Definition 4.67. We say that the t-conorm S1 is weaker than the t-conorm
S2, and we write S1 ≤ S2, if S1(x, y) ≤ S2(x, y) for all (x, y) ∈ [0, 1]2.

Lemma 4.68. S1 ≥ S2 if and only if T1 ≤ T2, where Ti = S∗i is the dual
t-norm.

Remark 4.69. The four basic t-conorms of the section 4.1.3 are ordered as
follows:

Smax < Sprob < SLuk < Sdr.

However, the pointwise order ≤ is not a total order12, meaning that there
exist incomparable t-conorms. More precisely, there exist pairs of continuous
and Archimedean incomparable t-conorms and even incomparable pairs in
the class of nilpotent or strict t-conorms.

12Also called linear order in literature.
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Proposition 4.70. If S is a submodular t-conorm (as well as S = C is a
co-copula), then

Smax ≤ S ≤ SLuk.

Proof. The inequality on the left side always holds. For the right side,
starting from the definition of submodularity

S(x ∨ y) + S(x ∧ y) ≤ S(x) + S(y),

and then taking x = (x, 0) and y = (0, y) gives

S(x, y) ≤ x+ y,

since 0 is the neutral element of S. Finally, S(x, y) ≤ min{x + y, 1} =
SLuk(x, y).

Proposition 4.71. Let S1, S2 be continuous and Archimedean t-conorms
with additive generators s1, s2 : [0, 1]→ [0,+∞] respectively. Then:

• S1 ≥ S2 if and only if s1 ◦ s−1
2 is subadditive;

• if s1 ◦ s−1
2 is concave, then S1 ≥ S2;

• if s1/s2 is non-increasing on (0, 1), then S1 ≥ S2;

• if u 7→ s1◦s−1
2 (u)
u is non-increasing on ]0, s2(1)], then S2 ≥ S1;

• if s1 and s2 are continuously differentiable on (0, 1) and s′1/s
′
2 is non-

decreasing on (0, 1), then S1 ≥ S2.

Proof. The proof can be easily obtained using the correspondent and dual
results for t-norms of the section 2.2 of [Alsina et al., 2006], and modifying
the relations involving the additive generators, considering that: given a
t-conorm S with additive generator s, its dual t-norm T = S∗ has additive
generator t such that

t(x) = s(1− x).

Hence, in general, it holds that:

s(x) = t(1− x), t(−1)(u) = 1− s(−1)(u),

and, in particular: t′(x) = −s′(1− x). Applying these formulae, one gets:

• s1 ◦ s−1
2 (u) = t1 ◦ t−1

2 (u);

• s1
s2

(u) = t1
t2

(1− u);

• s′1
s′2

(u) =
t′1
t′2

(1− u);

and the proof is concluded accordingly.
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Proposition 4.72.

• Given two continuous and Archimedean t-conorms S1, S2, then

Smax ≤ min{S1, S2}.

• Given two strict (respectively nilpotent) t-conorms S1, S2, then there
exists a strict (resp. nilpotent) t-conorm S such that

S ≤ min{S1, S2}.

• Consequently, given two continuous and Archimedean t-conorms S1,
S2, then there exists a continuous and Archimedean t-conorm S such
that S ≤ min{S1, S2}.

Dominance (or Domination)

Another concept that emerges when considering comparisons among t-conorms
is the dominance (or domination), which turns out to be stronger than the
pointwise order seen before, but still a non-linear order. For references,
check the sections 4.2 of [Alsina et al., 2006] and 6.3 of [Klement et al.,
2000].

Definition 4.73. The t-conorm S1 dominates the t-conorm S2, in symbols
S2 � S1 if

S1

(
S2(a, b), S2(c, d)

)
≥ S2

(
S1(a, b), S1(c, d)

)
, ∀ a, b, c, d ∈ [0, 1].

Lemma 4.74.

• If S2 � S1 then S2 ≤ S1; however, the converse implication is not
true, even when restricted to the class of strict t-conorms, i.e.

S2 ≤ S1 ; S2 � S1.

• Each t-conorm S is �-bounded between:

Smax � S � Sdr.

• � is an order among the t-conorms, but it is not a total order, meaning
that there exist two t-conorms that are incomparable with respect to
�.13

13As far as we know, up to now it is not still totally clear what are the set of t-conorms
where � is a linear order, i.e. where also the transitivity holds.
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Lemma 4.75. Given a strict t-conorm S, there always exists another strict
t-conorm Sg � S which dominates S and, in addition, the additive generator
ψg of Sg originates from ψ, which is the one of S, according to the formula:

ψg(x) =

∫ ψ(x)

0
exp (g(log u)) du,

being g : R→ R a non-decreasing, continuous and convex function such that∫∞
0 exp (g(log u)) du =∞.

4.2.5 Concavity, Submodularity and Inframodularity

We have already seen that the submodularity of a continuous and Archimedean
t-conorm is equivalent to the convexity of its additive generators. In addition
to this, the relations among the concavity/convexity and the submodularity
do not end here. On the one hand, [Alsina, Tomas, 1988] stated that smooth
concave t-conorms (i.e. C2) cannot exist; on the other hand, the Lukasiewicz
t-conorm SLuk is indeed concave, though not C2, of course. The properties
submodularity and concavity/convexity are, in general independent; besides,
as stated already in [Lovász, 1983], some times the submodularity behaves
in a way similar to the concavity, while other times similar to the convexity.

In the end of this section, we will introduce another concept, the in-
framodularity, which generalizes both concavity and submodularity at once.
Nevertheless, all these notions collapse in the same when reduced to one di-
mension. For references, check [Marinacci, Montrucchio, 2003], [Marinacci,
Montrucchio, 2008], [Manzi, 2009], [Manzi, 2010], [Cardin, Manzi, 2009]
and [Klement et al., 2011].

Proposition 4.76.

• If S is a concave14 t-conorm, then SLuk ≤ S.

• In particular, if S is continuous then it is necessarily nilpotent. Equiv-
alently, there are not concave15 strict t-conorms.

• SLuk is the only concave16 t-conorm.

• If S is a nilpotent t-conorm and has a concave additive generator, then
(S is Schur-concave) and

SLuk ≤ S.
14This hypothesis can be weakened considering S quasi-concave or even Schur-concave.
15There are no quasi-concave or Schur-concave strict t-conorm as well.
16This result can be strengthened: SLuk is the only Schur-concave or quasi-concave

co-copula.
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Proof. Use Lemma 4.1.12, Theorems 4.1.13 and Theorem 4.1.15 of [Alsina et
al., 2006] and that S (Schur-)concave if and only if T = S∗ (Schur-)convex,
whereas, for the additive generators, s is concave if and only if the same
holds for t = s∗.

Inframodularity

The submodularity, as property, originated naturally and intuitively in the
section 4.2.1 when we tried to take into account the property of diminishing
returns (see the following remark). As we will see in the next section 4.3
and in the next chapter, it will also play a fundamental role to guarantee the
submodularity of the diffusion function σ in a network. Here we study the
inframodularity which is the same for set-functions but is a stronger property
for vector-functions (like the aggregation functions and t-conorms). It also
has deep relations with the concavity/convexity.

Remark 4.77. Recall that, if f : 2Ω → R is a set-function, then the follow-
ing properties defining the submodularity of f are equivalent:

• f(A ∩B) + f(A ∪B) ≤ f(A) + f(B), for all A,B ⊆ Ω;

• f(A ∪ {ω}) − f(A) ≥ f(B ∪ {ω}) − f(B), for all A ⊆ B ⊆ Ω and
ω ∈ Ω \B.

Although those properties are equivalent for set-functions, we will see here
that when we deal with vector-functions they are not, and correspond to the
submodularity and inframodularity, respectively.

Motivated by the previous result, we have generalized the concept of
submodularity for vector-functions17 F : [0, 1]n → [0, 1] as follows:

(SubM) F (x ∨ y) + F (x ∧ y) ≤ F (x) + F (y)

for all x,y ∈ [0, 1]n, stating that this is equivalent to asking a property of
diminishing returns.

Definition 4.78. A function F : [0, 1]n → [0, 1] is called inframodular if
it has decreasing increments, i.e.

(InfM) F (x + h)− F (x) ≥ F (y + h)− F (y),

for all x,y,h ∈ [0, 1]n such that x ≤ y, h > 0 and x + h,y + h ∈ [0, 1]n.

The following proposition states that the inframodularity for t-conorms
(as well as co-copulae) is equivalent to the ultramodularity of their dual
t-norm (copula).

17In our context, we limit ourselves to the case of aggregation functions, in [0, 1]n.
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Proposition 4.79. A function F : [0, 1]n → [0, 1] is inframodular if and
only if the (dual) function G(x) := 1 − F (1 − x) is ultramodular, i.e. it
verifies the opposite inequality in (InfM).

Proof. First of all, notice that

G(x + h)−G(x) = 1− F (1− x− h︸ ︷︷ ︸
=:zx

)− 1 + F (1− x︸ ︷︷ ︸
zx+h

) = F (zx + h)− F (zx).

Now, if x ≤ y then zx = 1− x− h ≥ 1− y − h = zy and, so, if we assume
that F is inframodular, then

G(x + h)−G(x) = F (zx + h)− F (zx) ≥
≥ F (zy + h)− F (zy) = G(y + h)−G(y).

The opposite direction is analogous.

The inframodularity has deep relations both with the submodularity and
with the (scalar) concavity.

Lemma 4.80. The inframodularity is stronger than the submodularity18,
i.e.

(InfM) =⇒ (SubM).

Lemma 4.81. In the scalar case, with n = 1, a concave function F : R→ R
necessarily verifies (InfM). The converse implication is true provided F is
continuous.

Lemma 4.82. For an aggregation function F : [0, 1]n → [0, 1], the following
are equivalent:

1. F is inframodular;

2. every 2-dimensional section of F is inframodular;

3. every 2-dimensional section of F is submodular and every 1-dimensional
section is concave.

Lemma 4.83. If F : [0, 1]n → [0, 1] is a function twice-derivable, then:

• F is submodular if and only if ∂2F
∂xi∂xj

≤ 0, for all i 6= j;

• F is inframodular if and only if ∂2F
∂xi∂xj

≤ 0, for all i, j.

Remark 4.84. Intuitively speaking, in the context of influence aggregation,
the inframodularity is a property that says, in addition to the submodularity,
that also in the same component the marginal gain has to be decreasing,
which means that if the weight wi ∈ [0, 1] of the agent i increases, then its
marginal contribution to the total influence is concave.

18Whenever the domain is a lattice, as in the case of [0, 1]n.
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The next result recalls those seen in the section 4.2.2: the inframodularity
passes from a binary function to all its k-ary iterations. However, in this
proposition the associativity will play a fundamental role.

Proposition 4.85. Let F : [0, 1]2 → [0, 1] be a binary associative, monotone
and symmetric function. If F is inframodular, then each k-ary iteration F (k)

defined by associativity is also inframodular.

Proof. This proposition can be deduced by Corollary 3.3 in [Klement et al.,
2011], but here we give an alternative (and slightly weaker) proof. From the
previous lemma, in order to prove that F (k) is inframodular, it suffices to
prove that every 2-section is submodular and every 1-section is concave.

First of all, since F is inframodular, it is also submodular and we already
proved in section 4.2.2 that every F (k) has to be submodular as well. From
that section, we also know that F (k) is submodular if and only if every
2-section of F (k) is submodular. Hence, it remains to prove that every 1-
section of F (k) is concave. By applying the previous lemma to the case of
k = 2, i.e. to F , we get that the 1-sections of F are concave. Now, consider
a 1-section of F (k): notice that by symmetry, we can only consider the last
component of F (k) as variable, i.e. fix ξ ∈ [0, 1]k−1 and take

z 7−→ F (k)(ξ, z) = F
(
F (k−1)(ξ), z

)
, ∀z ∈ [0, 1]

and, since this univariate function coincides with a 1-section of F , it is
concave. This proves that every 1-section of F (k) is concave and concludes
the proof.

Remark 4.86. Although, as stated in a previous lemma, there is (almost)
an equivalence between inframodularity and concavity in the scalar case,
when n > 1 they are independent properties: there are concave functions
that are not inframodular and, viceversa, inframodular functions that are
not concave. For example, consider the functions19:

• F (x) = 1− ‖1− x‖2 = 1−

(
n∑
i=1

(1− xi)2

)1/2

, ∀x ∈ [0, 1]n,

• Sprob(x) = 1−
n∏
i=1

(1− xi), ∀x ∈ [0, 1]n.

Then:

• F is concave, because the Euclidean norm ‖ · ‖2 is convex in [0, 1]n;
then −‖ · ‖2 turns out to be concave and so is F . However, F is not

19‖ · ‖2 indicates the standard Euclidean norm ‖x‖2 =
(∑n

i=1 x
2
i

)1/2
in Rn.
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inframodular, since

∂F

∂xi
(x) = (1− xi)

(
k∑
i=1

(1− xi)2

)−1/2

=
1− xi
‖1− x‖2

,

and, consequently, for j 6= i

∂2F

∂xi∂xj
(x) = (1− xi)(1− xj)

(
k∑
i=1

(1− xi)2

)−3/2

≥ 0, ∀x ∈ [0, 1]n,

and, obviously, the inequality is strict for an adequate choice of x ∈
[0, 1]. Then F is not inframodular (and not even submodular.)

• On the other hand, Sprob is inframodular, because

∂Sprob
∂xi

(x) =
∏

j=1,...,n: j 6=i
(1− xj),

and so, for any x ∈ [0, 1]n:

0 ≥
∂2Sprob
∂xi∂xj

(x) =

 −
∏

k=1,...,n: k 6=i,j
(1− xk), for i 6= j,

0, for i = j.

However, Sprob is not concave, because no smooth C2 t-conorm can be
concave (see [Alsina, Tomas, 1988]).

Here are some interesting results in our context: the first involves the
pointwise order and the inframodularity, while the second one concerns the
additive generator of an inframodular t-conorm.

Lemma 4.87. If S is an inframodular co-copula or an inframodular t-
conorm, then

Sprob ≤ S ≤ SLuk.

Proof. We already know that the inequality on the right side is always true,
in the case S is a co-copula as well as S is an ultramodular (and, so sub-
modular) t-conorm. The left side follows from applying the duality among
t-norms and t-conorms to Remark 2.10 (iii) of [Klement et al., 2011], using
that S is an inframodular co-copula if and only if T = S∗ is an ultramodular
copula. Then, T ≤ Tprob becomes Sprob ≤ S.

Proposition 4.88. Let S be a continuous, Archimedean and submodular
t-conorm 20 with a twice differentiable additive generator s : [0, 1]→ [0,∞].
Then S is inframodular if and only if x 7→ 1/s′(x) is a concave function.

20Or equivalently, an Archimedean co-copula.
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Proof. The proof is based using the duality between additive generators
of t-norms and t-conorms applied to Theorem 4.3.1 of [Manzi, 2009]. In
particular, the theorem says that the dual t-norm T = S∗ of S, defined by
T (x) = 1− S(1− x), is ultramodular if and only if its additive generator t
is such that 1/t′ is convex.

From Proposition 4.79, it follows that S is inframodular if and only if
T is ultramodular. On the other hand, considering their respective additive
generators, it holds that t(x) = s(1 − x) for all x ∈ [0, 1] and, obviously,
both are twice differentiable by hypothesis. In particular, t′(x) = −s′(1−x)
and, so

1

t′(x)
= − 1

s′(1− x)
, ∀x ∈ [0, 1].

This means that the following are equivalent, the last passage following from
Lemma 4.61:

• S is inframodular;

• S∗ = T is ultramodular;

• 1/t′(x) = −1/s′(1− x) is convex;

• 1/s′(1− x) is concave;

• 1/s′(x) is concave.

So, the proof is concluded.

4.2.6 A Family of Influence Aggregation Functions

Let us consider Frank’s t-conorms Sα : [0, 1]2 → [0, 1], defined for any
parameter α ∈ R \ {0} by:

Sα(x, y) = 1− 1

α
log

[
1 +

(eα(1−x) − 1)(eα(1−y) − 1)

eα − 1

]
,

for all (x, y) ∈ [0, 1]2.
This family of t-conorms has very important properties and it was first

introduced and studied by Maurice J. Frank already in the ’70s, when trying
to find a pair (T, S) constituted by a t-norm and a t-conorm respectively,
that satisfies the functional equation (see sections 2.6 and 3.1 of [Alsina et
al., 2006] and appendix A.3 of [Klement et al., 2000])

T (x, y) + S(x, y) = x+ y, ∀ (x, y) ∈ [0, 1]2.

In fact, a pair (S∗α, Sα) is a solution of this equation21. Although we are not
interested in these equation here, the study of this family indeed leads to
prove some interesting properties for our context, in particular:

21Where S∗α is the dual t-norm of Sα.
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• taking the limits for the parameter α and (possibly) applying the de
l’Hopital rule, one gets that

S−∞ = Smax, S0 = Sprob, S+∞ = SLuk;

• Sα is continuous and Archimedean if and only if α ∈]−∞,+∞]; more
precisely, the Sα’s are strict t-conorms when α 6= ±∞ while S+∞ =
SLuk is the only nilpotent t-conorm of the family;

• the family {Sα}α∈R is ordered with respect to ≤:

α1 ≤ α2 =⇒ Sα1 ≤ Sα2 ;

• for fixed (x, y) ∈ [0, 1]2, the map α 7→ Sα(x, y) is continuous.

• the additive generators sα : [0, 1]→ [0, 1] are, respectively, given by

sα(x) =


− log(1− x), if α = 0,

− log
[
eα(1−x)−1
eα−1

]
, if α ∈ R \ {0},

x if α = +∞.

What we want to do now is applying what we have seen so far and, espe-
cially by using the generators sα, prove that we can gradually (continuously)
move upward from the probabilistic Sprob to the Lukasiewicz t-conorm SLuk,
via a family of strict and inframodular t-conorms, which is exactly {Sα}α≥0.

Proposition 4.89. Sα is inframodular if and only if α ≥ 0.

Proof. In the literature, it is already known that Sα is submodular if and
only α ≥ 0. Indeed, since sα is twice derivable for any α 6= ±∞, a straight-
forward calculation shows that

• dsα
dx

(x) = − α

eα(x−1) − 1
, ∀x ∈ [0, 1]

• d2sα
dx2

(x) =
α

4
[
sinh

(
α(x−1)

2

)]2 , ∀x ∈ [0, 1]

so that sα is convex if and only if d2

dx2
sα ≥ 0, which occurs if and only if

α ≥ 0. This proves that Sα is submodular if and only if α ≥ 0.

However, in order to prove that such Sα’s are even inframodular, we
have to show that 1/s′α is concave for all α ≥ 0. Now

gα(x) :=
1

s′α(x)
= −e

α(x−1) − 1

α
, ∀x ∈ [0, 1]
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so, differentiating twice gives:

• dgα
dx

(x) = −eα(x−1), ∀x ∈ [0, 1]

• d2gα
dx2

(x) = −αeα(x−1), ∀x ∈ [0, 1],

and, of course, gα is concave if and only if α ≥ 0.

4.3 Activation Functions

The threshold models we dealt with in chapter 2 are based on node-specific
activation functions. With this expression, we mean set functions f j : 2V

j →
[0, 1] that are monotone (and possibly submodular). In that context, they
may be interpreted as ways of measuring the total influence of entire groups
of j’s neighbors.

Here, with a natural construction, we define an influence vector x ∈
[0, 1]n which represents at the same time the neighbors’ activity levels (active-
inactive) and their influence weights; by doing this, “aggregating influences”
by means of activation functions in threshold models turns out to be the
same as considering an aggregation function F : [0, 1]n → [0, 1]. So, the
“reasonable ways” may be defined through properties of F and some of the
techniques seen so far in this chapter may be used. In particular, we will see
that if F is submodular and monotone, the same holds for its correspondent
activation function f .

Let us now make the situation more formal and clear, by introducing
some definitions.

Definition 4.90. We consider the following framework that we call struc-
ture of influence (V,w):

• a set V = {1, ..., n} representing the friends/neighbors (of the node
v of a given network/graph);

• a set of weights {bi}i∈V , where wiv = wi ∈ [0, 1] represents the influ-
ence of i over v; and associated to this, a vector of influence weights
wv = w ∈ [0, 1]n

• the active neighbors are represented by a subset A ⊆ V , to which we
associate the indicator function 1A : V → {0, 1}, defined by 1A(i) = 1
if and only if i ∈ A, i.e. i is active.

Notice that here we fix on a node v in a network and study what happens
in its neighborhood. In particular, this means that, throughout, whenever
the context is clear, we will avoid to write v for ease of notations. Moreover,
as convention, when we are considering the whole network, if the node i is
not a neighbor of v, then we will define the weight wiv := 0.



4.3. ACTIVATION FUNCTIONS 79

We already observed that the widely studied Linear Threshold Model of
the first chapter has the limitation that the weights are needed to sum less
than 1. Such condition, in our opinion, is perhaps counter-intuitive: if we
require that

∑
i∈V wiv ≤ 1, then each single node v of the network cannot

have many heavy influencing friends, i.e. with weights wiv ≈ 1, because
the sum of these influences has to be limited. Besides, it is worth noticing
that a simple re-scaling or re-normalization of the weights is not possible,
in general, because it is not clear how this “local” re-scales may affect the
whole process and network.

Definition 4.91. An activation function for a structure of influence
(V,b) is a function f : 2V → [0, 1] that is monotone and submodular.

The name obviously originates from the General Threshold Model, in
which a node v becomes active when its threshold function fv(S) exceeds
its threshold θv, given the active neighbors S ⊆ V .

Now, we want to show that it is possible to define a “natural” structure,
associated to every possible structure of influence which can be made fixing
the node v and its neighbors V .

Definition 4.92. Given an ordered set of neighbors V = {1, ..., n} of a node
v in a network22, we define the vector of state as the function

X : 2V × [0, 1]n −→ [0, 1]n

(A,w) 7−→ X(A,w) =
n∑
i=1

1A(i)wi · ei,

where ei ∈ Rn is the ith vector the standard basis and · is the product of a
scalar with a vector.

The next result puts together all the properties of the vector of state X.

Proposition 4.93.

1. Fixed w ∈ [0, 1]n, the set-function X(·,w) : 2V → [0, 1]

• is non-decreasing with respect to the inclusion of subsets of V ,
i.e.

A ⊆ B ⊆ V =⇒ X(A,w) ≤ X(B,w),

where ≤ is taken by components;

• preserves the lattice structures of
(
2V ,∩,∪

)
and ([0, 1]n,∧,∨), i.e.

for all A,B ⊆ V
– X(A ∩B,w) = X(A,w) ∧X(B,w),

22For ease of comprehension, we omit the index v, and we use w instead of wv as well
as X instead of Xw

v .
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– X(A ∪B,w) = X(A,w) ∨X(B,w).

In particular X(·,w) is a homeomorphism of algebras if and only if
w = (1, ..., 1).

2. Fixed a subset A ⊆ V , then X(A, ·) : [0, 1]n → [0, 1] is non-decreasing
and linear, i.e.

• if x ≤ y then X(A,x) ≤ X(A,y);

• for all α, β ∈ [0, 1] and x,y ∈ [0, 1]n:

X(A,αx + βy) = α ·X(A,x) + β ·X(A,y).

3. In general, it holds that for all A,B ⊆ V and x,y ∈ [0, 1]n

• X(A,x) ∧X(B,y) = X(A ∩B,x ∧ y),

• X(A,x)∨X(B,y) = X(A\B,x)+X(B \A,y)+X(A∩B,x∨y).

Proof.

1. The fact that X(·,w) is monotone follows straightforward from the
definition. Now, let us prove the two algebraic properties. They are
based on the following equalities, which are true for any A,B ⊆ V and
i ∈ V :

1A∩B(i) = 1A(i)1B(i) =

{
1, if i ∈ A ∩B,
0, if i /∈ A ∩B,

}
= min{1A(i), 1B(i)},

and analogously

1A∪B(i) = 1A(i) + 1B(i)− 1A∩B(i) =

{
1, if i ∈ A ∪B,
0, if i /∈ A ∪B,

}
=

= max{1A(i), 1B(i)}.

By applying them to our case, we get what we needed:

• X(A ∩ B,w) =
∑

i 1A∩B(i)wiei =
∑

i min{1A(i), 1B(i)}wiei =
X(A,w) ∧X(B,w);

• X(A ∪ B,w) =
∑

i 1A∪B(i)wiei =
∑

i max{1A(i), 1B(i)}wiei =
X(A,w) ∨X(B,w).

2. The properties of X(A, ·) both follow by a direct calculation from the
definition. In particular:

X(A,αx + βy) =

n∑
i=1

1A(i)(αxi + βyi)ei =

= α

n∑
i=1

1A(i)xiei + β

n∑
i=1

1A(i)yiei = α ·X(A,x) + β ·X(A,y).
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3. The last two properties are similar to the ones proved in the first step
of this prove.

Remark 4.94. Notice that X(·,w) is not an homomorphism of algebras
because it does not verify the condition X(V,w) = 1, when w 6= 1. In addi-
tion to this, if A = ∅ then X(∅,w) = 0, but the viceversa is not necessarily
true.

4.3.1 From Aggregation to Activation

This last subsection is, indeed, the link between the aggregation functions
that we have studied in the previous sections before and the activation func-
tions, which are the objects treated here. In particular, we want to show that
if we aggregate the influences with a submodular aggregation function, then
necessarily this generates an activation function which is also submodular
(and monotone).

Definition 4.95. Given a structure of influence (V,w) for a node v and an
aggregation function F v : [0, 1]n → [0, 1], we define the associated activa-
tion function by

fv(S) := F
(
Xw
v (S)

)
, ∀S ⊆ V.

Proposition 4.96. Let (V,w) be a structure of influence for the node v.
If the aggregation function F v is monotone and submodular, the same holds
for its associated activation function fv.

Proof. For ease of notation, we omit v. For the monotonicity of f , given
A ⊆ B then X(A,w) ≤ X(B,w) from the previous lemma. So, using the
monotonicity of F , the assertion becomes clear.

Concerning the submodularity, let A,B ⊆ V be two sets. From the
previous lemma and by using the submodularity of F , we have

f(A ∩B) + f(A ∪B) = F (X(A ∩B,w)) + F (X(A ∪B,w)) =

= F (X(A,w) ∧X(B,w)) + F (X(A,w) ∨X(B,w)) ≤
≤ F (X(A,w)) + F (X(B,w)) = f(A) + f(B).

Proposition 4.97. Let (V,w) be a structure of influence. If F,G : [0, 1]2 →
[0, 1] are two aggregation functions such that F ≤ G, then their associated
activation functions f, g also verify f ≤ g.
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Remark 4.98. Given a bivariate associative and symmetric aggregation
function (for example, a t-conorm) S(2) : [0, 1]2 → [0, 1], let S(k) : [0, 1]k →
[0, 1] be its k-ary iterations, made by associativity. Now, consider a structure
of influence (V,w) and a set of active neighbors A ⊆ V . Let us denote with
A = {i1, ..., ik}, where |A| = k ≤ n = |V |. Then:

f(A) = S(n)(X(A,w)) = S(n)(wi1 , ..., wik , 0, ..., 0) = S(k)(w1, ..., wk).

This, in particular, means that our framework is enough flexible that it can
take into account different network structures with different cardinalities.
However, changing from a structure where the node v has k friends to an-
other when it has n ≥ k friends happens somehow “homogeneously”. In
addition, in our approach only the active friends matter, which means that
v’s inactive neighbors exert no dissuasive effect on v.



Chapter 5

Diffusion Maximization

In this chapter we study the diffusion function σ, which was defined in the
first chapter. In particular, firstly we focus on some properties of σ, seen
as a “global” function which involves the whole process in the network, and
we see that it inherits some of the “local” properties from a model. Then,
in the second section we show that maximizing the diffusion function is a
NP-hard problem and, so, in the third section we describe two algorithms
for approximating the solution of this maximization problem.

5.1 Properties of the Diffusion Function

The study of (some of) the properties of the diffusion function σ, introduced
in the first chapter, is the main purpose of this section. Since the diffusion
function takes into account the whole diffusion process in the whole network,
we tend to call its properties “global”. As anyone could imagine, in general
the behavior of σ is quite hard to predict and so are its “global” properties.
Hence, our focus here is on those properties that may be somehow inherited
from some more “local” components of the network, which, in some sense,
are much more controllable.

In particular, we will see that if we consider a threshold model whose
“local” activation functions are monotone and submodular, then the result
diffusion function σ turns out to be monotone and submodular as well.
These same properties are obtained if in a cascade model, the probabilities
are taken decreasing.

In the next section, it will be finally clear why the monotonicity and
submodularity of σ are so important. But first, let us recall the definition
of diffusion function σ.

Definition 5.1. Given a diffusion model (Progressive Cascade or Thresh-
old) on a network G = (V,E), with |V | = n, let A0 ⊆ V be the set of
initially active nodes and let R(A0) ⊆ V the random variable that describes
the active nodes at the end of the diffusion process, when it starts exactly

83
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from A0. The diffusion function σ(A0) is the average of the cardinality
of R(A0), i.e.

σ : 2V −→ [0, n]

σ(A0) = E [|R(A0)|] .

Remark 5.2. Being σ an average which is based on the random variable
R(A0), from a practical point of view its (at least approximated) computa-
tion requires an adequate number of repeated simulations.

The remark above stimulates the study of “local” properties of the mod-
els in the hope that it can help to find “global” properties of the diffusion
function σ. In their seminal work [Kempe et al., 2003], the authors were
able to prove the two following results.

Proposition 5.3. Given an arbitrary instance of the Linear Threshold
Model (LT), the resulting diffusion function σLT (·) is monotone and sub-
modular.

Proposition 5.4. Given an arbitrary instance of the Independent Cascade
Model (IC), the resulting diffusion function σIC(·) is monotone and submod-
ular.

Sketch of the proof.
The monotonicity of σIC is obvious: the more initially activated nodes we
have, the wider the diffusion will be. The proof of the submodularity of σIC
is based on the same reasoning used in Remark 3.2: given an instance of the
Independent Cascade Model on the graph G = (V,E), we start by flipping a
coin with probability pij for every edge (i, j) in the graph at the beginning
of the process. The coin flip indicates whether the node i has succeeded in
activating its neighbor j: in such a case, we call live the edge (i, j). Now:

• if we start from a set A ⊆ V , then a node j ∈ V is activated (at the
end of the process) if and only if there exists a path from some node
in A to j consisting entirely of live edges;

• if we indicate with f the set of outcomes of all coin flips on edges, then
we may define the deterministic function σf : 2V → [0, 1] where σf (A)
is the total number of nodes that are activated by the process, when
it starts in A and the live edges are established by f ;

• if we denote with R(i, f) ⊆ V , for all i ∈ V , the set of nodes that
are reachable from i via live-edges paths (and when the live-edges are
established by f), then

σf (A) =

∣∣∣∣∣⋃
i∈A

R(i, f)

∣∣∣∣∣ .
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Having said this, we want to prove that the diffusion function σIC is sub-
modular: let A,B ⊆ V be two sets such that A ⊆ B and take i /∈ B.

• consider σf (A ∪ {i}) − σf (A): this is the number of nodes that are
in R(i, f) \

⋃
j∈AR(j, f), i.e. the nodes that are reachable from i and

that are not already reached from some node in A;

• analogously, consider σf (B∪{i})−σf (B). Since A ⊆ B, the marginal
contribution of i to the reached nodes from B, i.e.

⋃
j∈B R(j, f), has

to be less than the one given to
⋃
j∈AR(j, f). So:

σf (A ∪ {i})− σf (A) ≥ σf (B ∪ {i})− σf (B),

i.e. σf is submodular.

Finally, if one thinks of f as a sample point in the probability space defined
by all possible outcomes of the flip coins, then the diffusion function σIC
may be seen as the average

σIC(A) =
∑
f

P[f ] · σf (A).

Then σIC is submodular because it is a non-negative linear combination of
submodular functions.

Only in Theorem 3 of [Kempe et al., 2005], the authors were able to
prove an analogous result in a more general context:

Proposition 5.5. Let us consider an instance of the General Cascade Model
(GC). If the probabilities pj(i; ·) are non-increasing for all j ∈ V and i ∈ V j,
i.e. pj(i;A) ≥ pj(i;B) whenever A ⊆ B ⊆ V , then the diffusion function
σGC(·) is monotone and submodular.

By using the Cascade-Threshold equivalence seen in the section 3.3, we
also get the following:

Proposition 5.6. Let us consider an instance of the General Threshold
Model (GT). If the activation functions f j : 2V

j → [0, 1], for j ∈ V , are
non-decreasing and satisfy the normalized submodularity, i.e.

(nSubM)
f j(A ∪ {i})− f j(A)

1− f j(A)
≥ f j(B ∪ {i})− f j(B)

1− f j(B)
,

for all A ⊆ B ⊆ V j and all i /∈ B, then the resulting diffusion function
σGT (·) is monotone and submodular.
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Proof. Such a threshold model is equivalent to a cascade model whose the
probabilities are exactly defined by

pj(i;A) =
f j(A ∪ {i})− f j(A)

1− f j(A)
, ∀A ⊆ V j , i /∈ A.

Since the hypothesis implies that pj(i; ·) are decreasing, we can apply the
previous proposition and get that σGT = σGC is monotone and submodular.

Remark 5.7.

• Notice that, for a non-decreasing set-function f : 2V → [0, 1], the
normalized submodularity is stronger than the submodularity : in fact,
since f(A) ≤ f(B), then 1 − f(A) ≥ 1 − f(B) and, so, in (nSubM)
we have

1

1− f(A)
≤ 1

1− f(B)
, ∀A ⊆ B.

• We can try to define (nSubM) for associative and symmetric vector-
functions F : [0, 1]2 → [0, 1] as follows1:

– normalized submodularity:

(nSubM)
F (k+1)(x, ε)− F (k)(x)

1− F (k)(x)
≥ F (k+1)(y, ε)− F (k)(y)

1− F (k)(y)
,

for all x ≤ y ∈ [0, 1]k and ε ∈ (0, 1].

– normalized inframodularity:

(nInfM)
F (k)(x + h)− F (k)(x)

1− F (k)(x)
≥ F (k)(y + h)− F (k)(y)

1− F (k)(y)
,

for all x,y,h ∈ [0, 1]k, with h > 0, such that x ≤ y and y + h ∈
[0, 1]k.

It is clear that (nInfM) implies both (nSubM), (InfM) (and, conse-
quently, also (SubM)). However, the standard inframodularity (InfM)
does not imply (nSubM), and one may use SLuk as a counter-example.
As a consequence, the standard submodularity does not imply its nor-
malized version.

• If an associative symmetric aggregation function F : [0, 1]2 → [0, 1]
satisfies the normalized submodularity (nSubM), then the same holds
for its associated activation function f = F (n) ◦X, which is defined as
in the section 4.3.

1As in the previous chapter, F (k) indicates the k-iteration of F ≡ F (2) obtained by
associativity.
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Finally, in [Mossel, Roch, 2007] the authors prove that the monotonic-
ity and submodularity of the activation functions of a threshold model are
inherited from the diffusion function:

Proposition 5.8. Let us consider a General Threshold Model on the net-
work G = (V,E). If the activation functions f j are monotone and submod-
ular for all j ∈ V , then the resulting diffusion function σGT is monotone
and submodular.

5.2 Maximization: Top-k Set Selection Problem

Definition 5.9. Given a network G = (V,E), with |V | = n, and a diffu-
sion process (Cascade or Threshold Model), an instance of the Top-k Set
Selection Problem is:
“given k ≤ n, find a set A ⊆ V with cardinality k that maximizes the diffu-
sion function σ(·).”
In other words: {

maximize σ(A)
subject to A ⊆ V : |A| = k.

The top-k set selection problem is NP-hard for both Cascade and Thresh-
old Model. To show that it suffices to see it in their respective special cases,
as seen in [Kempe et al., 2003]:

Proposition 5.10.

1. The top-k set selection problem is NP-hard for the Linear Threshold
Model.

2. The top-k set selection problem is NP-hard for the Independent Cas-
cade Model.

Sketch of the proof.

1. The proof is based on reducing an instance of the so-called Vertex
Cover problem, which is NP-complete, to a top-k set selection problem.
Let us consider an instance of the vertex cover problem: given an
undirected graph G = (V,E) and an integer k, the problem is to find
a set S ⊂ V of k nodes such that each edge of G has at least one
endpoint in S.

We now define a corresponding instance of the top-k set selection prob-
lem. First, we take the graph G and make it directed considering each
edge in both directions. Now, if one can find a vertex cover S of size k
in G, then it is possible to deterministically obtain σ(A) = n, simply
by taking A = S. On the other hand, this is the only way to get a set
A ⊆ V such that σ(A) = n.
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2. Analogously, the argument here uses a reduction from the Set Cover
problem, which is also NP-complete.

Now, the general cases may be consequently deduced now and something
more precise is said in the next corollary, whose proof may be based on a
reduction from the Set Cover problem as well.

Corollary 5.11. The top-k set selection problem is NP-hard also for the
General Threshold Model and the General Cascade Model. More precisely:
it is NP-hard to approximate the influence maximization problem to within
a factor of n1−ε, for any ε > 0.

The NP-hardness of the top-k set selection problem stimulates the re-
search of algorithms to approximate the solutions. Two of such algorithms
are the objects of the study of the next section.

5.3 Approximation Algorithms

5.3.1 Greedy algorithm

The algorithm proposed in [Kempe et al., 2003] and [Kempe et al., 2005]
is based on a greedy hill-climbing strategy: since we want to maximize
the diffusion function σ, at each step we take the node that maximizes its
marginal contribution to the diffusion. This simple idea is well clear in the
following:

Algorithm 1 Greedy Algorithm

1: Start with A = ∅
2: for i ≤ k do
3: let vi be a node that maximizes σ(A ∪ {vi})− σ(A);
4: set A← A ∪ {vi};
5: end for
6: return A

Remark 5.12. The greedy algorithm provides an “approximated solution”
for the top-k set selection problem, however, since it is NP-hard to compute
the/an optimal solution of the problem, especially with very big networks,
then it is a problem how to evaluate the goodness of this approximation.

Motivated by the previous remark, one may understand the importance
of the following result.
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Proposition 5.13. Let A∗ ⊆ V be an optimal solution for the top-k set
selection problem, i.e.A∗ maximizes σ among the sets of cardinality k, and
let A ⊆ V be the set given by the Greedy Algorithm 1. Then

σ(A) ≥
(

1− 1

e

)
· σ(A∗).

In other words, A provides a solution which is at least a 63%-approximation
of the optimal solution A∗.

Remark 5.14. Notice that the algorithm needs to calculate σ, which may
be hard or even prohibitive, for example in the case of a very big network. To
our knowledge, it is still an open question how to compute exactly σ by an
efficient method. However, by simulating a random process many times, one
may get arbitrarily good approximations of σ(A): more precisely, for any
ε, δ > 0 and n ∈ N, it is possible to compute an approximation of σ(A) that
is in [σ(A)− ε, σ(A) + ε] with probability at least 1− δ, polynomially in ε, δ
and n. Moreover for any ε′ > 0, this approximation allows us to find a node
v ∈ V whose marginal gain σ(A ∪ {v}) − σ(A) is a (1 − ε′)-approximation
of the maximal marginal gain.

In the light of the above remark, the previous proposition may be written
more precisely:

Proposition 5.15. Let A∗ be an optimal solution and let A be the result
of the Greedy Algorithm, where at each step the node vi is the (1 − ε′)-
approximation of the best node. Then

σ(A) ≥
(

1− 1

e
− ε′′

)
· σ(A∗),

where ε′′ depends polynomially on ε′.

Remark 5.16. Some practical experiments made in [Kempe et al., 2003]
have shown that the Greedy Algorithm provides a solution that is often
better than other solutions provided by other heuristics. Among others,
there are comparisons with:

• High-degree Heuristic: the selected nodes are the ones that have the
highest degree, which is defined as the number of (outgoing) edges of
a node;

• Distance Centrality Heuristic: the distance between two nodes is
defined as the length of the minimal path that connects the nodes.
This heuristic, then, chooses the k nodes that have the minimal average
distance.

However, there exist other algorithms/heuristics, which possibly perform
better than the Greedy Algorithm, for example the Shapley-value based Al-
gorithm, which we will see in the next section, and a Genetic Algorithm
(see [Wang et al., 2013]).
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5.3.2 Shapley-value based algorithm

The Shapley value, introduced in (cooperative) game theory, has been
used in networks to define the social power and the centrality, see [Gómez
et al., 2003]. Using these ideas, in [Narayanam, Narahari, 2010] the authors
developed an algorithm that is based on the Shapley-value, by which they
find the most k influential/central/power nodes and select them as a solution
of the top-k set selection problem.

Preliminaries: Cooperative Game Theory and Networks

Definition 5.17. A cooperative game with transferable utility ( TU game)
is a pair (V, v) where

• V = {1, ..., n} is the set of players;

• v : 2V → R, with v(∅) = 0, is called characteristic function of the
game

The subsets S ⊂ V are called coalitions of players and v(S) is the value
of the coalition, representing how much the coalition S can gain (without
any help from other players in V \ S).

In cooperative game theory, the concept of solution is not univocal. In
general, a solution is a “proposal” of the allocation of the total value of the
game among the individuals. Intuitively speaking, there are some proposals
which are more likely to be accepted by the players, whereas others are
almost surely rejected.

Example 5.18. Let us consider the following game. Three people inherit a
house, but in the notary deed they find out that the house can go to them
only if at least two of them agree to share it. This game may be modeled
as follows: with V = {1, 2, 3} and v : 2V → 0, 1, where

v(S) =

{
1, if |S| ≥ 2,
0, otherwise.

The formalization means exactly that: if the players 1, 2 and 3 agree, they
get the house; if two of them agree, they also get the house; in any other
case, i.e. if they cannot find an agreement, they lose the house.
In this context, the problem of finding a “solution” for this game is: once the
coalitions are established, say that S = {1, 2} agree and they get the house,
how to “fairly” divide the whole value v(S) = 1 between 1 and 2? Obviously,
one reasonable allocation to 1, 2 and 3 could be written respectively as the
vector (1/2, 1/2, 0), but then, player 3 could offer an agreement to player 1
and propose a distribution that is more favorable for 1, i.e. something like(

1

2
+ ε, 0,

1

2
− ε
)
,
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with any ε > 0. Of course, player 1 would agree, since it gains more.
Analogously, player 2 could do the same trick and propose an agreement
between 2 and 3, which is more convenient for 3:(

0,
1

2
− ε, 1

2
+ ε

)
.

Clearly, this argument may be repeated infinitely many times and, so, it is
not trivial how to find a somehow “stable” solution/allocation (if it exists)2.
Notice that if the game were only between two players, i.e. V = {1, 2},
meaning that they get the house if and only if both agree on sharing it, then
the solution (1/2, 1/2) would be stable.

One of the main “solution concepts” used in cooperative game theory is
the Shapley value, so called in honor of Lloyd S. Shapley. It has been used in
a lot of applications in many different fields (see [Moretti, Patrone, 2008]).

Definition 5.19. The Shapley value of the game (V, v) is the vector φ ∈
Rn defined by:

φi =
∑

S⊆V \{i}

|S|!(n− |S| − 1)!

n!

[
v(S ∪ {i} − v(S)

]
, ∀ i ∈ V,

where φi represents the payoff of the player i ∈ V .

Remark 5.20. The idea behind the Shapley value is that it represents the
importance or value of the player i in the game. Notice that it is based on
the marginal contributions of i to every possible coalition S.

Remark 5.21. The Shapley value has the following desirable properties
(for a solution concept):

• efficiency: the total value of the game v(V ), reached when all players
act together as one coalition, is distributed, i.e.

∑
i∈V φi = v(V ).

• symmetry: if the players i and j have the same importance/value in
the game, i.e. v(S ∪ {i}) = v(S ∪ {j}) for any S ⊆ V \ {i, j}, then the
Shapley value assigns to them the same amount φi(v) = φj(v);

• linearity: if two games (V, v1) and (V, v2) are combined together,
then each player gets what she could get independently in each game:
φi(v1 + v2) = φi(v1) + φi(v2);

• null player: if the player i does not apport anything to any coalition,
i.e. v(S∪{i}) = v(S) for all S ⊆ V , then its Shapley value is φi(v) = 0.

2This may be formally proved by introducing other “solution concepts” such as the
core of a game.



92 CHAPTER 5. DIFFUSION MAXIMIZATION

Example 5.22. In the example above, for the symmetry of the game, the
Shapley value of each player has to be exactly φi(v) = v(V )/3 = 1/3, for all
i = 1, 2, 3. Indeed, taking for example i = 1, then the coalition S ⊆ V \ {1}
are exactly ∅, {2}, {3}, {2, 3}, so:

φ1(v) =
∑

S∈V \{1}

|S|!(3− |S| − 1)!

3!

[
v(S ∪ {1})− v(S)

]
=

=
1

3

[
v({1})− v(∅)

]
+

1

6

[
v({1, 2})− v({2})

]
+

+
1

6

[
v({1, 3})− v({3})

]
+

1

3

[
v({1, 2, 3})− v({2, 3})

]
=

= 0 +
1

6
+

1

6
+ 0 =

1

3
.

In graph theory, the Shapley value was firstly used by Roger B. Myerson
in [Myerson, 1977] to define the so-called Myerson value. He took a game
v and a graph G = (V,E) and considered the Shapley value of the restricted
game v|G, in which the coalitions S are possible only if the individuals of S
are connected in the associated graph G. The Shapley value of this restricted
game φ(v|G) is the Myerson value.

Later, in [Gómez et al., 2003], the authors combined the Shapley value
and the Myerson value and found out that: if we have a game (V, v) and
a graph G = (V,E), then taking the difference between the Myerson value
and the Shapley value generates a “centrality” measure for the node i in the
network G:

γi(G) = φi(v|G)− φi(v), ∀ i ∈ V.

The interpretation of γi(G) is the following: since the Shapley value is a
measure of the value of the player i, by taking the difference between the
game v|G and v, we get exactly how much i gains from occupying its own
position in the network G, independently of the game v.

Example 5.23. Let us consider the game above where the player 1 and
3 cannot communicate, i.e. the is the following graph G = (V,E) where
V = {1, 2, 3} and the only existing edges are E = {(1, 2), (2, 3)}, i.e.

(1) ←→ (2) ←→ (3).

The situation has changed and the characteristic function of this graph re-
stricted game is

v|G(S) =

{
1, if |S| ≥ 2 and 2 ∈ S,
0, otherwise.

The Myerson value is the Shapley value for the game v|G, so proceeding as
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before:

• φ1(v|G) = φ3(v|G) =
1

3
· 0 +

1

6
· 1 +

1

6
· 0 +

1

3
· 0 =

1

6

• φ2(v|G) =
1

3
· 0 +

1

6
· 1 +

1

6
· 1 +

1

3
· 1 =

2

3
,

which highlights how player 2 here plays a crucial role in order to get the
house, whereas player 1 and 3 have less power than before. In fact, in the
graph G the node (2) is more central than the others.3

Shapley-value based Heuristic Algorithm

In order to find the solution of the top-k set selection problem, the approach
proposed in [Narayanam, Narahari, 2010] is the following: given a diffusion
model in a network G = (V,E), let us consider a cooperative game (V, v),
where V is the set of nodes/players and the characteristic function v : 2V →
R is defined by means of the diffusion function, i.e. v(S) = σ(S), assuming
that v(∅) = 0. Intuitively speaking, the value of the coalition S (i.e. set of
initially active nodes) is given by how much it can diffuse in average.

Having said this, the fundamental steps in the algorithm and, indeed, of
this section are:

1. using the Shapley value to calculate a ranking list of the most cen-
tral/influential nodes;

• the Shapley value is hard to compute exactly, so it needs to be
approximated;

2. select k nodes from the list;

• the naive approach of selecting the first/highest k nodes may not
be the optimal choice if, for example, the top-ranked nodes are
clustered together.

Construction of the ranking list based on the Shapley value The
exact calculation of the Shapley value is a hard computational problem,
because in order to determine the marginal contributions of the player i one
has to deal with n! permutations. Given the importance of this value, a
number of approximations have been proposed (see, for example [Aadithya
et al., 2010].)

The approach followed here is based on the following observation: the
Shapley value of the player i is the average marginal contribution that player
i gives to any coalition, when one assumes that all orderings have the same
probability. To formalize this, let us consider the set Ω = P(V ) of all n!

3Whatever “centrality” measure one may adopt here (see [Garg, 2009]).
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permutations of V . Now, given π ∈ Ω, let us indicate with P
(π)
i ⊆ V the set

of all nodes that appear before the node i in the permutation π. Then, the
Shapley value coincides with

φi(v) =
1

n!

∑
π∈Ω

[
v
(
P

(π)
i ∪ {i}

)
− v

(
P

(π)
i

)]
.

To approximately calculate φi, we can use a randomly sampled set of per-
mutations Ω̃, whose cardinality |Ω̃| = O(n) is polynomial in n. Then, we
proceed as in the Algorithm 2 of [Narayanam, Narahari, 2010] and get, as
output a set of ordered nodes of V called RankList = {i1, ..., in}.

How to choose the top-k nodes from RankList? It is quite intuitive
to think that if the nodes are (adequately/badly) clustered and they are the
first in RankList, this may not be a good choice for the top-k set selection
problem: in fact, it may be possible that we choose the k nodes and they
diffuse very well and effectively in their neighborhood/cluster but do not
manage to “go out” of their clusters and infect other nodes of the network.
Motivated by this observation, the choice of the k nodes from RankList
would try to avoid adjacent nodes, as in the Algorithm 3 of [Narayanam,
Narahari, 2010]:

• let Top-kList be the output list and start with Top-kList = ∅.

• take the first node i1 of RankList and add it to Top-kList ;

• take the second node i2 of RankList. If i2 is not adjacent to i1, add it
to Top-kList ;

• in general, at the step r, take the node ir and add it to Top-kList if
it is not adjacent to any of the nodes already in Top-kList ;

• after a certain number of steps, it may be possible that every node j is
either in Top-kList or adjacent to a node in Top-kList. If this happens
and the cardinality of Top-kList is still c < k, then add to Top-kList
the remaining k − c highest ranked nodes in RankList\Top-kList ;

• at the end of this process, declare the nodes in Top-kList as the top-k
nodes.

This procedure gives a heuristical solution to the top-k set selection prob-
lem.

Other remarks about the Shapley-value based Algorithm

The λ-coverage Problem Another very intuitive problem related to dif-
fusion in networks is choosing a minimal set capable to activate/influence a
given percentage λ of the nodes in the network. Formally:
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Definition 5.24. Given a diffusion process in a network G = (V,E), the
λ-coverage Problem is:
“given (a percentage) λ ∈ [0, 1], find a set A ⊆ V , whose cardinality is
minimal, such that |σ(A)|/|V | ≥ λ.”

Indeed, a minor modification of the Shaple-value based Algorithm pro-
posed above provides a solution for the λ-coverage problem:

1. make a RankList of the nodes as above;

2. use the Algorithm 3 of [Narayanam, Narahari, 2010] with k = n:
this gives us Top-nList ;

3. determine the smallest value k ≤ n such that the first k nodes in Top-
nList, chosen as initially activated nodes, give a diffusion at the end
of the process which activates at least λ · |V | nodes.

Results with Non-Submodular Activation Functions in Thresh-
old Models In [Narayanam, Narahari, 2010] the authors claim that their
Shapley-value based Algorithm works well also in non-submodular situa-
tions. In particular, they propose two example of threshold models with link-
specific weights wij , where the activation functions f j are non-submodular4:

• Multiplication Threshold Model :

f jmult(A) =
∏
i∈A

wij ,

where the weights wij ∈ [0, 1] are such that
∑

i∈V j wij ≤ 1 and wij
represents the level of influence of i over j.

• Minimum Threshold Model :

f jmin(A) = min
i∈A
{αi · wij},

where the (fixed) parameters αi are non-negative for all i ∈ V j .

However, in our opinion and interpretation, these two models do not
correspond to an aggregative or cumulative effect and, also, they do not
deal with positive influences, as we did in the previous chapter. More pre-
cisely, both models come out from the use of t-norms instead of t-conorms,
respectively the probabilistic t-norm Tprob and the minimum t-norm Tmin,
which are dual to Sprob and Smax. Now, we think that the problem with

f jmult and f jmin is that when another active neighbor i comes or when its
influence increases, these functions decrease, instead of increasing. This be-
havior, which is a conjunctive behavior, leads us to think that the influences

4Here we use the same notations of the first chapter.
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taken into account here are not interpretable as positive, and, for example,
the inactive neighbors here exert a “dissuasive effect” (see also [Chen et al.,
2011]).
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