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Introduction

�e �owering of mathematical ecology and population dynamics occurred dur-
ing the �rst half of twentieth century: many nowadays well-known equations
were estabilished, such as the Verhulst equation for the logistic model and the
Lotka-Volterra system for the competition between two species.
In the last decades the mathematical interest in modelling biological structures
and phenomena has had a further unusual development, mostly due to the in-
crease of themes coming also from the medical �eld; in addition, new improve-
ments of classical models appeared, in order to reproduce more speci�c situa-
tions.

In the present work we deal with some structured models for dynamics of
two Corallium rubrum populations.

Red Coral (Corallium rubrum L 1758) is a colonial anthozoan endemic to the
Mediterranean sea. Due to the high economical value of its carbonate skele-
ton (used in jewelry), this species has been harvested since ancient times. For
this reason in the last two decades a reduction of the overall �shing yield by 2

3

has been recorded [SA01]. �erefore in the last years two papers, [SBI07] and
[SBI09], have dealt with the study of a red coral population located in Calafuria
(LI, Italy) and its sensitivity to environmental factors. Later another demographic
study [Vie09] concerning two di�erent populations, located in Porto�no (Lig-
urian coast, Italy) and Cap de Creus (Costa Brava, Spain), has revealed some
di�erences between these populations and the old one.
�e aim of the present study is to develop some more suitable models for the data
coming from Porto�no and Cap de Creus. �ese datasets reveal a high variability
concerning the noticed growth rates of the colonies. Furthermore they appear
not homogeneous (probably for the small quantity of samples) and present a lack
of information at di�erent levels. In particular for several colonies we do not have
fertility parameters and there is no information about certain age classes: indeed,
during the samples of the bigger colonies, the smaller ones got lost. Hence we
used this data as much as we could and tried to follow the noticed variability
towards the modelling process. Probably more time would be necessary in order
to obtain a more signi�cant dataset, but this would go beyond the bounds of this
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work.
Let us describe the content of the present work. In the �rst chapter we present

some biological and mathematical preliminaries to this work, in order to intro-
duce the notations used and themes.

�e second chapter is devoted to the presentation of the main part of the data
and to its analysis, performed with R program. �ere are several types of data:
some of them contain growth informations in term of the diameter or the circu-
lar annual crown, whereas others contain informations about reproduction (i.e.
number of planulae produced by a colony). Concerning the growth of the basal
section, we infer, analyzing a collection of few selected data, that is nearly linear
with respect to the year. Furthermore we notice a peculiar variability: indeed we
report some colonies (from both locations) that present a much stronger growth
rate. However we construct an age distribution for the two populations using
the entire datasets; in this way we try to obtain the survival parameters. Un-
fortunately these distributions appear a�ected by some noise, caused by a lack
of data for certain age classes. Hence the obtained distributions seem not satis-
factory and need to be ��ed to obtain a survival function. On the other hand
reproductive data present several lacks; hence we have to refer, when possible,
to [Vie09].

In the third chapter some models are presented and analyzed; we begin with
discrete ones that should be more suitable and were used in [SBI07] and [SBI09]:
indeed reproduction of red coral occurs once a year in early summer and a dis-
crete model with a step of one year reproduces satisfactorily this phenomenon.
In this framework we improve the older models, since we take into account the
high variability of the income data by adding another parameter, measuring the
growth level of a colony within its age class.
We also construct a continuous model that is equivalent to a system of Volterra
equations [Ian94]; also in this case we add a size parameter. We prove an ex-
istence and uniqueness result for solutions of integral equations, using a �xed
point argument. �e continuous model is examined by analyzing the Volterra
equations: the behaviour of their solutions is connected to the Laplace trans-
form of the integral kernel, via the Paley-Wiener theorem [PW33]. �us we
prove a stability result for the solutions of integral equations.
Finally we construct a simple spatial model, considering the spread of the plan-
ulae within a limited interval or a two dimensional disk: this leads to a discrete
dynamical system containing a di�usion equation through the steps. We �nd
a general solution of the di�usion equation (by means of Fourier and Fourier-
Bessel series) with Neumann and Dirichlet boundary conditions and therefore
the solution of the discrete system.

In the last chapter we perform some numerical computations concerning the
discrete models de�ned above and the stability of its steady states. In this frame-
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work the non-homogeneity of the data causes a loss of accuracy in the determi-
nation of survival parameters. Moreover the lack of complete and organic infor-
mations concerning the reproduction process led us to use cuto� function and
some reproduction parameters from the old model concerning Calafuria popu-
lations. Hence the obtained results are not so explanatory. Finally we add two
appendices to present some mathematical results and de�nitions used through-
out in the thesis: in the �rst one we deal with two particular equations involving
the Laplace transform and the locations of their solutions. �en we present sev-
eral properties of the linear Volterra equations (and a special nonlinear one) and
prove the Paley-Wiener theorem.
In the second appendix we show some simple results concerning the Bessel func-
tions and, in particular, the Fourier-Bessel series.
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Chapter 1

Preliminaries

In this chapter we introduce the red coral from a biological point of view. We
say something about its harvesting and conservation, in particular with respect
to the two sites from which our data were sampled [Vie09]. �en we give a
brief mathematical introduction concerning discrete and continuous models for
structured populations, just to �x some notations and display some basic results,
used throughout in this work.

1.1 Red coral
�is section is devoted to Corallium Rubrum: its biological features and its con-
servation, in particular we give several information about the legal regulation of
�shing within the two analyzed locations and the actual state of a�airs.

1.1.1 Biological introduction
Mediterranean red coral (Anthozoa, Octocorallia, Gorgonacea, Corallium rubrum,
L. 1758) is an anthozoa endemic to the Mediterranean Sea. It is a long-lived, gono-
choric, brooder species, whose larvae (planulae) do not travel very far from the
parental colonies.
�e bathymetric distribution of Corallium rubrum lies between 10 m (5 in caves)
and 300 m depth, but recently this species has been recorded up to 800 m depth.
Reproduction happens within a limited time interval in early summer, hence such
populations can only decrease in number (due to mortality) between two di�er-
ent reproductive cycles.
For this species natural mortality is low, as there are few predators; a mortal-
ity source is represented by boring sponges, that drill the colonies and �ll them
up of holes. Coastal shallow water populations of Anthozoan are furthermore
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1.1. Red coral

Figure 1.1: Corallium Rubrum.

vulnerable to chemical and physical changes of their habitat.

Shallow and deeper population

According to an operational de�nition, not yet based on genetic di�erences, two
di�erent types of population can be distinguished according to the bathymetric
depth range: shallow and deep populations. �e �rst one, living in the bathymet-
ric range between 20-60 m depth, is characterized by colonies at high densities
but with small basal diameter. Due to the size and the frequent boring sponges
infection, such populations have a limited economic value. Deeper populations,
on the contrary, are characterized by sparse but larger colonies, thus with higher
economic value.
�e majority of papers describes shallow water populations, because these are
easier to reach, and therefore to sample. Such inferior limit deals with SCUBA
diving operative limits about air supply and therefore shallow water populations
have been deeply harvested and some are still now, despite their lower intrinsic
economic value. �is overharvesting seems to cause also the actual dominance
of small/young colonies in these populations. For this reason, nowadays, where
harvesting still occurs management measures are necessary to plan harvesting
limits, especially for shallow water populations.
Deep populations are generally distributed in the belt between 60 and 250 m
depth where large colonies are sparsely distributed and less a�ected by boring
sponges, thus acquiring an economic value up to 20 times higher with respect to

2



1.1. Red coral

the other ones. Only recently ROV (Remote Operative Vehicle) surveys, carried
out o� Cap de Creus (or Sardinia), gave us some data about deep populations.
�erefore despite preliminary studies have been recently carried out, data on
deep colony biology such as colony growth, population age and sexual struc-
ture, age at �rst maturity, reproductive output, recruitment, natural mortality
are still absent.
Similarly harvesting of deep dwelling colonies could be actually considered a se-
lective technique. Legal authorised harvesters are professional divers who dive
with mixed gases up to 120 m depth. Furthermore due to the e�ort required by
harvesting activities, a preliminary ROV survey of the harvesting site is recently
conducted. Harvesters, in this case, have not any interest to deplete indiscrimi-
nately deep populations and a selective long term �shing strategy is considered
advantageous also for economic reasons.

1.1.2 Harvesting and conservation
Due to the high economic value of its carbonate skeleton, red coral is the Mediter-
ranean most precious marine species and it has been harvested since the Ne-
olithic period. C. rubrum is �shed in the whole Mediterranean sea and more
than 90 % of the harvest is manufectured in Italy; in particular, the red coral
jewelry industry of Torre del Greco near Naples (Italy), is estimated to generate
about two hundred million $ per year.
�e European community legislation about the harvesting of red coral in Mediter-
ranean sea states that it should be practiced using non-selective and non-destructive
trawling gears (since 1994); furthermore the number of harvesters is regulated by
licenses and yield is limited by harvest quotas and minimum size limits.
In practice, Corallium rubrum coastal shallow populations conservation is e�ec-
tive just in those sites falling within Marine Protected Areas (MPA) and manage-
ment actions are usually not based on speci�cstudies. Likely as coastal shallow
populations are actually considered of low economic value harvesting, intheory,
they could not considered under threat. Knowledge of distribution and density
of Corallium rubrum are mainly due to scienti�c papers but a real mapping lacks.
However mass mortality events, strongly a�ecting Octocorals are more and more
frequent in Mediterranean Sea [BMMS05] and these could represent an impor-
tant mortality source, especially for shallow water coastal populations. In partic-
ular, recently (late summer 1999 and 2003) the red coral populations of Marseille
and Calafuria have been a�ected by mass mortality, associated to an anomalous
temperature increases in the Eastern Ligurian Sea and in Gulf of Lion. Assess-
ment of the impact of such events, in terms of mortality, on long-lived species
requires long-time data series collected before and a�er the event, but few stud-
ies on the long-term e�ects of mass mortality exists [CCS+08].

3



1.1. Red coral

Hence although over-�shing could not be coupled with mass mortality, the co-
occurence of these two mortality sources could dramatically depress population
recovery. Indeed during the last two decades a reduction by 2

3
of the overall

Mediterranean �shing yield has been recorded [SA01], the risk is not an ecolog-
ical extinction for this species; however an economical extinction is possible (i.e.
a population of a slow growing species, with positive density dependence, can
survive to over-�shing but cannot reach again a size/age structure and a den-
sity suitable for commercial harvesting). In this framework models suitable to
project red coral population trends overtime could supply highly useful insights
into population dynamics and suggestions for species conservation.

1.1.3 �e sites of Porto�no and Cap de Creus

Figure 1.2: �e two spots in the Mediterranean map identify the two sampling
areas (blue spot: Porto�no; red spot: Cap de Creus).

Our data come from two Mediterranean sites: Porto�no (Eastern Ligurian Sea
44◦18′, 18 N 09◦12′, 83 E, Italy) and Cap de Creus (Costa Brava, North-Western
Mediterranean; 42◦29′, 21 N; 3◦30′, 18E, Spain).
�e MPA of Porto�no consists of 13 km of coast and 3.46km2. �is area has been
included in the SPAMI (Specially Protected Areas of Mediterranean Importance)
list in 2002 because of the representativeness of its coralligenous community.
�is community �ourishes on the submerged cli� and on the rocks, while coral-
ligenous platforms develop o� the rocky bo�oms, at a depth of 60 to 100 m.
�is protected area has been established with the law of the Italian Environ-
ment Department (April 26th 1999) and includes the Municipalities of Camogli,
Porto�no, and S. Margherita Ligure (all belonging to the Province of Genova).
�e establishment of this MPA is provided by two national laws: the Legislation
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1.2. Mathematical introduction

regarding the defence of the sea (n◦ 979 of December 31st 1982) and the Outline
Law on protected areas ((n◦ 394 of December 6th 1991). No harvesting activity is
allowed in the whole, only professional �shing is regulated by the MPA manage-
ment plan. �e aims of the MPA Porto�no are both the preservation of the sea
biodiversity and biological resources and the promotion and the enhancement of
the local economic activities, provided that they are compatible with the impor-
tance of naturalistic aspects and landscapes of the area.
�e MPA of Cap de Creus, with its 30.5km2, falls within the Marine and Coastal
Protected Area of Cap de Creus. It was established in 1999 according to the Re-
gional Law n◦4 − 98, March 1998, and declared SPAMI in 2001. Its Managed
Body is constituted by the Public Institution ”Natural Park of Cap de Creus” but
a proper Management Plan still lacks. In the meantime harvesting and �shing
activities are regulated by national and regional laws. In particular, the Spanish
law gives limits on the harvested (in weight and maximum diameter).
Since 2005 C. rubrum harvesting has been totally banned in the three partial
natural reserves (RNP) of the MPA of Cap de Creus National Park at any depth
all over the year. �is decision has been enforced due to a drastic reduction in
biomass and density of Corallium rubrum in the Cap de Creus MPA (Ordinance
293/2005) caused by the past intensive harvesting. Nonetheless C. rubrum is
still harvested all along the MPA coast because the lack of any surveillance. �is
management incongruence has serious negative consequences on the population
structure of the shallow populations of Cap de Creus.

1.2 Mathematical introduction

�is work is based on the theory concerning structured population dynamics.
We will construct discrete and continuous models to explain the evolution of
Porto�no and Cap de Creus populations. Hence in this section we introduce two
linear models (a discrete model and a continuous one), to become familiar with
ideas and notations. Moreover we begin to analyze them presenting some basic
results (without proof) that will be useful through the whole work. Finally we
present a generalization of the Grönwall lemma, that will be useful in the sequel.
Our main references are two books by M. Iannelli [Ian94] and J.M. Cushing
[Cus98], upon which is based this introduction and a part of this work.
In the �rst section of this section we show a linear discrete model, de�ning the
Leslie matrix and displaying two basic results. In the second section we present
a continuous linear model and its reformulation as a Volterra integral equation.
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1.2. Mathematical introduction

1.2.1 Discrete linear models
Suppose that individuals of a population are categorized into a �nite number of
classes a† (i.e. chronological age) and let uni denote the number of individuals
of class i at time n. We have to de�ne the inherent parameters of the model.
�erefore we call 0 ≤ σi,j ≤ 1 the fraction of j-class individuals expected to
survive and move to class i per unit of time and bi,j ≥ 0 the expected number of
i-class o�spring per j-class individual per unit of time. If only birth and death
processes are allowed we have that, se�ing un = (un1 , . . . , u

n
a†

) :

un+1 = (T + F )un = Pun (1.1)

where T and F are the two a† × a† matrix containing survival and birth rate
respectively. Since the model is linear, the matrix P is constant and not depends
on time (i.e. the index n). We observe that, when the structure is based on age,
survival rates and birth rates take the form:

σi,j = 0 for j 6= i− 1, σi,i−1 = σi, (1.2)

bi,j = 0 for i 6= 1, b1,j = bj; (1.3)

therefore the matrix P is a so-called Leslie matrix

P =


f1 f2 · · · fa†
σ1 0 · · · 0

0
. . . 0

...
0 0 σa†−1 0

 .
It is reasonable that, in order to analyze the behaviour of such populations, we
have to check the eigenvalues and eigenvectors of the matrix P. Now we in-
troduce two preliminary de�nitions and then present a basic result proved in
[Cus98].

De�nition 1.2.1. LetA be a square matrix; thenA is irreducible if it is not similar
via a permutation to a block triangular matrix.

From the Perron-Frobenius �eorem [Mey00], a non-negative irreducible
matrix has a dominant positive algebraically simple eigenvalue r, with positive
right and le� eigenvectors. Moreover if r is strictly dominant then we say that
the matrix A is primitive. Now, se�ing

|u| =
a†∑
i=1

|ui|,

we have the following theorem:

6



1.2. Mathematical introduction

�eorem 1.2.1. Suppose that the nonnegative matrix P is irreducible and prim-
itive. Let r be its strictly dominant eigenvalue and let v > 0 be an associated
eigenvector. Let un+1 be the solution of the linear matrix equation un+1 = Pun,
with an initial state satisfying u(0) ≥ 0. �en:

i) lim
n→∞

|un| = 0 if r < 1 and lim
n→∞

|un| =∞ if r > 1.

ii) lim
n→∞

un

|un|
=

v

|v|
.

�e above result connects the evolution of (1.1) to the dominant eigenvalue
of the matrix P (if it exists). Another important quantity, also from a biological
point of view is R0, the so-called basic reproduction number. �is is de�ned to
be the expected number of o�spring for every individual during its lifetime. For
a Leslie model a formula for R0 is obtained by summing the products of the
expected number of o�spring bi for each age class and the probability to reaching
that age class (i.e.

∏i−1
j=1 σi). �us,

R0 =

a†∑
i=1

bi

i−1∏
j=1

σi. (1.4)

For a general matrix P = T + F the basic reproduction number can be de�ned
as follows:

De�nition 1.2.2. Let P = T + F. Suppose that I − T is invertible and that
F (I −T )−1 has a positive, (algebraically) simple, strictly dominant eigenvalueR0

and an eigenvector u ≥ 0; thenR0 is called the basic reproduction number for P.

With the previous general de�nition, we can present another basic result that
describes the behaviour of the system (1.1) with respect to the basic reproduction
number.

�eorem 1.2.2. Let P = T + F a nonnegative matrix. Suppose that P has a
positive, simple, strictly dominant eigenvalue r. Assume further that I − T is in-
vertible and F (I − T )−1 has a positive, simple, strictly dominant eigenvalue R0

with nonnegative eigenvector u such that (I − T )−1u > 0. �en:

i) r < 1 if and only ifR0 < 1;

ii) r > 1 if and only ifR0 > 1.

�e above �eorem is useful also for nonlinear models presented through
this work (see chapter 3, §1): indeed it can be applied to the matrix of a linearized
system, in order to investigate the stability of an equilibrium.
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1.2. Mathematical introduction

1.2.2 Continuous linear models
Here we deal with a simple linear continuous model to describe an age structured
population. In this case we work with a density function, that expresses the
number of individuals of age a at time t:

p(a, t), a ∈ [0, a†], t ≥ 0,

where a† denotes again the maximum age of an individual, which we assume to
be �nite. �us the total population at time t is

P (t) =

∫ a†

0

p(a, t)da.

In this framework fertility and mortality are represented by two functions (de-
pending on age a only) β(a) and µ(a).Now we can de�ne the survival probability
(i.e. the probability for an individual to survive to age a):

Π(a) = e−
∫ a
0 µ(σ)dσ, a ∈ [0, a†].

Analogously to the discrete case we can also de�ne the basic reproduction num-
ber as

R0 =

∫ a†

0

β(a)Π(a)da.

Now we derive the basic equations that describe the evolution of the above popu-
lation. �ese equations arise as a consequence of the balance of births and deaths
along time. Consider the function

N(a, t) =

∫ a

0

p(σ, t)dσ

which represents the number of individuals that, at time t, have age less then or
equal to a. �en we have, for h > 0,

N(a+ h, t+ h) = N(a, t) +

∫ t+h

t

B(s)ds

−
∫ h

0

∫ a+s

0

µ(σ)p(σ, t+ s)dσds

(1.5)

where B(t) =
∫ a†

0
β(a, t)p(a, t)da is the total birth rate. Indeed, in (1.5), the

second term on the right gives the number of newborns in the time interval
[t, t+h] : these have age less or equal to h, consequently they have to be included
in N(a+ h, t+ h). Moreover, since:∫ a+s

0

µ(σ)p(σ, t+ s)dσ

8



1.2. Mathematical introduction

is the number of individuals who die at time t + s, with age less or equal to
a+ s, the third terms on the right of (1.5) gives the loss from the initial group of
N(a, t) individuals and from the newborns, through the time interval [t, t + h].
Now di�erentiating (1.5) with respect to h and se�ing h = 0 we obtain:

p(a, t) +

∫ a

0

pt(σ, t)dσ = B(t)−
∫ a

0

µ(σ)p(σ, t)dσ. (1.6)

Now, se�ing a = 0, we get:
p(0, t) = B(t)

and di�erentiating (1.6) with respect to a :

pt(a, t) + pa(a, t) + µ(a)p(a, t) = 0

�en the equations of the linear model for a ∈ [0, a†] and t ∈ [0, T ] are the
following: 

pt(a, t) + pa(a, t) + µ(a)p(a, t) = 0

p(0, t) =

∫ a†

0

β(σ)p(σ, t)dσ

p(a, 0) = p0(a)

(1.7)

Now we derive a di�erent formulation of (1.7) where the unknown function is
B(t). Applying the method of characteristics to (1.7) we obtain:

p(a, t) =

{
p0(a− t) Π(a)

Π(a−t) if a ≥ t

B(t− a)Π(a) if a < t.
(1.8)

Now from the above formula we get a Volterra equation forB(t) indeed inserting
(1.8) into (1.7) we get that:

B(t) = F (t) +

∫ t

0

K(t− s)B(s)ds (1.9)

where

F (t) =

∫ ∞
t

β(a)p0(a− t) Π(a)

Π(a− t)
da, (1.10)

K(t) = β(t)Π(t), (1.11)

where t ≥ 0, and the functions β,Π, p0 are extended by zero outside the interval
[0, a†]. Equation (1.9) is known as the renewal equation.
�e above procedure, that transforms the problem (1.7) into (1.9), is a standard
argument within the study of continuous structured populations and we will

9



1.2. Mathematical introduction

repeat it in chapter 3 in the case of some nonlinear models.
Concerning the existence and uniqueness of solutions of (1.9) we refer to [Ian94],
Ch.I §4. �e asymptotic behaviour of B(t) can be analyzed through the Laplace
transform of the kernel K(t), in particular studying the roots of the equation
K̂(λ) = 1. �is equation is analyzed in Appendix A §1, for a comprehensive
treatment of the asymptotic behaviour we refer to [Ian94],Ch.I §5.

1.2.3 Grönwall lemma
In this section we prove the Grönwall lemma and its generalization; this results
will be useful in the sequel.

Lemma 1.2.1 (Grönwall). Let I denote an interval of the real line of the form [a,∞),
[a, b] or [a, b) with a < b. Let f, g, u be real-valued functions de�ned on I . Sup-
pose that g and u are continuous and f is integrable on every closed and bounded
subinterval of I . If

u(t) ≤ f(t) +

∫ t

a

g(s)u(s)ds, ∀t ∈ I, (1.12)

then:

i) If g is non-negative then

u(t) ≤ f(t) +

∫ t

a

f(s)g(s)e
∫ t
s g(r)drds, ∀t ∈ I. (1.13)

ii) If moreover, f is increasing, then

u(t) ≤ f(t)e
∫ t
a g(s)ds, ∀t ∈ I (1.14)

Proof. Concerning the �rst part, we de�ne:

v(s) = e−
∫ s
a g(r)dr

∫ s

a

g(r)u(r)dr, s ∈ I.

Di�erentiating v(s), we obtain, for s ∈ I :

v′(s) =

(
u(s)−

∫ s

a

g(r)u(r)dr

)
g(s)e−

∫ s
a g(r)dr

≤ f(s)g(s)e−
∫ s
a g(r)dr

10



1.2. Mathematical introduction

Since g and the exponential are non-negative and v(a) = 0, integrating this
inequality from a to t we obtain

v(t) ≤
∫ t

a

f(s)g(s)e−
∫ s
a g(r)drds.

Now, using the de�nition of v and the previous inequality we obtain∫ t

a

g(s)u(s)ds = e
∫ t
a g(r)drv(t)

≤ e
∫ t
a g(r)dr

∫ t

a

f(s)g(s)e−
∫ s
a g(r)drds

≤
∫ t

a

f(s)g(s)e
∫ t
s g(r)drds.

Substituting this result in (1.12) we obtain (1.13).
If f(s) ≤ f(t) for s < t, then

u(t) ≤ f(t) +

∫ t

a

f(s)g(s)e
∫ t
s g(r)drds

≤ f(t)

(
1− e

∫ t
s g(r)dr)

∣∣s=t
s=a

)
= f(t)e

∫ t
a g(s)ds,

where we have used that d
ds
e
∫ t
s g(r)dr = −g(s)e

∫ t
s g(r)dr.

�e following result is taken from [Ama84] and generalize the Grönwall
lemma to inequalities involving the convolution product of the analyzed function
with a decreasing function:

Lemma 1.2.2. Suppose that 0 ≤ t0 ≤ T, that b ∈ L1([0, T ],R+) is a decreasing
function and a, u ∈ C([0, T ],R+). Moreover, suppose that

u(t) ≤ a(t) +

∫ t

t0

b(t− τ)u(τ)dτ ∀t ∈ [t0, T ]. (1.15)

�en there exists a constant β > 0, depending only on b, such that

u(t) ≤ 2a∗(t)eβ(t−t0) for t0 ≤ t ≤ T, (1.16)

where a∗(t) = maxt0≤s≤T a(s).

11



1.2. Mathematical introduction

Proof. Choose ε > 0, such that
∫ ε

0
b(τ)dτ ≤ 1

2
and let u(t) + 0 for t < t0. �en,

for t0 ≤ s ≤ t ≤ T,

u(s) ≤ a(s) +

∫ s−ε

t0

b(s− τ)u(τ)dτ +

∫ s

s−ε
b(s− τ)u(τ)dτ

≤ a∗(s) + b(ε)

∫ s−ε

t0

u(τ)dτ +

∫ ε

0

b(r)u(s− r)dr

≤ a∗(s) + b(ε)

∫ s

t0

u(τ)dτ +
1

2
u∗(s),

where u∗(t) = maxt0≤s≤T u(s). Hence

u∗(t) ≤ 2a∗(t) + β

∫ t

0

u∗(τ)dτ, t0 ≤ t ≤ T,

where β = 2b(ε). Now (1.16) follows from the previous lemma, since a∗ is in-
creasing.
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Chapter 2

Data analysis and age distribution

In this chapter we present and analyze a signi�cant part of the data contained in
[Vie09].
Our purpose is to deduce from these data some ideas concerning the two popula-
tions of Porto�no and Cap de Creus and possibly to estimate several signi�cant
parameters in order to construct a mathematical model.
For this study various type of data are relevant:

• Growth data (diameter, circular crown areas and age);

• Reproductive data (number of polyps and their fecundity).

Concerning the reproductive process, due to lack and non-homogeneity of avail-
able data, for these quantities we just consider the estimation done in [Vie09].
We deal instead with the growth estimation (for year) of the red corals within
these two populations. In particular we analyze di�erent types of data and con-
struct a regression model to express the diameter growth with respect to a year.
�en we use a larger set of data containing only diameters of the colonies and
try to obtain a distribution of the colonies through their age. Unfortunately, for
the small quantity and non-homogeneity of the samples, the two obtained dis-
tributions seem not satisfactory and have to be ��ed to a survival distribution.

2.1 Growth data
For this type of data we have three levels of accuracy:

• �e �rst level consists of circular crown areas of colonies sections for every
year in their lifespan: this dataset includes 23 colonies from Porto�no and
10 from Cap de Creus.

13



2.1. Growth data

• �e second level consists of couples diameter-age relative to several colonies:
the sampling consists of 75 colonies from Porto�no and 44 from Cap de
Creus.

• �e third level consists of the only diameter relative to larger number of
colonies: 472 and 143 respectively from Porto�no and Cap de Creus.

Moreover we know the number of recruits (i.e. colonies one year old) pho-
tographed in the squares chosen for the samples.
Now we explain some information concerning the sampling procedure for our
datasets: in each area (i.e. Porto�no and Cap de Creus) 4 sites have been ran-
domly chosen. In each site, 3 squares of 20 x 20 cm have been randomly cho-
sen. For each square some pictures have been taken. Next, colonies have been
selectively harvested with chisel. �en sampling squares have been again pho-
tographically sampled to estimate number of recruits.

Figure 2.1: Basal section of a colony.

�en harvested colonies have been cut at basal diameter, and these sections
have been photographed under microscope (see �gure 2.1). With these pictures
one can estimate the age of the colonies by summing the number of the growth
rings and adding 4 years to the number of growth rings counted [MGHP04], in
this way the second level dataset has been obtained. Concerning the �rst level,
for every colony, the area between each couple of consecutive growth rings has
been appreciated using photographic programs. �e third level of data consists of
measures (in mm) of diameters of all the harvested colonies (measured by using
a caliper).
A �rst preliminary remark concerning these two datasets is the following: there

14



2.2. Analysis of the data

no colonies with diameter less than 2 mm and moreover the ones with diameter
less than 3 mm are heavily understimated. �is is due to sampling problems:
scraping the bigger colonies, also the li�le ones come o� from the depth and get
lost. �is defect caused some problems in determination of age structures for the
two populations, that appear empty in some age groups.

2.2 Analysis of the data
�e aim of this section is to analyze the �rst two levels of data, and to estimate
the medium growth rate of colonies diameter with respect to their age. We �rst
analyze the �rst level of data to set up some ideas and then we study the second
level to supply a model for the growth of diameters with respect to the age. All
data analysis throughout this section are performed using R program.

2.2.1 Analysis of the �rst level of data

At this level every colony has its own dataset containing the areas of circular
annual crowns for every year in life span (except the �rst 4 years).
For every colony we observed the values of circular annual crowns areas through
years in a plot. As an example we take two colonies (one from Porto�no and one
from Cap de Creus) and perform two linear models of their growth.

> cdc2<- read.table("cdc2.txt",header=T,dec=",")

> str(cdc2)

'data.frame': 11 obs. of 3 variables:

$ Age : int 4 5 6 7 8 9 10 11 12 13 ...

$ Crown: num 0.339 0.306 0.309 0.34 0.305 ...

$ Area : num 0.339 0.645 0.954 1.294 1.599 ...

We see that the data, consisting in circular annual crown areas for every age, can
be used to evaluate total areas. Now we perform a linear regression model for
this colony and do the same thing with a Porto�no colony.

> regression_cdc2=lm(Area ~ Age,data=cdc2)

> ptf15<- read.table("ptf15.txt",header=T,dec=",")

> regression_ptf15=lm(Area ~ Age,data=ptf15)

�en we draw two graphs for these regression models:
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�e observed data suggest that:

• colonies from two sites have a similar growth rate;

• the section growth is nearly linear with respect to the years.

From these observations we presume that for all colonies from both sites, growth
can be linear with respect to the years, namely the circular annual crowns have
the same area through the years. Hence we take the whole �rst level dataset and
construct a linear model to see which variables in�uence circular annual crowns.
Since colonies were sampled in the same year, the year of formation of all crowns
can be deduced, too.

> crowns<-read.table("total_crowns.txt",header=T,dec=",")

> str(crowns)

'data.frame': 514 obs. of 5 variables:

$ Sample: int 1 1 1 1 1 1 1 1 1 1 ...

$ Year : int 1 2 3 4 5 6 7 8 9 10 ...

$ Age : int 5 6 7 8 9 10 11 12 13 14 ...

$ Crown : num 0.2 0.17 1.23 1.46 0.17 1.19 1.25 0.17 1.05 ...

$ Site : Factor w/ 2 levels "cdc","ptf": 2 2 2 2 2 2 2 2 2 ...

> summary(crowns)

Sample Year Age Crown

Min. : 1.00 Min. : 1.00 Min. : 5.00 Min. :0.0200

1st Qu.: 6.00 1st Qu.:20.00 1st Qu.: 8.00 1st Qu.:0.3025
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Median : 14.00 Median :26.00 Median :12.00 Median :0.6200

Mean : 29.34 Mean :24.11 Mean :13.89 Mean :0.8601

3rd Qu.: 21.75 3rd Qu.:30.00 3rd Qu.:18.00 3rd Qu.:1.2000

Max. :510.00 Max. :33.00 Max. :37.00 Max. :5.2600

Age

C
ro

w
n

0

1

2

3

4

5

10 20 30

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

● ●

●

●

● ●

● ●
●

● ● ●
●

● ●

●

●
●

●

●

●

● ●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ●
●

●

●

● ● ●
● ● ● ●

●

● ●

●

●

●

●

● ● ●
●

●
●

●

●
●

●

●
●

● ● ● ●

●

● ●

●

● ●

●

●

●

●

●

● ●

●

●

●

● ●
●

●

●
●

●

● ●

● ●

●

●

● ●

●

●

●

●
●

●

●

●

●

● ●

●

●
● ●

●

● ●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

● ●

● ● ● ●

●

●

●
●

● ● ●

●

●

● ●

●
●

● ●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

● ●

●
● ●

●

●
●

●

●

●

●
●

●
●

● ● ●
●

●
●

●

● ● ●

● ●

● ●
●

●
● ●

● ●

●
●

●

● ● ●

●

●

●

●

● ●

● ● ●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ●

●

●

●

● ●

●

● ●

●

●

●

●

● ●

●

●

●

●

● ●

● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●
●

●

●

● ●● ● ●

●
●

● ●

●

● ●

●

●

● ● ●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
● ●

● ●

●

● ●
●

●
●

● ● ●

●

●

●

●

●
● ● ● ● ● ● ●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●
● ●

●
●

● ●

●
●

●

● ●

●
●

● ●

●

●

●
●

● ●

●
● ●

● ●

●
●

●

● ●

● ●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

● ●
●

●

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
51
52
53
54
55
56
57
58
59
510

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 2.2: Circular annual crowns: Porto�no (1-23), Cap de Creus (51-510)

Here we have some information about the dataset and a plot of all data (note
that in the graph and in the next computations output the sampling codex for
Cap de Creus colonies starts with 5). From the above graph we see that circular
annual crowns seem to be nearly constant for every colony (but di�erent for
two di�erent colonies). To realize this in more detail we present a �rst regression
model, where circular annual crown is the regressand and sampled colonies with
their ages are regressors.

> regression_crowns=lm(Crown~Age + factor(Sample), data=crowns)

> summary(regression_crowns)
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2.2. Analysis of the data

Call:

lm(formula = Crown ~ Age + factor(Sample), data = crowns)

Residuals:

Min 1Q Median 3Q Max

-1.90077 -0.30628 -0.00413 0.29003 2.16390

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.341939 0.114020 2.999 0.002850 **

Age 0.023356 0.003654 6.393 3.87e-10 ***

factor(Sample)2 -0.364577 0.126204 -2.889 0.004042 **

factor(Sample)3 2.501910 0.162804 15.368 < 2e-16 ***

factor(Sample)4 0.169708 0.127692 1.329 0.184466

factor(Sample)5 0.142679 0.162804 0.876 0.381260

factor(Sample)6 -0.239473 0.144587 -1.656 0.098323 .

factor(Sample)7 0.281491 0.134860 2.087 0.037389 *

factor(Sample)8 0.487175 0.179869 2.709 0.007000 **

factor(Sample)9 2.011175 0.179869 11.181 < 2e-16 ***

factor(Sample)10 0.101393 0.139335 0.728 0.467159

factor(Sample)11 0.112663 0.147567 0.763 0.445558

factor(Sample)12 1.301910 0.162804 7.997 9.63e-15 ***

factor(Sample)13 -0.287435 0.123536 -2.327 0.020395 *

factor(Sample)14 -0.345105 0.124821 -2.765 0.005915 **

factor(Sample)15 -0.312215 0.127692 -2.445 0.014841 *

factor(Sample)16 -0.262216 0.154415 -1.698 0.090132 .

factor(Sample)17 0.162298 0.187398 0.866 0.386889

factor(Sample)18 0.167369 0.147567 1.134 0.257281

factor(Sample)19 0.004893 0.139335 0.035 0.972003

factor(Sample)20 0.120566 0.238071 0.506 0.612788

factor(Sample)21 0.155891 0.158383 0.984 0.325482

factor(Sample)22 0.851152 0.167770 5.073 5.60e-07 ***

factor(Sample)23 -0.144519 0.150828 -0.958 0.338458

factor(Sample)51 0.074987 0.162804 0.461 0.645299

factor(Sample)52 -0.232825 0.179869 -1.294 0.196144

factor(Sample)53 0.251187 0.187398 1.340 0.180751

factor(Sample)54 -0.080825 0.179869 -0.449 0.653378

factor(Sample)55 0.433409 0.187398 2.313 0.021157 *

factor(Sample)56 -0.010825 0.179869 -0.060 0.952035

factor(Sample)57 0.255175 0.179869 1.419 0.156643

factor(Sample)58 0.690076 0.187398 3.682 0.000257 ***
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2.2. Analysis of the data

factor(Sample)59 1.557175 0.179869 8.657 < 2e-16 ***

factor(Sample)510 0.880860 0.173403 5.080 5.42e-07 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4845 on 480 degrees of freedom

Multiple R-squared: 0.6159, Adjusted R-squared: 0.5895

F-statistic: 23.33 on 33 and 480 DF, p-value: < 2.2e-16

From this computation we notice that dependence from the age is negligible with
respect of that from the colony. Hence we construct a second regression model,
where the total area (i.e. the sum of all circular annual crown areas) for every
year is taken as regressand and the other variables (i.e. colonies and ages) are
regressors.

> total_regression=lm(Area~Age + factor(Sample), data=total_areas)

> summary(total_regression)

Call:

lm(formula = Area ~ Age + factor(Sample), data = total_areas)

Residuals:

Min 1Q Median 3Q Max

-12.0223 -1.1748 -0.1119 1.1182 19.1101

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.74138 0.60720 -1.221 0.222655

Age 0.70688 0.01909 37.037 < 2e-16 ***

factor(Sample)2 -5.56396 0.69333 -8.025 6.96e-15 ***

factor(Sample)3 11.10613 0.88072 12.610 < 2e-16 ***

factor(Sample)4 -0.70531 0.70113 -1.006 0.314910

factor(Sample)5 -2.86495 0.88072 -3.253 0.001217 **

factor(Sample)6 -4.82664 0.78863 -6.120 1.86e-09 ***

factor(Sample)7 -0.49993 0.73848 -0.677 0.498734

factor(Sample)8 0.53067 0.96448 0.550 0.582412

factor(Sample)9 8.40842 0.96448 8.718 < 2e-16 ***

factor(Sample)10 -2.11614 0.76163 -2.778 0.005662 **

factor(Sample)11 -2.05963 0.80386 -2.562 0.010686 *

factor(Sample)12 7.47684 0.88072 8.489 2.25e-16 ***

factor(Sample)13 -6.38949 0.67928 -9.406 < 2e-16 ***

factor(Sample)14 -5.75890 0.68606 -8.394 4.60e-16 ***
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factor(Sample)15 -5.27920 0.70113 -7.530 2.31e-13 ***

factor(Sample)16 -4.62878 0.83862 -5.519 5.40e-08 ***

factor(Sample)17 -2.37066 1.00057 -2.369 0.018191 *

factor(Sample)18 -2.80035 0.80386 -3.484 0.000537 ***

factor(Sample)19 -1.07740 0.76163 -1.415 0.157795

factor(Sample)20 -1.20807 1.22833 -0.984 0.325825

factor(Sample)21 -2.21216 0.85861 -2.576 0.010260 *

factor(Sample)22 2.12661 0.90536 2.349 0.019207 *

factor(Sample)23 -3.54635 0.82046 -4.322 1.85e-05 ***

factor(Sample)51 -1.88528 0.88072 -2.141 0.032775 *

factor(Sample)52 -3.77120 0.96448 -3.910 0.000105 ***

factor(Sample)53 -1.29796 1.00057 -1.297 0.195138

factor(Sample)54 -2.74771 0.96448 -2.849 0.004563 **

factor(Sample)55 -0.62430 1.00057 -0.624 0.532944

factor(Sample)56 -1.98520 0.96448 -2.058 0.040065 *

factor(Sample)57 -1.55262 0.96448 -1.610 0.108056

factor(Sample)58 1.72518 1.00057 1.724 0.085275 .

factor(Sample)59 5.30378 0.96448 5.499 6.03e-08 ***

factor(Sample)510 2.14935 0.93305 2.304 0.021646 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.708 on 513 degrees of freedom

Multiple R-squared: 0.8225, Adjusted R-squared: 0.8111

F-statistic: 72.02 on 33 and 513 DF, p-value: < 2.2e-16

Looking at the importance of factors contained in these models and others of this
type, it emerged that:

1. the area of circular annual crowns of a colony strictly depend on itself, in
particular several colonies (4 out of 23 in Porto�no and 3 out of 10 in Cap
de Creus) had a higher growth rate;

2. the growth rate is furthermore a�ected by other situational factors (i.e.
some years are characterized by an higher generalized growth rate);

3. the growth rate is a�ected by environmental factors (i.e. average growth
rate of Porto�no colonies is slightly bigger);

4. without speci�c environmental or situational factors the growth of section
areas is nearly linear with respect to age for colonies from both sites.
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2.2. Analysis of the data

�ese considerations (the �rst in particular) will be a guideline in the construc-
tion of our models for these populations.
By the way, we conclude that the growth rate of section area is nearly linear with
respect to the years, and similarly for colonies from both sites.

2.2.2 Analysis of the second level and growth rate
From the analysis performed on the �rst level of data, we used the second level
to determine the growth rate of diameters with respect to the age. We consider
the formula to calculate the area of a disk from its diameter, and suppose that
circular annual crowns have a constant section through the years. Hence we can
express the age of a colony as a function of quadratic diameter: in practice, if
we call A4 the area of the organic ma�er se�led in the �rst four years of life, we
have:

π

4
d2 = A4 + σ(age− 4)

where d is section diameter. �erefore is reasonable to construct another linear
regression model to express the age of colonies from quadratic diameter.
�ese are two datasets (one pertaining to Porto�no and the other to Cap de
Creus) in a graph:
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we see that the Cap de Creus dataset consists in few non-homogeneous points;
on the contrary, the dataset from Porto�no looks be�er. Hence to construct the
regression model we use both datasets:

> total_level2<-read.table("total_level2.txt",header=T,dec=",")

> str(total_level2)
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2.2. Analysis of the data

'data.frame': 119 obs. of 3 variables:

$ Diameter: num 2.47 3.13 3.13 3.1 2.8 3.5 3.55 3.17 3.65 ...

$ Age : int 9 10 10 10 12 12 12 13 13 13 ...

$ Site : Factor w/ 2 levels "cdc","ptf": 1 1 1 1 1 1 1 1 ...

> total_level2$Quadratic_diameter=(total_level2$Diameter)^2

> summary(regression_quadratic_diameter)

Call:

lm(formula = Quadratic_diameter ~ Age, data = total_level2)

Residuals:

Min 1Q Median 3Q Max

-21.4176 -5.2325 -0.0047 3.4423 23.0073

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -8.6225 2.4558 -3.511 0.000635 ***

Age 1.4977 0.1224 12.239 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.32 on 117 degrees of freedom

Multiple R-squared: 0.5614, Adjusted R-squared: 0.5577

F-statistic: 149.8 on 1 and 117 DF, p-value: < 2.2e-16

�e regression model just produced (see �gure 2.3)is what we need to generate,
from the third level of data, an age distribution for the two populations. We
observe that:

1. as for the �rst level, we obtain a good �t using datasets from both sites,
hence growth rates are similar;

2. even this second level of data includes many colonies that had grown more
than the others, as in the previous dataset (this phenomenon is mainly
frequent within Porto�no colonies).

�erefore we have compared the �rst level data with results obtained from sec-
ond. For this reason we have rescaled the second level growth rate by a factor π

4
,

and took the average circular annual crown area within the �rst level. We have
seen that the second level growth rate is slightly bigger; this result was expected,
since �rst level measures concerned the areas of circular crowns between rings
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2.3. Age distribution
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Figure 2.3

of inorganic ma�er: these rings have a surface, not included in these data, so that
the area of the sections is slightly smaller than as stated within the analysis of
the �rst level. �erefore these datasets are consistent and it is reasonable to use
the second one to estimate the growth rate of colonies from both sites.

2.3 Age distribution
We used the regression model described in the previous section to appreciate
the age of colonies within the third level of data. So we have obtained an age
distribution for Cap de Creus and Porto�no populations:

> ptf_diameters=read.table("ptf_diameters.txt",header=T,dec=",")

> ptf_diameters$Quadratic_diameter=(ptf_diameters$Diameter)^2

> str(ptf_diameters)
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2.3. Age distribution

'data.frame': 472 obs. of 2 variables:

$ Diameter : num 1.15 1.25 1.48 1.53 1.64 ...

$ Quadratic_diameter: num 1.32 1.56 2.19 2.34 2.69 ...

> ptf_diameters$Age=predict(regression_age,ptf_diameters)

In an analogous way we treat Cap de Creus data. Hence we add the recruits(211
for Porto�no and 63 for Cap de Creus) to these two distributions, obtaining these
histograms:
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Figure 2.4: Age distributions

We notice that both distributions present a lack of information pertaining to
the �rst age/diameter classes (except for the recruits, which have been measured
in a di�erent way). Furthermore the two distributions do not follow exactly the
expected structure (this is due to the non-homogeneneity of data that caused a
loss of accuracy in the regression model). �erefore we have to �t them to a
survival function to appreciate the survival rates from an age to the following
one.

24



Chapter 3

Mathematical models

In this chapter we introduce several mathematical models to analyze the red coral
populations of Porto�no and Cap de Creus.
In the �rst section we deal with discrete models, in the second we de�ne a con-
tinuous model and in the third we construct a di�usion equation that models the
spread of the planulae among the surrounding �eld.

3.1 Discrete models

�is chapter is devoted to introduce two appropriate discrete models in order
to study a Corallium Rubrum population. Several works have described these
populations through discrete models, in particular the red coral se�lement of
Calafuria (LI) (see [SBI07] and [SBI09]).
From a biological point of view, since the reproduction period occurs within a
limited time interval in early summer, during the rest of the year such popula-
tions can only decrease in number. �erefore a discrete model with one year as
discrete step appears to be more realistic to describe the evolution of such type
of populations.
In the �rst part of this section we deal with the usual discrete model, which is
also used in [SBI07]: this is a quasi-linear model which contains a cuto� func-
tion to rule survival of planulae.
In the second section we improve the previous model, in order to follow the vari-
ability observed in our datasets, as inspected during the second chapter. �en we
analyze this model, stating a stability result for trivial equilibrium and referring,
for further analysis, to J.M. Cushing [Cus98] and to numerical computations
performed in chapter 4.
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3.1. Discrete models

3.1.1 First discrete model
We consider a population structured in a† age groups, with survival and birth
rate (σi and bi respectively) depending only on the age. However the model is
nonlinear, due to the presence of a cuto� function, which determines the survival
rate of the planulae that become recruits (actual members of the population) as
a function of weighted population density. Here and in the subsequent models,
we always take a cuto� function of the form:

S0(x) =
α

x+ βe−γx
, (3.1)

where α, β, γ are positive parameters; the choice of such type of functions is jus-
ti�ed by empirical motivations (see [SBI07]). �e argument of S0 is a weighted
sum of the population elements:

U =

a†∑
i=1

uiωi (3.2)

where ωi, i = 1, . . . , a†, are positive constants. Now for n ∈ N, which speci�es
the n-th year in the timeline, we write the equations for this model:

un+1
1 = S0(Un)

a†∑
i=1

biu
n
i

un+1
i = σi−1u

n
i−1, i = 2, . . . a†

Un =

a†∑
i=1

uni ωi.

(3.3)

Looking for the equilibria of the model we obtain the following equations
u∗1 = S0(U∗)

∑a†
i=1 biu

∗
i

u∗i = σi−1u
∗
i−1, i = 2, . . . a†,

U∗ =
∑a†

i=1 u
∗
iωi.

(3.4)

se�ing Πi =
∏i−1

j=1 σj and inserting the equations on the second line of (3.4) in
the �rst line we obtain:

S0(U∗) =
1

R0

, (3.5)

where R0 =
∑a†

i=1 biΠi is the basic reproduction number of the population and
represents the average number of planulae produced by a single element (in our
case a colony) during its life-span.
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3.1. Discrete models

Figure 3.1: Solutions of equation (3.5)

A cuto� function of the form (3.1) leads to three di�erent cases (see �gure
3.1) depending on the di�erent relations of R0 with respect to the parameters
α
β

= S0(0) and V0 (maximum value reached by the function S0). In particular,
we �nd:

(i.) one nontrivial equilibrium forR0 >
1

S0(0)
;

(ii.) two nontrivial equilibria for V0 < R0 <
1

S0(0)
;

(iii.) no nontrivial equilibria forR0 < V0.

Linearization and stability of equilibria

Now we want to investigate whether the detected nontrivial and trivial (i.e. u∗i =
0 for i = 1, . . . , a†) equilibria are stable. As done in chapter 1 we consider in Ra†

the norm |u| =
∑a†

i=1 |ui| and give the following de�nition:

De�nition 3.1.1. Let u∗ = (u∗1, . . . , u
∗
a†

) be an equilibrium for the system (3.3);
we say that u∗ is stable if for every ε > 0 there exists δ > 0 such that, if u0 satis�es:

|u0 − u∗| =
a†∑
i=1

|u0
i − u∗i | ≤ δ,

then we have:
|un − u∗| ≤ ε ∀n ∈ N+.
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3.1. Discrete models

�e equilibrium is asymptotically stable if it is stable and δ can be chosen such that,
if |u0 − u∗| ≤ δ, then

lim
n→∞

|un − u∗| = 0.

Finally, the equilibrium is unstable if it is not stable.

Now we perform a linearization of the system (3.3): se�ing vni = uni − u∗i ,
(with u∗i that satisfying (3.4) for i = 1, . . . , a†) and omi�ing the second order or
higher terms we get: vn+1

1 = S0(U∗)

a†∑
i=1

biv
n
i +R0S

′
0(U∗)u∗1

a†∑
i=1

ωiv
n
i

vn+1
i = σi−1v

n
i−1, i = 2, . . . a†.

(3.6)

Concerning the stability of equilibria, we will refer to some classical results that
are discussed in [Cus98], where one can �nd more details.
Before presenting a stability result we de�ne another matrix type in addition to
those de�ned in chapter 1.

De�nition 3.1.2. Let P be a square matrix; we say that P is hyperbolic if all its
eigenvalues ζ satisfy |ζ| 6= 1.

Now let u∗ be the equilibrium and let vn = (vn1 , . . . , v
n
a†

) be the solution of
(3.6). As we know the transition matrix P (u∗) associated to (3.6), i.e. such that
(3.6) can be wri�en as vn+1 = P (u∗)vn, is a Leslie matrix (see chapter 1). �en
we have the following result:

�eorem 3.1.1. Let P (u∗) be irreducible, primitive and hyperbolic, and let r > 0
be its strictly dominant eigenvalue. �en

(i.) if r < 1, then u∗ = 0 is (locally asymptotically) stable;

(ii.) if r > 1, then u∗ = 0 is unstable.

Hence we can determine stability of an equilibrium from the eigenvalues of
the linearized system. �e system (3.6) for trivial equilibrium, has the form: vn+1

1 = S0(0)

a†∑
i=1

biv
n
i

vn+1
i = σi−1v

n
i−1, i = 2, . . . a†.

(3.7)

In this case we can apply theorems 3.1.1 and 1.2.2 obtaining that:
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3.1. Discrete models

Proposition 3.1.1. �e trivial equilibrium u∗ ≡ 0 is asymptotically stable if

S0(0)R0 = S0(0)

a†∑
i=1

Πibi < 1,

and is unstable if
S0(0)R0 > 1.

Concerning the nontrivial equilibria, analytic results for stability are not avail-
able in general, due to the more complicated form of the matrix P (u∗) (since it
contains negative terms if S ′0(U∗) < 0). To treat this problem numerical com-
putation are usually performed for every particular case. In our situation we
can however observe that, if S ′0(U∗) > 0, the associated equilibrium is unstable.
Indeed applying again �eorems 3.1.1 and 1.2.2 we obtain that

ξ =
n∑
i=1

Πi(biS0(U∗) +R0S
′
0(U∗)ωiu

∗
1) > 1,

so that r > 1.

3.1.2 Discrete model with crown distribution
Now we deal with a generalization of the previous model, that seems to be more
suitable with our data: indeed, as stated in previous chapter, Cap de Creus and
Porto�no populations present a high variability, i.e. several bigger colonies with
respect to the rest of the population; this implies that some members produce
more planulae and occupy a larger part of the ecological niche.
�e age structure of this model is the same (with a† age groups) as before, but we
add a distribution parameter ω that takes into account the average growth rate
of colonies (i.e. identi�es the average circular crown built every year within the
growth process). �erefore we insert a function g(ω) expressing this distribution
among recruits and consider the birth and survival rates bi(ω), σi(ω) as functions
of ω. Hence the model (3.3) is modi�ed in this way:

un+1
1 (ω) = g(ω)S0(Un)

a†∑
i=1

∫ ∞
0

bi(ω
′)uni (ω′)dω′

un+1
i (ω) = σi−1(ω)uni−1(ω), i = 2, . . . a†

Un =

a†∑
i=1

∫ ∞
0

uni (ω)Hi(ω)dω.

(3.8)
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3.1. Discrete models

Now we introduce some assumptions, that will be valid throughout this section,
concerning the functions Hi(ω), σi(ω) and g(ω), for i = 1, . . . a† :

‖g‖1 = 1; (3.9)

‖σi‖1, ‖σi‖∞ < 1; (3.10)

‖Hi‖1 <∞. (3.11)

�ese assumptions seem reasonable: indeed g represents a distribution on the
positive half-line, the quantities σi represent survival rates and the two assump-
tions mean that this rate is less than 1 for every age and growth level. On the
other hand the quantities Hi are positive weights.

Steady states and their stability

Here we �nd the nontrivial equilibria of (3.8), i.e. stationary distributionsu∗i (ω) 6=
0 for every age group: from (3.8) we obtain the following system

u∗1(ω) = g(ω)S0(U∗)
∑a†

i=1

∫∞
0
bi(ω

′)u∗i (ω
′)dω′

u∗i (ω) = σi−1(ω)u∗i−1(ω)

U∗ =
∑a†

i=1

∫∞
0
u∗i (ω)Hi(ω)dω.

(3.12)

�en, as in the previous model, we put Πi(ω) =
∏i−1

j=1 σj(ω) and from the second
equation of (3.12) we obtain

u∗i (ω) =
i−1∏
j=1

σj(ω)u∗1(ω) = Πi(ω)u∗1, i = 2, . . . a†. (3.13)

Now we consider X∗ =
∑a†

i=1

∫∞
0
bi(ω

′)u∗i (ω
′)dω′ and insert (3.13) and the �rst

equation of (3.12) in the last expression. So we get that

1 =

a†∑
i=1

∫ ∞
0

bi(ω)Πi(ω)g(ω)dωS0(U∗).

Now we de�ne

R0 =

a†∑
i=1

∫ ∞
0

bi(ω)Πi(ω)g(ω)dω (3.14)

the basic reproduction number (which can be interpreted as usual), and obtain,
for the nontrivial equilibria, the same equation reached in the previous section,
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3.1. Discrete models

R0S0(U∗) = 1. Starting from this equation we can repeat the arguments stated
above about existence of the equilibria with a cuto� function of type (3.1).
Now we deal with the stability of the detected equilibria. In de�ning this concept,
we rephrase De�nition 3.1.1, but using theL1-norm over (0,∞) instead of theRa†

norm. �en we linearize equation (3.8) at the equilibrium: se�ing

W n
i (ω) = uni (ω)− u∗i (ω).

and omi�ing the second order or higher terms we get the following system:
W n+1

1 (ω) = g(ω)S0(U∗)

a†∑
i=1

∫ ∞
0

bi(ω
′)W n

i (ω′)dω′

+g(ω)S ′0(U∗)

a†∑
i=1

∫ ∞
0

bi(ω
′)u∗i (ω

′)dω(Un − U∗)

W n+1
i (ω) = σi−1(ω)W n

i−1(ω), i = 2, . . . a†

(3.15)

where Un − U∗ =

a†∑
i=1

∫ ∞
0

W n
i (ω)Hi(ω)dω.

Concerning the trivial steady state the system (3.15) become: W n+1
1 (ω) = g(ω)S0(0)

∑a†
i=1

∫∞
0
bi(ω

′)W n
i (ω′)dω′

W n+1
i (ω) = σi−1(ω)W n

i−1(ω), i = 2, . . . a†.
(3.16)

In this case we prove a stability result:

Proposition 3.1.2. �e trivial equilibrium u∗ ≡ 0 is asymptotically stable if
S0(0)R0 < 1, and unstable if S0(0)R0 > 1.

Proof. We start by se�ing in (3.16) νn =
Wn

1 (ω)

g(ω)
; note that νn ∈ R+ is a constant

with respect to ω. Suppose �rst that S0(0)R0 < 1; we want to prove that

lim
n→∞

νn = 0. (3.17)

�is is su�cient for our �rst statement: indeed, from (3.9) and (3.10),
‖W n

1 ‖1 = νn and, from Hölder inequality, (if n > a†)

‖W n
i ‖1 = ‖ΠiW

n−i+1
1 ‖1 = ‖Πig‖1ν

n−i+1 < νn−i+1.
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3.1. Discrete models

Hence, if (3.17) holds, we have ‖W n
i ‖1 → 0 as n→∞ for every i = 2 . . . a†.

From the �rst equation of (3.16) we obtain a recursive relation for νn :

νn+1 = S0(0)

a†∑
i=1

∫ ∞
0

bi(ω)W n
i (ω)dω

= S0(0)

a†∑
i=1

∫ ∞
0

bi(ω)W n−i+1
1 (ω)Πi(ω)dω

= S0(0)

a†∑
i=1

∫ ∞
0

bi(ω)g(ω)Πi(ω)dωνn−i+1.

Now, considering (3.14), let δ such that S0(0)R0 ≤ δ < 1 and set

Mn = max
i=1,...,a†

νn−i+1.

We have (assuming that n > a†)

νn+1 ≤ δMn. (3.18)

From this estimate our �rst statement easily follows: indeed let ε > 0 and
M = max

i=1,...,a†
νi; if we choose n̄ such that δn̄ ≤ ε

M
, we obtain that νn ≤ ε,

for every n > (a† + 1)n̄.
To prove the second part, we proceed in the same way: from the recursive rela-
tion for νn we give a backward estimate based on mn = min

i=1,...,a†
νn−i+1, proving

that
lim
n→∞

νn =∞.

�is implies our second statement.

As before we cannot state generical results concerning the stability of non-
trivial steady states. However we refer to the next section for a useful reformu-
lation of problem (3.8) in the form (3.3).

Further analysis

Here we state some observations that may help to handle (3.8) in more detail.
Consider (3.8) and suppose n > a†, as done in the proof of the previous proposi-
tion: we set

vn+1 =
un+1

1 (ω)

g(ω)
=

a†∑
i=1

∫ ∞
0

bi(ω
′)uni (ω′)dω′S0(Un). (3.19)
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3.1. Discrete models

Now from the second equation of (3.8) we get, for all i = 2, . . . , a†

un+1
i (ω) = Πi(ω)un−i+1

1 (ω) = Πi(ω)g(ω)vn−i+1.

Hence we set αi(ω) = Πi(ω)g(ω) and wn+1
i = vn−i+1, obtaining that

un+1
i (ω)

αi(ω)
= wn+1

i , (3.20)

which is a constant.
�erefore inserting (3.20) into (3.8) we obtain a similar system which does not
depend on ω : 

wn+1
1 = S0(V n)

a†∑
i=1

hiw
n
i

wn+1
i = wni−1, i = 2, . . . a†.

V n =

a†∑
i=1

aiw
n
i ,

(3.21)

where wn+1
1 = vn+1, hi =

∫∞
0
bi(ω)αi(ω)dω and ai =

∫∞
0
Hi(ω)αi(ω)dω. Now

we can linearize the system and apply theorems 3.1.1 and 1.2.2 to investigate the
stability of nontrivial equilibria from the eigenvalues of the associated matrix.
For further development we refer to chapter 4, where we use this characteriza-
tion and compute numerically the eigenvalues of the linearized transition matrix
(of both Porto�no and Cap de Creus populations), to see whether nontrivial equi-
libria are stable.
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3.2. Continuous model

3.2 Continuous model
In this section we present a continuous model to describe the evolution of a red
coral population.
�e model is nonlinear and is based on the general nonlinear continuous one
displayed in the book of M. Iannelli [Ian94]. Moreover it shows strong analo-
gies with the second discrete model presented in the previous section: indeed it
contains a cuto� function (here named φ) with a weighted population distribu-
tion as argument. Furthermore we have added another distribution variable ω
that takes into account the average growth rate of a colony (as suggested in the
second chapter).
In the �rst part of the section we de�ne the continuous model and provide several
hypothesis that we assume throughout in this section. �en we prove existence
and uniqueness of the solution for a slight generalization of the displayed model.
Finally we deal with stationary solutions of the system and their stability. In this
framework we use some results proved in Appendix A, such as the Paley-Wiener
�eorem.

3.2.1 De�nition and hypotheses
We consider, as in the discrete case, a population structured with respect to the
age parameter a ∈ [0, a†), where a† < ∞, and there is a growth distribution
parameter ω ∈ (0,∞); t is the time variable.
�e model is the following:

pt(a, ω, t) + pa(a, ω, t) + µ(a, ω)p(a, ω, t) = 0

p(0, ω, t) = g(ω)

∫ a†

0

∫ ∞
0

β(σ, η)φ(U(t))p(σ, η, t)dηdσ

p(a, ω, 0) = p0(a, ω)

U(t) =

∫ a†

0

∫ ∞
0

p(a, ω, t)H(a, ω)dωda.

(3.22)

Now we introduce some related assumptions: we suppose that β, µ, p0 are con-
tinuous functions and β ∈ L1((0, a†) × (0,∞)), µ ∈ L1

loc([0, a†) × (0,∞)),
p0 ∈ L1((0, a†) × (0,∞)) and H ∈ L∞((0, a†) × (0,∞)). Furthermore we as-
sume that g ∈ L1(0,∞) with norm equal to 1, and

0 ≤ β(a, ω) ≤ β+ a.e. in [0, a†]× (0,∞); (3.23)

µ,H ≥ 0 a.e. in [0, a†]× (0,∞); (3.24)
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3.2. Continuous model ∫ a†

0

∫ ∞
0

µ(a, ω)dωda =∞. (3.25)

Finally we suppose that φ is continuosly di�erentiable in [0,∞). Now we set
Π(a, ω) = e−

∫ a
0 µ(σ,ω)dσ and we note that, as seen in the �rst chapter, problem

(3.22) can be integrated along the characteristics, obtaining:

p(a, ω, t) =

{
p0(a− t, ω) Π(a,ω)

Π(a−t,ω)
if a ≥ t

b(t− a, ω)Π(a, ω) if a < t.
(3.26)

where b(t, ω) is the solution of the following Volterra integral equation:

b(t, ω) = g(ω)φ(U(t))

[
F (t) +

∫ t

0

∫ ∞
0

K(t− σ, η)b(σ, η)dηdσ

]
(3.27)

where K(σ, ω) = β(σ, ω)Π(σ, ω) and

F (t) =

∫ ∞
t

∫ ∞
0

β(σ, η)p0(σ − t, η)
Π(σ, η)

Π(σ − t, η)
dσdη.

�e integral equation can be uniquely solved , as shown in the next section.

3.2.2 Existence and uniqueness
Here we prove the existence and uniqueness of the solution of a slight general-
ization of (3.22). �e proof generalizes a result proved in [Ian94], Ch.III §2 and
is based on the �xed point argument used there.
We consider a more general de�nition of fertility β and mortality µ: indeed they
now depend also on n quantities that represent the status of the population,
moreover the fertility depends on another distribution variable. Now in place
of (3.22) we consider, for ω ∈ (0,∞), a ∈ [0, a†] and t ∈ [0, T ], the following
problem:

pt(a, ω, t) + pa(a, ω, t) + µ(a, ω;S1(t), . . . , Sn(t))p(a, ω, t) = 0

p(0, ω, t) = g(ω)

∫ a†

0

∫ ∞
0

β(σ, η, ω;S1(t), . . . , Sn(t))p(σ, η, t)dηdσ

p(a, ω, 0) = p0(a, ω)

Si(t) =

∫ a†

0

∫ ∞
0

Hi(a, ω)p(a, ω, t)dωda i = 1, . . . , n.

(3.28)

Observe that for n = 1, S(t) = U(t) and β(σ, ω, η;U(t)) = β(σ, η)φ(U(t)),
µ(a, ω;U(t)) = µ(a, t) we get (3.22).
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Now we generalize the previous assumptions: we suppose that β, µ, p0 are con-
tinuous functions. Moreover we suppose that for every �xed x = (x1, . . . , xn) ∈
Rn, β(·, ·, ·,x) ∈ L1((0, a†)×(0,∞)2) and satis�es (3.23), µ(·, ·,x) ∈ L1

loc((0, a†)×
(0,∞)) and satis�es (3.24) and (3.25). Moreover we assume that for each M > 0
there exists H(M) > 0 such that, if |xi|, |x̃ı| ≤M for i = 1, . . . , n, then

|β(a, η, ω;x)− β(a, η, ω; x̃)| ≤ H(M)
n∑
i=1

|xi − x̃i|

|µ(a, ω;x)− µ(a, ω; x̃)| ≤ H(M)
n∑
i=1

|xi − x̃i|.

(3.29)

Furthermore we suppose thatHi belongs toL∞((0, a†)×(0,∞)) for i = 1, . . . , n
and that, since g is a distribution function, |g|1 = 1. For convenience of notation
we use | · |1 to indicate the L1-norm over the interval (0,∞) and ‖ ·‖1 to indicate
the L1-norm over (0, a†)× (0,∞).
�en we set

Π(a, t, x, ω;S) = exp

[
−
∫ x

0

µ(a− σ, ω;S1(t− σ), . . . , Sn(t− σ))dσ

]
(3.30)

and proceed as in the previous case: integrating (3.28), along the characteristics
we get:

p(a, ω, t) =

{
p0(a− t, ω)Π(a, t, t, ω;S) if a ≥ t

b(t− a, ω;S)Π(a, t, a, ω;S) if a < t
(3.31)

where b(t, ω;S) is the solution of the following Volterra equation:

b(t, ω;S) = g(ω)F (t, ω;S)

+g(ω)

∫ t

0

∫ ∞
0

K(t, t− σ, η, ω;S)b(σ, η;S)dηdσ
(3.32)

where

F (t, ω;S) =

∫ a†

t

∫ ∞
0

β(σ, η, ω;S(t))p0(σ − t, η)Π(σ, t, t, η;S)dηdσ (3.33)

and
K(t, σ, η, ω;S) = β(σ, η, ω;S(t))Π(σ, t, σ, η;S). (3.34)

We observe that if S ∈ C([0, T ],Rn) then, by (3.29),(3.33) and (3.34) it easily
follows that bothF (·, ω;S) andK(·, ·, η, ω;S) are continuous; hence the integral
equation (3.32) is uniquely solvable. Moreover, it can be easily shown that, any
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3.2. Continuous model

p(·, ·, t) satisfying (3.31) must belong toC([0, T ], L1[(0, a†)×(0,∞)]). Notice that
(3.31) is not a de�nition of p, since the function S contains p itself (see (3.28)).
Hence, we must solve (3.31), i.e. �nd a function p, with a suitable regularity,
satisfying (3.31).
From (3.29), assuming that S(t), S̃(t) ∈ C([0, T ],Rn) with |Si(t)|, |S̃i(t)| ≤ M ,
i = 1, . . . , n and t ∈ [0, T ], we get:

|β(a, η, ω;S(t))− β(a, η, ω; S̃(t))| ≤ H(M)
n∑
i=1

|Si(t)− S̃i(t))| (3.35)

|Π(a, t, x, ω;S)− Π(a, t, x, ω; S̃)| ≤

≤
∣∣∣∣ ∫ x

0

µ(a− σ, ω;S(t− σ))− µ(a− σ, ω; S̃(t− σ))dσ

∣∣∣∣
≤ H(M)

n∑
i=1

∫ t

t−x
|Si(σ)− S̃i(σ)|dσ.

(3.36)

Now we can prove a preliminary estimate about b(t, ω;S) :

Lemma 3.2.1. Let S, S̃ ∈ C([0, T ],Rn) with |Si(t)|, |S̃i(t)| ≤ M, i = 1, . . . , n
and t ∈ [0, T ] and let b the solution of (3.32). �en:

|b(t, ·;S)|1 ≤ β+e
β+t‖p0‖1 (3.37)

and there exists L(M) > 0 such that:

|b(t, ·;S)− b(t, ·; S̃)|1 ≤

≤ L(M)‖p0‖1

n∑
i=1

[
|Si(t)− S̃i(t)|+

∫ t

0

|Si(σ)− S̃i(σ)|dσ
] (3.38)

Proof. For the �rst part we apply (3.23) and (3.30) to (3.33), obtaining that

F (t, ω;S) ≤ β+

∫ ∞
t

∫ ∞
0

p0(σ − t, η)dηdσ ≤ β+‖p0‖1,

whereas by (3.34) and (3.23) we get∫ t

0

∫ ∞
0

K(t, t− σ, η, ω;S)b(σ, η;S)dωdη ≤ β+

∫ t

0

∫ ∞
0

b(σ, η;S)dηdσ.

Hence by (3.32), integrating with respect to ω in (0,∞), we get:∫ ∞
0

b(t, ω;S)dω ≤ β+‖p0‖1 + β+

∫ t

0

∫ ∞
0

b(σ, ω;S)dωdσ.
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Hence by Grönwall inequality (lemma 1.2.1 chapter 1 §2) we obtain (3.37).
To prove (3.38) we have to work a li�le more: by (3.32) we have

|b(t, ·;S− b(t, ·; S̃)|1 ≤ I + II,

where

I = |F (t, ω;S)− F (t, ω; S̃)|,

II =
∫ t

0

∫∞
0
|K(t, t− σ, η, ω;S)b(σ, η;S)−K(t, t− σ, η, ω; S̃)b(σ, η; S̃)|dηdσ.

Now examining the two terms, by (3.35) and (3.36) we see that:

I ≤
∫ ∞
t

∫ ∞
0

|β(σ, η, ω;S)− β(σ, η, ω; S̃)|p0(σ − t, η)dηdσ

+β+

∫ ∞
0

∫ ∞
0

|Π(σ + t, t, t, ω;S)− Π(σ + t, t, t, ω; S̃)|p0(σ, ω)dωdσ

≤ ‖p0‖1H(M)
n∑
i=1

[
|Si(t)− S̃i(t)|+ β+

∫ t

0

|Si(σ)− S̃i(σ)|dσ
]
,

and by (3.37)

II ≤
∫ t

0

∫ ∞
0

|β(σ, η, ω;S)− β(σ, η, ω; S̃)|b(t− σ, η;S)|dηdσ

+β+

∫ t

0

∫ ∞
0

|Π(σ, t, σ, ω;S)− Π(σ, t, σ, ω; S̃)|b(t− σ, ω;S)|dωdσ

+β+

∫ t

0

∫ ∞
0

|b(σ, ω;S)− b(σ, ω; S̃)||dωdσ

≤ β+‖p0‖1H(M)

∫ t

0

eβ+σdσ

[ n∑
i=1

|Si(t)− S̃i(t)|
]

+β2
+‖p0‖1H(M)

∫ t

0

eβ+σdσ
n∑
i=1

∫ t

0

|Si(r)− S̃i(r)|dr

+β+

∫ t

0

∫ ∞
0

|b(σ, ω;S)− b(σ, ω; S̃)|dωdσ.

�en summing the two terms obtained and integrating over [0,∞) we have that:∫ ∞
0

|b(t, ω;S)− b(t, ω; S̃)|dω

≤ 2H(M)(1 + β+)eb+T‖p0‖1

n∑
i=1

[
|Si(t)− S̃i(t)|+

∫ t

0

|Si(σ)− S̃i(σ)|dσ
]

+β+

∫ t

0

∫ ∞
0

|b(σ, ω;S)− b(σ, ω; S̃)|dωdσ.
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3.2. Continuous model

Using lemma 1.2.2, chapter 1 §2, we obtain (3.38) with L(M) = 2H(M)(1 +
β+)e2β+T .

Now, we consider the spaceE = C([0, T ], L1[(0, a†)×(0,∞)]) and the closed
subset

K = {q ∈ E|q ≥ 0, ‖q(·, ·, t)‖1 ≤M}. (3.39)
For q ∈ K we set Q(t) = (Q1(t), . . . , Qn(t)), with

Qi(t) =

∫ a†

0

∫ ∞
0

Hi(a, ω)q(a, ω, t)dωda (3.40)

and de�ne, for a �xed p0 ∈ L1[(0, a†)× (0,∞)], a map Tp0 : K ⊂ E → E by:

(Tp0q)(a, t, ω) +

{
p0(a− t, ω)Π(a, t, t, ω;Q(t)) if a ≥ t

b(t− a, ω;Q(t))Π(a, t, a, ω;Q(t)) if a < t.
(3.41)

�e other functions (β, µ, etc.) are supposed to be assigned. Note the analogy
between this de�nition and (3.31): now we �nally obtain the desired solution as
a �xed point of the de�ned map.

Lemma 3.2.2. Let K be de�ned in (3.39), let p0 ∈ L1[(0, a†) × (0,∞)] be a �xed
initial datum and take the constantM in (3.29) such that:

M > eβ+T‖p0‖1 (3.42)

then

1. �e operator Tp0 de�ned in (3.41) maps K into itself;

2. for q, q̃ ∈ K, t ∈ [0, T ], we have:

‖(Tp0q)(·, ·, t)− (Tp0 q̃)(·, ·, t)‖1 ≤

≤ C(M,T )

∫ t

0

‖q(·, ·, σ)− q̃(·, ·, σ)‖1dσ.
(3.43)

Proof. For the �rst point, let q ∈ K; as (Tp0q) ≥ 0, from (3.37) and (3.42) we have:

‖(Tp0q)(·, ·, t)‖1 =

∫ t

0

∫ ∞
0

b(t− a, ω;Q)Π(a, t, a, ω;Q)dωda

+

∫ a†

t

∫ ∞
0

p0(a− t, ω)Π(a, t, t, ω;Q)dωda

≤
∫ t

0

∫ ∞
0

b(a, ω;Q)dωda+ ‖p0‖1 ≤ eβ+T‖p0‖1 < M.
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3.2. Continuous model

For the second point, let q, q̃ ∈ K; then

Qi(t) =

∫ a†

0

∫ ∞
0

Hi(a, ω)q(a, t, ω)dωda ≤ H+‖q(·, ·, t)‖1 ≤ H+M

where H+ = maxi=1,...,n ‖Hi‖∞. Hence
‖(Tp0q)(·, ·, t)− (Tp0 q̃)(·, ·, t)‖1 ≤ I + II + III

where

I =

∫ t

0

∫ ∞
0

|b(t− a, ω;Q)− b(t− a, ω; Q̃)|Π(a, t, a, ω;Q)dωda,

II =

∫ t

0

∫ ∞
0

b(t− a, ω; Q̃)|Π(a, t, a, ω;Q)− Π(a, t, a, ω; Q̃)|dωda,

III =

∫ a†

t

∫ ∞
0

p0(a− t, ω)|Π(a, t, t, ω;Q)− Π(a, t, t, ω; Q̃)|dωda.

Now, using (3.38), we have:

I ≤ L(H+M)‖p0‖1

n∑
i=1

∫ t

0

[
|Qi(a)− Q̃i(a)|da+

∫ a

0

|Qi(σ)− Q̃i(σ)|dσ
]
da

≤ L(H+M)‖p0‖1(1 + T )

( n∑
i=1

∫ t

0

|Qi(σ)− Q̃i(σ)|dσ
)
.

Using (3.36) and (3.37):

II ≤ β+‖p0‖1H(H+M)
n∑
i=1

∫ t

0

eaβ+
∫ t

a

|Qi(σ)− Q̃i(σ)|dσda

= ‖p0‖1H(H+M)(eβ+t − 1)
n∑
i=1

∫ t

0

|Qi(σ)− Q̃i(σ)|dσ,

and �nally

III ≤ ‖p0‖1H(H+M)
n∑
i=1

∫ t

0

|Qi(σ)− Q̃i(σ)|dσ.

Summing all terms and using (3.40) we have:
‖(Tp0q)(·, ·, t)− (Tp0 q̃)(·, ·, t)‖1 ≤

≤ ‖p0‖1[(1 + T )L(H+M) + eβ+TH(H+M)]
n∑
i=1

∫ t

0

|Qi(σ)− Q̃i(σ)|dσ

≤ nH+‖p0‖1[(1 + T )L(H+M) + eβ+TH(H+M)]

∫ t

0

‖q(·, ·, σ)− q̃(·, ·, σ)‖1dσ
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3.2. Continuous model

Before giving the existence result we need another observation, which we
express as a Lemma:

Lemma 3.2.3. Let Tp0 be the map de�ned by (3.41). �en for every integer N > 0,

‖T Np0 q − T
N
p0
q̃‖E ≤

C(M,T )NTN

N !
‖q − q̃‖E. (3.44)

Proof. Starting from (3.43), we prove by induction that for all n > 0:

‖(T np0q)(·, ·, t)−(T np0 q̃)(·, ·, t)‖1 ≤ C(M,T )n
∫ t

0

(t− r)n−1

(n− 1)!
‖q(·, ·, t)−q̃(·, ·, t)‖1dr.

this estimate, by integration, leads to the thesis.
Iterating (3.43) twice we obtain that:

‖(T 2q)(·, ·, t)− (T 2q̃)(·, ·, t)‖1 ≤ C(M,T )2

∫ t

0

∫ σ

0

‖q(·, ·, r)− q̃)(·, ·, r)‖1drdσ

≤ C(M,T )2

∫ t

0

(t− r)‖q(·, ·, r)− q̃)(·, ·, r)‖1dr

�e inductive step is similar:

‖(T n+1q)(·, ·, t)− (T n+1q̃)(·, ·, t)‖1 ≤

≤ C(M,T )n+1

∫ t

0

∫ σ

0

(σ − r)n−1

(n− 1)!
‖q(·, ·, r)− q̃)(·, ·, r)‖1drdσ

= C(M,T )n+1

∫ t

0

‖q(·, ·, r)− q̃)(·, ·, r)‖1dr

∫ t−r

0

sn−1

(n− 1)!
ds.

�e proof is complete.

Now we can prove the expected result:

�eorem 3.2.1. Let p0 ∈ L1[(0, a†)× (0,∞)] andM be as in (3.42); then there is
one and only one p ∈ K verifying (3.31).
Moreover we have, for p and p̃ coming from two di�erent initial conditions p0 and
p̃0:

1. ‖p(·, ·, t)‖1 ≤ eβ+t‖p0‖1;

2. ‖p(·, ·, t)− p̃(·, ·, t)‖1 ≤ eC(M,T )t‖p0 − p̃0‖1;

3. lim
h→0

1

h

[
p(a+ h, ω, t+ h)− p(a, ω, t)

]
= −µ(a, ω;S)p(a, ω, t)

a.e. in [0, a†]× [0,∞)× R+.
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Proof. From (3.44) we get that for N su�ciently large T Np0 is a contraction, so
that it admits a unique �xed point. From (3.42) we obtain also the �rst property.
To prove the second property we use (3.43):

‖p(·, ·, t)− p̃(·, ·, t)‖1 ≤
≤ ‖(Tp0p)(·, ·, t)− (Tp0 p̃)(·, ·, t)‖1 + ‖(Tp0 p̃)(·, ·, t)− (Tp̃0 p̃)(·, ·, t)‖1

≤ C(M,T )

∫ t

0

|p(·, ·, σ)− p̃(·, ·, σ)|1dσ + ‖p0 − p̃0‖1;

now the thesis follow from Grönwall inequality. �e proof of 3. follows by a
straightforward direct study of (3.31), using (3.29), which we omit for brevity.

3.2.3 Stationary solutions
In this section we look for stationary solutions of (3.22), i.e. p(a, ω, t) = p∗(a, ω).
Namely such solutions must satisfy, for a ∈ [0, a†] and ω ∈ (0,∞), the system:

p∗a(a, ω) + µ(a, ω)p∗(a, ω) = 0

p∗(0, ω) = g(ω)

∫ a†

0

∫ ∞
0

β(σ, η)φ(U∗)p∗(σ, η)dηdσ

U∗ =

∫ a†

0

∫ ∞
0

p∗(a, ω)H(a, ω)dωda

(3.45)

Obviously we have the trivial solution, i.e. p∗(a, ω) ≡ 0; on the other hand
nontrivial solutions have the form:

p∗(a, ω) = Π(a, ω)p∗(0, ω), (3.46)

now, as in the discrete model, we set

η∗ =
p(0, ω)

g(ω)
(3.47)

so that, from (3.46) and second equation of (3.45) we get:

η∗ = φ(U∗)η∗
∫ a†

0

∫ ∞
0

β(a, ω)g(ω)Π(a, ω)dωda.

Now se�ing

R0 =

∫ a†

0

∫ ∞
0

β(a, ω)g(ω)Π(a, ω)dωda, (3.48)
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we get, for the nontrivial stationary solutions the same equation obtained in the
discrete model

φ(U∗)R0 = 1. (3.49)
From (3.46),(3.47) and the third equation of (3.45) we get the other necessary
equation to identify the stationary solutions:

η∗ =
U∗∫ a†

0

∫∞
0
H(a, ω)g(ω)Π(a, ω)dωda

. (3.50)

From the above observations we note the strict analogy with the discrete case,
indeed using a cuto� function of the form (3.1), we can repeat the same arguments
concerning the number of stationary solutions.

3.2.4 Stability of stationary solutions
In this section we investigate the behaviour of solutions of (3.22) when the initial
conditions are close to a stationary distribution. First of all we de�ne the concept
of stability of an equilibrium in this context:

De�nition 3.2.1. A stationary solution p∗(a, ω) is stable if for every ε > 0 there
exists δ > 0 such that, if p0(a, ω) satis�es

‖p0(·, ·)− p∗(·, ·)‖1 ≤ δ,

then the corresponding solution p(·, ·, t) satis�es:

‖p(·, ·, t)− p∗(·, ·)‖1 < ε ∀t ≥ 0.

�e solution is asymptotically stable if it is stable and we can choose δ such that:

lim
t→∞
‖p(·, ·, t)− p∗(·, ·)‖1 = 0.

Finally p∗(a, ω) is unstable if it is not stable.

Now we deal with the linearization procedure for the Volterra equation (3.27).
With the above notations we de�ne for t ≥ 0

S(t) = η(t)− η∗

W (t) = U(t)− U∗

q0(a, ω) = p0(a, ω)− p∗(a, ω)

where
η(t) =

p(0, ω, t)

g(ω)
.
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Now we express the equation (3.27) near a stationary solution, as a linear integral
equation plus a nonlinear term, with the form (A.27) (see Appendix A). Using
(3.26) we obtain:

S(t) =

∫ t

0

S(a)M(t−a)da+R0η
∗φ′(U∗)W (t)+PS[S(·),W (·), q0(·)](t) (3.51)

W (t) =

∫ t

0

S(a)N(t− a)da+ PW [S(·),W (·), q0(·)](t) (3.52)

where PS,PW are the nonlinear terms and

N(a) =

∫ ∞
0

β(a, ω)g(ω)H(a, ω)dω;

M(a) =

∫ ∞
0

β(a, ω)g(ω)Π(a, ω)φ(U∗)dω.

We observe that P [S(·),W (·), q0(·)](t) = (PS,PW )(t) satis�es the following
assumptions:

P [0, 0, 0] = 0

‖P(0, 0, q0)‖∞ ≤ B‖q0‖1

where B is a postive constant. Moreover there exists ξ(s) with lims→0 ξ(s) = 0,
such that, for ‖S‖∞, ‖S̃‖∞, ‖W‖∞, ‖W̃‖∞, ‖q0‖1 < s

‖P [S,W, q0]− P [S̃, W̃ , q0]‖∞ ≤ ξ(s)[‖S − S̃‖∞ + ‖W − W̃‖∞].

Note that this conditions are similar to ,(A.28)-(A.30). �en we can apply �e-
orem A.2.4 and the Paley-Wiener �eorem (�eorem A.2.3), which lead to the
following characteristic equation:

det(I − α− Â(λ)) = 0 ∀<λ ≥ 0, (3.53)

where
A(t) =

[
M(t) 0
N(t) 0

]
, (3.54)

and
α =

[
0 R0η

∗φ′(U∗)
0 0

]
. (3.55)

Now by �eorem A.2.4 we have the following result:

�eorem 3.2.2. Let p∗(a, ω) be a solution of (3.45). If (3.53) has only roots with
negative real part, then p∗ is asymptotically stable.
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3.2. Continuous model

Proof. Let (η∗, U∗) constant solutions of (3.49) and (3.50), associated to the sta-
tionary solution p∗(a, ω). �en by �eorem A.2.4 for every ε > 0 there exists
η > 0 such that, if

‖p0 − p∗‖1 = ‖q0‖1 ≤ η (3.56)

then
‖S‖∞, ‖W‖∞ < ε, and lim

t→∞
S(t) = lim

t→∞
W (t) = 0. (3.57)

Hence we have:

sup
t∈[0,a†]

‖p(·, ·, t)− p∗(·, ·)‖1 ≤ ‖p0 − p∗‖1 + a† sup
t≥0
|S(t)|

sup
t>a†

‖p(·, ·, t)− p∗(·, ·)‖1 ≤ a† sup
t≥0
|S(t)|.

�en we get
‖p(·, ·, t)− p∗(·, ·)‖1 ≤ η + a†ε ∀t ≥ 0

and
lim
t→∞
‖p(·, ·, t)− p∗(·, ·)‖1 = 0.

In our speci�c case, equation (3.53) leads to:

M̂(λ) +R0η
∗φ′(U∗)N̂(λ) = 1. (3.58)

Concerning the trivial solution, we see that (3.58) takes the form (A.2), (see Ap-
pendix A) and we have:

Proposition 3.2.1. �e trivial equilibrium p∗(a) ≡ 0 is asymptotically stable if
R0φ(0) < 1 and is unstable ifR0φ(0) > 1.

Proof. From Proposition A.1.1, if
∫∞

0
K(a)da < 1 then all the roots of K̂(λ) = 1

have negative real part, but this integral is equal toR0φ(0). �e unstable case is
analog.

�e condition for stability or unstability of the trivial equilibrium is the same
as in the discrete case. Observe that we can also treat the equation (3.58) in its
general form: indeed applying �eorem A.4 we state that, if φ′(U∗) < 0, for
certain values ofR0 and η∗ the nontrivial equilibrium is asymptotically stable.
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3.3. Modelling the di�usion of planulae above a limited space

3.3 Modelling the di�usion of planulae above a
limited space

According to the reproductive cycle of Corallium Rubrum, fecundated larvae is-
sued from the feminine gonads will spread among the surrounding environment
for several days. If they a�ach in the ground they become a colony in about a
month. Moreover, during these days they do not travel very far from parental
colonies; hence we can suppose that do not leave a se�lement. Hence we can
study the di�usion process together with the dynamical system that rule the
evolution of a population.
�is chapter is devoted to improve the older models considering the di�usion
of the larvae. In particular we consider the �rst discrete model (3.3) and intro-
duce, for every year, a continuous component of di�usion within a limited space.
In the �rst section we consider the di�usion problem in a compact one-dimensional
interval; in the second one we work in a 2-dimensional disk. Di�erently from the
previous chapters, here we name a the age of the individuals and m the year in
the timeline.

3.3.1 Di�usion on an interval
We start with (3.3) and express the recruits as a di�usion integral of the planulae
within the surrounding space. Hence we �x L ∈]0,∞[ and set

um+1
1 (x) =

∫ ∞
0

pm(t, x)S0(U(x))dt, x ∈ [0, L]

um+1
a (x) =

a†∑
a=1

σa−1u
m
a−1(x), a = 2 . . . a†

(3.59)

where pm(t, x) represents the number of planulae in position x at the year m
and time t; whereas U, σ are analogous to the basic model. Now p satis�es the
following equation:

pmt = pmxx − µpm − S0(U(x))pm t ∈ [0, T ], x ∈ [0, L]

pm(0, x) =

a†∑
a=1

bau
m
a (x) x ∈ [0, L]

(3.60)

where µ is the death rate of planulae that is supposed to be constant. We observe
that:

• the integral (3.59) is done between 0 and∞, despite it re�ects only a one
year di�usion of planulae: this is not a problem, since we suppose the
mortality be enough strong to extinguish the planulae in a short time;
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• in the �rst equation of (3.60) we can suppose that S0(U(x)) = 0: indeed
this term is negligible with respect to the other terms of the equation due
to the high mortality of the planulae;

• we have to add boundary conditions to (3.60) that can be of Dirichlet type,
i.e. pm(t, 0) = pm(t, L) = 0, or of Neumann type, i.e. d

dx
pm(t, 0) =

d
dx
pm(t, L) = 0.

Dirichlet boundary condition

We start calculating the solutions of (3.60) and then we replace them in (3.59).
From now we omit the index m for convenience of notation.
We apply the separation of variables looking for a solution of the form p(t, x) =
T (t)X(x), then we plug it into (3.60) obtaining two ordinary di�erential equa-
tions, one for X(x) and the other for T (t) with solutions:

T (t) = e−(λ+µ)tT (0),

X(x) = A cos(
√
−λx) +B sin(

√
−λx)

where A,B, λ are real constants with λ < 0. �en we impose the initial and
boundary conditions and obtain (using the expansion in Fourier series) that λ =
−n2, so that

p(t, x) =
∞∑
n=1

cn sin

(
nπ

L
x

)
e−(n

2π2

L2 +µ)t, (3.61)

where

cn =

a†∑
a=1

baγn,a

with γn,a coe�cients of the sine expansions of ua(x), a = 1, . . . , a†. Now we
insert (3.61) into (3.59), integrate with respect to t ( reintroducing the index m)
and obtain:

um+1
1 (x) = S0(Um(x))

∞∑
n=1

(
n2π2

L2

)−1( a†∑
a=1

γmn,aba

)
sin

(
nπ

L
x

)
um+1
a (x) = σa−1

∞∑
n=1

γmn,aba sin(
nπ

L
x).

(3.62)

Neumann boundary condition

Now we consider the problems (3.59) and (3.60) with Neumann boundary con-
ditions ( i.e. d

dx
pm(t, 0) = d

dx
pm(t, L) = 0). We procede as in Dirichlet case,
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obtaining for (3.60) the following solution:

p(t, x) =
∞∑
n=1

dn cos

(
nπ

L
x

)
e−(n

2π2

L2 +µ)t; (3.63)

again

dn =

a†∑
a=1

baδn,a

where δn,a are coe�cients of the cosine expansions of ua(x). Again substituting
in (3.59) we get:

um+1
1 (x) = S0(Um(x))

∞∑
n=1

(
n2π2

L2

)−1( a†∑
a=1

δmn,aba

)
sin

(
nπ

L
x

)
um+1
a (x) = σa−1

∞∑
n=1

δmn,aba sin(
nπ

L
x).

(3.64)

3.3.2 Di�usion on a disk

In this section we study the di�usion on a disk D of unitary radius. �e problem
can be presented in the same way than the one dimensional case, indeed the
equations for umi are the same of (3.59) and that one describing the evolution of
pm is analogous:

pmt (t, x, y) = (∆xy − µ)pm(t, x, y) t ∈ [0, T ], (x, y) ∈ D

pm(0, x, y) =

a†∑
a=1

bau
m
a (x, y) (x, y) ∈ D

(3.65)

with
pm(t, x, y) = 0 ∀(x, y) ∈ ∂D, ∀t ∈ [0, T ] (3.66)

for Dirichlet boundary conditions, and

∂

∂ν
pm(t, x, y) = 0 ∀(x, y) :∈ ∂D, ∀t ∈ [0, T ] (3.67)

for Neumann boundary conditions (ν is the unit outward normal vector, i.e.
ν(x, y) = (x, y) ∀(x, y) ∈ ∂D ).

48



3.3. Modelling the di�usion of planulae above a limited space

Dirichlet boundary condition

As in one dimensional case we use the separation of variables. However we �rst
transform problem (3.65) in polar coordinates, obtaining the following one, for
(r, θ) ∈ [0, 1]× [0, 2π[ and t ∈ [0, T ]:

∂p

∂t
(t, r, θ) =

1

r2

∂2p

∂θ2
(t, r, θ) +

1

r

∂

∂r

(
r
∂p

∂r
(t, r, θ)

)
− µp(t, r, θ)

p(0, r, θ) =

a†∑
a=1

bau
m
a (r, θ)

p(t, 1, θ) = 0.

(3.68)

We look for a solution of the form p(t, r, θ) = X(r)Y (θ)T (t), and plug it into
(3.68) to transform our PDE in three ODE. Namely we have:

T ′(t)

T (t)
=

1

r2

Y ′′(θ)

Y (θ)
+

1

r

X ′(r)

X(r)
+
X ′′(r)

X(r)
− µ.

Now we put
1

r2

Y ′′(θ)

Y (θ)
+

1

r

X ′(r)

X(r)
+
X ′′(r)

X(r)
= −λ

where λ is a constant and obtain that T (t) = e−(λ+µ)tT (0). Pu�ing

Y ′′(θ)

Y (θ)
= −β

where β is another constant, we get the two remaining ODE (that are both of
Sturm-Liouville type):

Y ′′(θ) + βY (θ) = 0, (3.69)

r[rX ′(r)]′ + (λr2 − β)X(r) = 0, (3.70)

where λ and β are supposed given. To solve (3.69) we need to impose suitable
boundary conditions. As θ represents an angle, we must assume 2π−periodicity
of the function Y :

Y (0) = Y (2π).

For this problem we obtain two types of solutions:

• the linear one: Y (θ) = A+Bθ, corresponding to β = 0;

• the families of indipendent solutions generated byYn,1 = cosnθ andYn,2 =
sinnθ, corresponding to β = n2.
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Concerning (3.70), we replace β with n2, and transform this equation in the usu-
ally Sturm-Liouville form:

[rX ′]′ − n2

r
X + λrX = 0 (3.71)

Note that r = 0 is a singular point for the di�erential equation. �erefore we
require as boundary condition the boundedness ofX as r → 0, and the condition
X(1) = 0, as requested by (3.68). Suppose �rst that λ > 0. �en the change of
variables s = r

√
λ transforms (3.71) into the Bessel equation of order n, (B.7)

s2X ′′ + sX ′ + (s2 − n2)X = 0. (3.72)

Hence the solution of (3.72) can be expressed as a linear combination of Bessel
functions of �rst and second type and order n :

X(r) = AJn(s) +BYn(s) = AJn(
√
λr) +BYn(

√
λr).

But Yn is unbounded as r → 0, so that B = 0 and we use only the Bessel
functions of �rst type Jn. If we impose the other boundary condition, we obtain
that Jn(

√
λ) = 0, that is

√
λmust be a root of Jn. Now Jn has an in�nite number

of positive zeros, which we will denote by znk , so we put λnk = (znk )2. �en for
each n the set of the eigenvalues of (3.72) is {λni }i∈N+ and the eigenfunctions are
{φni }i∈N+ , where φnk(r) = Jn(znk r).
Now we deal with the problem of satisfying the initial condition: we start with
a solution of this form:

p(t, r, θ) =
∞∑
k=1

c0
kφ

0
k(r)e

−((z0k)2+µ)t

+
∞∑

n,k=1

φnk(r)[cnk cosnθ + dnk sinnθ]e−((znk )2+µ)t

(3.73)

where we have to determine the cnk , dnk in order to satisfy the second equation of
(3.68). �at is equivalent, for every a = 1, . . . , a† to write ua(r, θ) as a double
Fourier-Bessel series:

ua(r, θ) =
∞∑
k=1

α0
k,aφ

0
k(r) +

∞∑
n,k=1

φnk(r)[αnk,a cosnθ + γnk,a sinnθ]. (3.74)

From �eorem B.2.3 in Appendix B we have that if ua(r, θ) ∈ L2([0, 2π] ×
[0, 1], rdrdθ) then it can be expanded in Fourier-Bessel series. Hence we con-
sider ua(r, θ) as a function of θ with r �xed and writing it as a Fourier series:

ua(r, θ) = η0,a(r) +
∞∑
n=1

[ηn,a(r) cosnθ + ξn,a sinnθ]

50
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where
η0,a(r) =

1

2π

∫ 2π

0

ua(r, θ)dθ,

ηn,a(r) =
1

π

∫ 2π

0

ua(r, θ) cosnθdθ,

ξn,a(r) =
1

π

∫ 2π

0

ua(r, θ) sinnθdθ.

(3.75)

�en we expand the ηn,a, ξn,a in Fourier-Bessel series:

η0,a(r) =
∞∑
k=1

η0,a
k φ0

k(r), ηn,a(r) =
∞∑
k=1

ηn,ak φnk(r),

ξn,a(r) =
∞∑
k=1

ξn,ak φnk(r)

(3.76)

where

η0,a
k =

∫ 1

0

η0,a(r)φ
0
k(r)rdr∫ 1

0

(φ0
k(r))

2rdr

, ηn,ak =

∫ 1

0

ηn,a(r)φ
0
k(r)rdr∫ 1

0

(φnk(r))2rdr

,

ξn,ak =

∫ 1

0

ξn,a(r)φ
0
k(r)rdr∫ 1

0

(φnk(r))2rdr

.

(3.77)

�en substituting (3.75) into (3.77) we obtain the coe�cients for (3.74)

α0
k,a =

∫ 1

0

∫ 2π

0

ua(r, θ)φ
0
k(r)rdθdr∫ 1

0

∫ 2π

0

(φ0
k(r))

2rdr

,

αnk,a =

∫ 1

0

∫ 2π

0

ua(r, θ)φ
n
k(r) cosnθrdθdr∫ 1

0

∫ 2π

0

(φnk(r))2rdr

,

γnk,a =

∫ 1

0

∫ 2π

0

ua(r, θ)φ
n
k(r) sinnθrdθdr∫ 1

0

∫ 2π

0

(φnk(r))2rdr

.
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Similarly we obtain the expansions for all functions ua within the initial condi-
tions. �erefore substituting them in (3.73), we obtain �nally:

p(t, r, θ) =
∞∑
k=1

(

a†∑
a=1

α0
k,aba)φ

0
k(r)e

−((z0k)2+µ)t

+
∞∑

n,k=1

[
(

a†∑
a=1

αnk,aba) cosnθ + (

a†∑
a=1

γnk,aba) sinnθ

]
φnk(r)e−((znk )2+µ)t.

(3.78)

Now integrating with respect to twe obtain the recurrence relation (3.59), where
the index m again appears:

um+1
1 (r, θ) = S0(Um(r, θ))

[ ∞∑
k=1

(

a†∑
a=1

α0,m
k,a ba)

φ0
k(r)

((z0
k)

2 + µ)

+
∞∑

n,k=1

[
(

a†∑
a=1

αn,mk,a ba) cosnθ + (

a†∑
a=1

γn,mk,a ba) sinnθ

]
φnk(r)

((znk )2 + µ)

]

um+1
a (r, θ) = σa−1

∞∑
k=1

η0,a
k,mφ

0
k(r)

+σa−1

∞∑
n,k=1

φnk(r)(ηn,ak,m cosnθ + ξn,ak,m sinnθ)

(3.79)

Neumann boundary condition

In this case the problem is the following:

∂p

∂t
(t, r, θ) =

1

r2

∂2p

∂θ2
(t, r, θ) +

1

r

∂

∂r

(
r
∂p

∂r
(t, rθ)

)
− µp(t, r, θ)

p(0, r, θ) =

a†∑
a=1

bau
m
a (r, θ)

pr(t, 1, θ) = 0

(3.80)

We can proceed as above, using the separation of variables. �e only di�erence
is that the set of eigenvalues of (3.72) with Neumann boundary conditions is
{λni }i∈N+ , with λnk = (ξnk )2, where ξnk is the k-th zero of J ′n. On the other hand,
the set of eigenfunction is {ψni }i∈N+ where ψnk (r) = Jn(ξnk r) (Dini functions,
see Appendix B). Except for that, the computations are the same, i.e. we expand
the initial condition in Dini series and calculate the solution of (3.80). Observe
that the expansion in Dini series is valid, since the new system of eigenfunctions
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is again orthonormal and complete (see Appendix B). �erefore the solution of
(3.80) is:

p(t, r, θ) =
∞∑
k=1

(

a†∑
a=1

δ0
k,aba)ψ

0
k(r)e

−((ξ0k)2+µ)t

+
∞∑

n,k=1

[
(

a†∑
a=1

δnk,aba) cosnθ + (

a†∑
a=1

νnk,aba) sinnθ

]
ψnk (r)e−((ξnk )2+µ)t

(3.81)

where

δ0
k,a =

∫ 1

0

∫ 2π

0

ua(r, θ)ψ
0
k(r)rdθdr∫ 1

0

∫ 2π

0

(ψ0
k(r))

2rdr

,

δnk,a =

∫ 1

0

∫ 2π

0

ua(r, θ)ψ
n
k (r) cosnθrdθdr∫ 1

0

∫ 2π

0

(ψnk (r))2rdr

,

νnk,a =

∫ 1

0

∫ 2π

0

ua(r, θ)ψ
n
k (r) sinnθrdθdr∫ 1

0

∫ 2π

0

(ψnk (r))2rdr

.

Now substituting it in (3.59) and integrating with respect to t we obtain:

um+1
1 (r, θ) = S0(Um(r, θ))

[ ∞∑
k=1

(

a†∑
a=1

δ0,m
k,a ba)

ψ0
k(r)

((ξ0
k)

2 + µ)

+
∞∑

n,k=1

[
(

a†∑
a=1

δn,mk,a ba) cosnθ + (

a†∑
a=1

νn,mk,a ba) sinnθ

]
ψnk (r)

((ξnk )2 + µ)

]

um+1
a (r, θ) = σa−1

∞∑
k=1

η0,a
k,mφ

0
k(r)

+σa−1

∞∑
n,k=1

φnk(r)(ηn,ak,m cosnθ + ξn,ak,m sinnθ)

(3.82)

3.3.3 Regularity and uniqueness of solutions
Here we deal with the regularity and uniquess of solutions of (3.60) and (3.65)
with Dirichlet or Neumann boundary conditions.
Concerning the uniqueness we use the energy method. In particular we have the
following result:
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�eorem 3.3.1. Let A = Ω×]0, T [, where Ω is an open bounded set of Rn with
∂Ω piecewise continuously di�erentiable. �en if f ∈ C(A), φ ∈ C(Ω) and ψ ∈
C(∂Ω× [0, T ]), then the problem:

ut −∆u = f (x, t) ∈ A
u(x, 0) = φ(x) x ∈ Ω(
αu(·, t) + β ∂u(·,t)

∂ν

)∣∣∣∣
∂Ω

= ψ t ∈ [0, T ],

(3.83)

where α, β are non negative constants and not both zero, has at most one solution
u ∈ C(Ā) ∩ C2,1(A) with ∂u

∂ν
∈ C(Ā)

Proof. Let u, v two solutions of the problem and put w = u− v, then w satis�es
(3.83) with f, φ, ψ = 0, then multiplying the �rst equation for w and integrating
among Ω with �xed t and applying the Green formula, we get

1

2

∫
Ω

|w(x, t)|2dx =

∫
Ω

wtudx =

∫
Ω

(f + ∆w)wdx

=

∫
∂Ω

∂w

∂ν
wdσ −

∫
Ω

|Dw|2dx.

Now we note that the last equation of (3.83) imply that in ∂Ω

w
∂w

∂ν
= −β

α

∣∣∣∣∂u∂ν
∣∣∣∣2 ≤ 0 if α > 0, w

∂w

∂ν
= −α

β
|w|2 ≤ 0 if β > 0

then ∫
∂Ω

w
∂w

∂ν
dσ ≤ 0.

�is implies w ≡ 0 and the thesis is proved.

�e previous theorem can be applied to both (3.60) and (3.65) with Dirichlet
or Neumann boundary conditions. Obviously the above argument implies also
uniqueness for the discrete problem (3.59).
Now we deal with existence of solutions of (3.60): if this problem as a solution,
it has the form (3.61) for Dirichlet boundary conditions, and (3.63) for Neumann
boundary conditions. Now we observe that, if

∞∑
n=1

|γn,a| <∞, a = 1, . . . , a†,

then, the series expansions of the initial conditions, converges uniformly to con-
tinuous functions. Moreover the series (3.61) is uniformly convergent with all
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its derivatives, due to the presence of a negative exponential; hence (3.61) solves
the di�erential equation and (3.62) solves the discrete problem. We can rephrase
the previous argument for Neumann boundary condition: instead in this case we
require that

∑∞
n=1 |δn,a| <∞.

Concerning the two dimensional problems, we need more restrictive hypothe-
ses: under Dirichlet boundary conditions, due to the uniform boundedness of the
Bessel functions (see Appendix B), if

∞∑
k=0

|α0
k,a| <∞,

∞∑
n,k=1

n2[|αnk,a|+ |γnk,a|] <∞, for a = 1, . . . , a†,

then the series pwith its �rst and second derivatives (with respect to r and θ) con-
verges uniformly and also the derivative with respect to t converges uniformly.
�en (3.78) is a solution of (3.65), hence (3.79) solves the discrete problem. For
Neumann boundary conditions, we impose the same conditions on δnk,a and νnk,a.
�e above assumptions about the di�usion problem in dimension 1 or 2, are
clearly su�cient in order to obtain a unique regular solution. For the sake of
brevity we do not care to look for optimal conditions still guaranteeing this re-
sult.
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Chapter 4

Numerical computations

In this chapter we perform the computations concerning the two discrete models
presented in chapter 3 ((3.3) and (3.8)), for both Porto�no and Cap de Creus pop-
ulations. In particular, we determine the associated parameters and functions
from the data and analyze the stability or unstability, of their steady states.
�e presented data (see chapter 2) allow us to divide Porto�no population in 90
age classes and Cap de Creus population in 60 age classes, this age structure will
be taken for both our discrete models. �e considered cuto� function S0 has the
form (3.1). Moreover, due to the lack of experimental values, we used the same
function of [SBI07] (scaled with respect to the basic reproduction number of the
population). In the �rst section we present the estimation of the required param-
eters for both models. In the second section, assuming the current status of the
populations as a steady state, we deal with the stability fo this equilibrium.

4.1 Determination of parameters

Here we present the estimations of parameters and functions within the two dis-
crete models: we start with general ones and then we deal with survival and
reprocuctive parameters.
To determine the function g(ω) within the model (3.8), we approximate the dis-
tribution of the growth rates (with respect to the area) of the colonies contained
in the second level of data (see chapter 2). In both cases we obtain a �t with two
Gamma distribution functions (i.e. with density of the form g(x) = 1

βαΓ(α)
xaα−1e

−x
β ,

with α and β positive parameters), as seen in �gure 4.1.
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(a) Porto�no distribution: α = 5.84, β = 0.1394
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(b) Cap de Creus distribution:α = 5.48, β = 0.1349

Figure 4.1: Average growth rate distributions

Concerning the de�nitions of density of the population within a certain area
(in particular the third equation of (3.3) and (3.8)), we set ωi = 1

48
, since the ana-

lyzed region have an area of 48 dm2 andHi(ω) = iω
48
.We remark that this choice

does not satisfy condition (3.11). �is is not a problem since we have chosen
g(ω) = ce−

ω
b , so that the integral (see chapter 3)∫ ∞

0

Hi(ω)αi(ω)dω =

∫ ∞
0

Hi(ω)Π(ω)g(ω)dω

is �nite.
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4.1. Determination of parameters

4.1.1 Survival rates
�e survival rates σi have been estimated through a �t of the age distributions in
�gure 2.4: due to the scarcity of informations, we have assumed for both models
that the survival rates depend only on age (i.e. they are constant with respect to
the variable ω). We approximate the age distributions with Rayleigh distribution
functions, i.e. with densities of the form

f(x) =
x

β2
e
−( x

2

2β2
)
,

where β is a positive parameter.

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

age

c
o

lo
n

ie
s

Age distribution Portofino

(a) Porto�no survival function: β = 11.13
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(b) Cap de Creus survival function: β = 11.25

Figure 4.2: Fit of survival functions
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4.1. Determination of parameters

From �gure (4.2) we see that the lack of several age classes within the distri-
butions determines an unsatisfactory accuracy in the estimation.
Next, assuming that the actual distributions are stationary, we use them in order
to evaluate the survival rates from them, so that the estimation of these rates
cannot be be�er than the previous ones.

4.1.2 Reproductive parameters
To estimate the reproductive parameters we use, as much as possible, the data
presented in [Vie09]; but they were sometimes not su�cient, hence we take the
values of the missing parameters from the study of Calafuria population, [SBI07].
�e average number of planulae produced by a colony with age i are estimated,
in both two models, in the following way:

bi = q · Fi · sr · Pi, i = 1, . . . , a†

where
• sr is the sex ratio (that we suppose independent from the age);

• Fi is the fertility, i.e. the percentage of fertile female colonies;

• Pi is the number of polyps in each colony;

• q is the fecundity, i.e. the planulae produced by each polyp (we assume that
this parameter does not depend on age i, too).

For both models we set sr = 1
2

and

Fi =

{
1 if i ≥ 7

0 if i < 7
, Fi =

{
1 if i ≥ 12

0 if i < 12

for Porto�no and Cap de Creus respectively.
�en we set q = 0.87, as estimated in [SBI07] for Calafuria population.
�e number of polyps for age is estimated in two di�erent ways within the two
models: in (3.3) we use the estimation done in [Vie09]:

P (i) = 29.71 · 1.09i for Porto�no;

P (i) = 24.97 · 1.11i for Cap de Creus.
On the other hand for (3.8) we use an estimation of the number of polyps with
respect to the average diameter, expressed as a function of the circular annual
crown ω and age i:

P (i, ω) = 72.69
√
iω − 118.51 for Porto�no;

P (i, ω) = 85.01
√
iω − 160.822 for Cap de Creus.
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4.2 Stability of the equilibria
Here we investigate whether the actual equilibria are stable: we transform (3.8)
in the form (3.21), then we linearize both systems obtaining two systems of the
form (3.6). �en we compute the eigenvalues of the associated matrices and apply
theorem 3.1.1. A�erwards, we modify the basic reproduction numbers of the
two populations, to see whether this variations implies a destabilization of the
equilibria.
We must remark that, in order to study the linearized systems, we needed to
modify the obtained age distributions to �ll the lack within several age classes.
�en we evaluate the missing age multiplying the number of recruits for the
evalated survival rates; this distortion of the input data return another reason, to
consider this computations not so signi�cant.

Cap de Creus
discrete model

Cap de Creus
discrete model
with crown
distribution

Porto�no dis-
crete model

Porto�no dis-
crete model
with crown
distribution

R0 unstable stable stable stable
1
2
R0 unstable unstable unstable stable

2R0 unstable stable stable stable
1
4
R0 unstable unstable unstable unstable

4R0 unstable stable stable stable

�e systems concerning Porto�no appear stable also with respect to a slight
destabilization, on the other hand the population of Cap de Creus looks vul-
nerable and possibly unstable. Furthermore the two populations, analyzed with
the crown distribution model, seem to have a be�er behaviour. However, the
non-homogeneity and scarcity of the data forces us to consider the outcome of
this computations as nothing more than a shady indication.
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Appendix A

Laplace transform and Volterra
integral equations

�is appendix is devoted to present some results concerning the applications of
Laplace transform theory to the study of Volterra equations. Indeed we may
investigate the asymptotic behaviour of solutions of Volterra integral equations
by analyzing the roots of certain equations involving the Laplace transform. �is
presentation is based on [Ian94], except for the proof of Paley-Wiener �eorem
that has been reconstructed directly from Paley-Wiener [PW33].
In the �rst section we present two equations involving the Laplace transform of
a function and prove two result concerning their roots. In the second section
we state some basic results about linear integral equations (without proof), then
we prove the Paley-Wiener �eorem [PW33] and �nally we analyze a special
nonlinear integral equation.
Our references are G. Doetsch’s book [Doe74] for the Laplace transform, and the
monography G. Gripenberg, S.O. Londen and O. Sta�ans [GLS90] for Volterra
equations.
Let us de�ne the Laplace transform and prove some basic properties of this map:

De�nition A.0.1. Let f(·) ∈ L1
loc(R+,R) and λ ∈ C.We say that f(·) is Laplace

transformable at λ ∈ C, if

f̂(λ) =

∫ ∞
0

e−λtf(t)dt (A.1)

converges as an improper integral. Moreover f(·) is said absolutely Laplace trans-
formable at λ if the integral in (A.1) is absolutely convergent.
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A.1. Laplace transform equations

A.1 Laplace transform equations
In this section we deal with some simple speci�c equations involving the Laplace
transform of a function.
Let K ∈ L1(R+) ∩ L∞(R+), with K(t) ≥ 0 a.e., ‖K‖1 > 0, and K(t) = 0 for
t > T for some T > 0 (these assumptions forK hold throughout in this section).
�e �rst equation we analyze is:

K̂(λ) = 1 (A.2)

and we can state that:

Proposition A.1.1. �e equation (A.2) has a unique real root α∗ which is simple.
Furthermore α∗ < 0 if and only if

∫∞
0
K(t)dt < 1 and α∗ ≥ 0 if and only if∫∞

0
K(t)dt ≥ 1. Any other root α of (A.2) is such that <α < α∗.Moreover in each

strip σ1 < <λ < σ2 there is at most a �nite number of roots.

Proof. Considering the real function

x→ K̂(x) =

∫ ∞
0

e−xtK(t)dt, x ∈ R, (A.3)

is easy to see that it is strictly decreasing and tends to 0 as x→∞. Hence it has
only one real root α∗, with

d

dx
K̂(x)

∣∣∣∣
x=α∗

= −
∫ ∞

0

te−α
∗tK(t)dt < 0;

hence α∗ is simple. Moreover the sign of α∗ depends on the sign of K̂(0)− 1 =∫∞
0
K(t)dt− 1.

Let α be another solution of (A.2); then:∫ ∞
0

e−α
∗tdt = 1 =

∫ ∞
0

e−αtK(t)dt = <
∫ ∞

0

e−αtK(t)dt

=

∫ ∞
0

e−<αt cos(=αt)K(t)dt <

∫ ∞
0

e−<αtK(t)dt

consequently we get <α < α∗. Concerning the last part we can observe that,
since K̂(λ)→ 0 as |λ| → ∞, then all roots in a strip of the form σ1 < <λ < σ2

must belong to some bounded subset. Hence they must be �nitely many, since
otherwise the entire function K̂(λ) would vanish identically.

Now we consider another equation in the complex plane which is a general-
ization of the previous one:

K̂(λ) + F (λ, τ) = 1. (A.4)
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A.1. Laplace transform equations

Here we assume that : K satis�es (in addition to the previous hypotheses)

∫ ∞
0

K(t)dt = 1. (A.5)

On the other hand we suppose that F (λ, τ) : C × R → R is continuosly di�er-
entiable and veri�es:

F (λ, 0) = 0 ∀λ ∈ C, (A.6)

∂F

∂τ
(0, 0) > 0, (A.7)

∃M,β > 0 : |F (λ, τ)| < M |τ | for <λ ≥ −β and τ small enough. (A.8)

Under these particolar assumptions, we have:

�eorem A.1.1. �ere exists δ > 0 such that, if τ ∈ [0, δ], then (A.4) has a real
positive root. If otherwise τ ∈ [−δ, 0], all roots have negative real part.

Proof. From the previous proposition, (A.5) implies that the equation

K̂(λ) = 1

has the real root λ0 = 0,which is unique in the whole half plane <λ ≥ α,where
α ∈ (−β, 0). With su�ciently small β set

m = inf
y∈R
|1− K̂(α + iy)| > 0

and take L > 0 such that

1

2
< |1− K̂(λ)| for |λ| < L,<λ ≥ α
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A.1. Laplace transform equations

Figure A.1

Now, if τ satis�es (A.8) and is such that:

|τ | <
(
m ∧ 1

2

)
M

,

we obtain that, on the contour of any domain Σρ (as shown in �gure A.1) with
ρ > L, the following inequalities hold:

|F (λ, τ)| <
(
m ∧ 1

2

)
< |1− K̂(λ)|.

Now for Rouché theorem, equation (A.4) has only one root in the interior of Σρ

and no roots outside; hence it has only one root in the whole half plane <λ ≥ α.
Concerning the location of this root, let λ(τ) be the di�erentiable path originat-
ing from λ(0) = 0, such that λ(τ) is a root of (A.4). We di�erentiate with respect
to τ equation (A.4) and, by (A.6), we get

dλ

dτ

∣∣∣∣
τ=0

=

∂F

∂τ
(0, 0)∫ ∞

0

tK(t)dt

.

In particular, by (A.7), we have d
dτ
<λ(τ) > 0 in a neighbourhood of 0. Hence we

see that the path goes to the right of the imaginary axis as τ increases from 0, nd
goes to the le� if τ decreases.
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A.2. Volterra linear equations and a special nonlinear case

A.2 Volterra linear equations and a special non-
linear case

In this section we present some results from the theory of Volterra integral equa-
tions. A reference for the �rst results (presented without proof) is [GLS90]; on
the other hand our proof of Paley Wiener �eorem is di�erent from that provided
in this book and is based on what stated in [PW33].

A.2.1 Introduction to the linear case
We consider the linear Volterra system of equations

u(t) =

∫ t

0

K(t− s)u(s)ds+ f(t) (A.9)

where u(t), f(t) are n-vectors and K(t) is a n×n matrix. In order to treat these
equations we need some assumptions: we suppose that

K ∈ L1([0,∞);L(Rn)), (A.10)

f ∈ L1([0,∞);Rn). (A.11)
Now we present a result that proves the existence of a function R(t), said resol-
vent, which helps to analyze equation (A.9).

�eorem A.2.1. Let K satisfy (A.10); then there exists a unique
R ∈ L1

loc([0,∞);L(Rn)) such that

R(t) = −K(t) +

∫ t

0

K(t− s)R(s)ds, (A.12)

R(t) = −K(t) +

∫ t

0

R(t− s)K(s)ds. (A.13)

Moreover for all f ∈ L1([0,∞);Rn)

u(t) = f(t)−
∫ t

0

R(t− s)f(s)ds (A.14)

is the unique solution of (A.9).

�is result is a useful tool to represent the solutions of (A.9). Furthermore,
as we will see later, the stability for solutions of (A.9) is determined by some
properties of resolvent function.
Now, let u(t) ≡ 0 be the trivial solution of (A.9) with f(t) = 0. We de�ne
a concept of stability for this solution for continuous and bounded inputs (i.e.
f ∈ CB([0,∞);Rn)).
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A.2. Volterra linear equations and a special nonlinear case

De�nition A.2.1. �e trivial solution of (A.9) is stable if for every ε > 0 there
exists δ > 0 such that if ‖f‖∞ < δ then ‖u‖∞ < ε.
Moreover it is asymptotically stable if it is stable and lim

t→∞
f(t) = 0 implies lim

t→∞
u(t) =

0.

With this de�nition we can present the result announced before:
�eorem A.2.2. Let f ∈ CB([0,∞);Rn); then the trivial solution of (A.9) is
asymptotically stable if and only if R satisfy:

R ∈ L1([0,∞);L(Rn)). (A.15)

From this theorem we can develop some results concerning the stability of
solutions of Volterra linear and nonlinear equations, using Laplace transform, as
we will see in the next section.

A.2.2 �e Paley-Wiener theorem
We have just seen that a necessary and su�cient condition for stability of the
trivial solution of (A.9) is that the resolvent is absolutely integrable. Now we
state an equivalent condition involving the Laplace transform of the kernel K :
the Paley-Wiener theorem.
�eoremA.2.3 (Paley-Wiener). Suppose thatK satis�es (A.10); then the resolvent
R(·) satis�es R(·) ∈ L1([0,∞);L(Rn)) if and only if

det(I − K̂(λ)) 6= 0 for <λ ≥ 0. (A.16)

Proof. We prove the result in the scalar case since the general one is analogous.
First suppose that (A.15) holds; then R(·) is absolutely Laplace transformable for
<λ ≥ 0 and from (A.12) we get K̂(λ)R̂(λ)− K̂(λ)− R̂(λ) = 0, i.e.

(1− K̂(λ))(1− R̂(λ)) = 1 for <λ ≥ 0.

So (A.16) is satis�ed.
Concerning the su�ciency, we start with proving that if (A.16) holds, then R(·)
is absolutely Laplace transformable for <λ su�ciently large. Let λ0 > 0 be such
that ∫ ∞

0

e−λ0t|K(t)|dt = a < 1

then from (A.12) we obtain, for <λ ≥ λ0:∫ T

0

e−λt|R(t)|dt ≤ a+

∫ T

0

e−λt
∫ t

0

|K(t− s)||R(s)|dsdt

= a+

∫ T

0

e−λs|R(s)|ds
∫ T

s

e−λ(t−s)|K(t− s)|dt

68



A.2. Volterra linear equations and a special nonlinear case

and hence ∫ T

0

e−λs|R(s)|ds ≤ a

1− a
,

which for T →∞ implies the absolute Laplace transformability ofR(·) for<λ ≥
λ0. Moreover R̂(λ) satis�es, by (A.12),

R̂(λ) =
K̂(λ)

K̂(λ)− 1
for <λ ≥ λ0. (A.17)

Now for convenience of notation we set f(w) = K̂(w), and

g(w) =
f(w)

f(w)− 1
; (A.18)

we want to prove that g is the Laplace transform of a function belonging to
L1(R).
Consider for A ∈ R+ the function:

φA(u) =


1 if |u| < A

2− |u|
A

if A ≤ |u| < 2A

0 if |u| ≥ 2A.

(A.19)

�en the two functions:

g1(u) = φA(u)g(iu), (A.20)
g2(u) = [1− φA(u)]g(iu), (A.21)

satisfy g(iu) = g1(u)+g2(u).We are going to prove that, ifA is su�ciently large,
then g1 and g2 are Fourier transforms of functions in L1. Applying the backward
Fourier transform to φA we get:

hA(x) =
1

2π

∫ ∞
0

eixuφA(u)du

=
1

2π

∫ A

−2A

eixuφA(u)du+
1

2π

∫ A

−A
eixudu+

1

2π

∫ 2A

A

eixuφA(u)du

=
1

2π

e−iAx − e−2iAx

x2A
− 1

2π

e2iAx − e−iAx

x2A

=
1

πA

[
cos(Ax)− cos(2Ax)

x2

]
.
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A.2. Volterra linear equations and a special nonlinear case

Hence hA belongs toL1([0,∞)).Moreover extendingK as 0 in R−,we have that
f(iu) = F (K)(u). On the other hand, let us de�ne

η(u) =

{
1

f(iu)−1
if |u| ≤ 2A

η1(u) if 2A < |u|,

where η1(u) is a C∞0 function such that η1(u) = 1 for |u| ≤ 2A. �en we have
η ∈ C∞0 ⊆ S(R), where S(R) is the Schwartz space. As the Fourier transform
is bijective on S(R), there is θ ∈ S(R) ⊂ L1(R) such F (θ)(u) = η(u) for every
u ∈ R. In particular g1(u) = φA(u)f(iu)η(u) = F (hA ∗ K ∗ θ) is the Fourier
transform of a convolution product of L1 functions, which belongs to L1.
Concerning g2, we have:

g2(u) = [1− φA(u)]g(iu) = [1− φA(u)]
f(iu)[1− φA

2
(u)]

f(iu)[1− φA
2
(u)]− 1

;

formally we also have

g2(u) = −[1− φA(u)]f(iu)[1− φA
2
(u)]

∑∞
n=0 f(iu)n[1− φA

2
(u)]n

= −[1− φA(u)]f(iu)
∑∞

n=0 f(iu)n[1− φA
2
(u)]n

(A.22)

Hence if we prove that ‖F−1[f(iu)(1 − φA
2
(u))]‖1 < 1, for large A, then the

series on the right-hand side of (A.22) converges and so F−1(g2) is a series of
functions belonging to L1(R). More precisely we remark that

2

πA

∫ ∞
−∞

cos(A
2
η)− cos(Aη)

η2
dη =

∫ ∞
−∞

hA
2
(η)dη = 1;

then, since F (hA
2
) = φA

2
, we have

‖F−1[f(iu)(1− φA
2
(u))]‖1 = ‖K −K ∗ hA

2
‖1. (A.23)

We consider now a sequence {Km}m∈N ⊆ C∞0 (R) such that

Km → K in L1(R).

For �xed m, take ε ∈]0, 1[ and choose δ > 0 such that

|Km(x)−Km(x+ h)| ≤ ε ∀x ∈ R,∀|h| ≤ 2δ,
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A.2. Volterra linear equations and a special nonlinear case

and select A large, in order that
∫∞
δ
|hA

2
(η)|dη < ε. Now let M > 0 such that

suppKm ⊆ [−M
2
, M

2
], and max |Km| ≤M. �en

‖Km −Km ∗ νA
2
‖1 ≤

∫ M

−M

∫ ∞
−∞
|K(ξ)−K(ξ − η)||hA

2
(η)|dηdξ

≤
∫ M

−M

∫ ∞
δ

|K(ξ)−K(ξ − η)| · |hA
2
(η)|dηdξ

+

∫ M

−M

∫ δ

−δ
|K(ξ)−K(ξ − η)| · |hA

2
(η)|dηdξ

+

∫ M

−M

∫ −δ
−∞
|K(ξ)−K(ξ − η)| · |hA

2
(η)|dηdξ

≤ 4M2ε+ 2Mε2 + 4M2ε.

Finally, choose m such that ‖K −Km‖1 < ε. �en, by (A.23)

‖K −K ∗ hA
2
‖1 ≤ ‖K −Km‖1 + ‖Km −Km ∗ hA

2
‖1 + ‖Km ∗ hA

2
−Km ∗ hA

2
‖1

≤ 2ε+ ‖Km −Km ∗ hA
2
‖1 ≤ cε.

We have so proved that ‖F−1(f(iu)(1− φA
2
(u)))‖1 is small provided A is su�-

ciently large. Hence g2(u) = F−1(γ)(u), where

γ =
∞∑
n=0

(K −K ∗ hA) ∗ (K −K ∗ hA
2
) ∗ . . . ∗ (K −K ∗ hA

2
)︸ ︷︷ ︸

n

∈ L1(R.)

�is is equivalent to∫ 0

−∞
γ(ξ)e−iuξdξ = −

∫ ∞
0

γ(ξ)e−iuξdξ + g(iu).

Now for <w ≥ 0 we have f(w) → 0 as |w| → ∞; hence by (A.16) there exists
c > 0 such that |f(w)− 1| ≥ c for every w in the positive half-plane. �us

−
∫ ∞

0

γ(ξ)e−wξdξ + g(w) (A.24)

is bounded and analytic for <w ≥ 0. Similarly∫ 0

−∞
γ(ξ)e−wξdξ (A.25)
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A.2. Volterra linear equations and a special nonlinear case

is bounded and analytic in the le� half-plane (including the imaginary axis). Fur-
thermore the two functions coincide on the imaginary axis: then they are parts
of the same analytic and bounded function on the whole complex plane. Hence
by Liouville theorem, this function is constant. Now since

lim
w→∞

∫ 0

−∞
γ(ξ)e−wξdξ = 0

this function is identically 0. In particular (A.24) implies that:

g(w) =

∫ ∞
0

γ(ξ)e−wξdξ (A.26)

Hence g(w) is the Laplace transform of a function in L1(R); from (A.18) and
(A.17) we have g(w) = R̂(w) for <w ≥ λ0, so that by uniqueness of the Laplace
transform, we get γ(w) = R(ω), and the thesis is proved.

A.2.3 A nonlinear perturbation for the Volterra equation
In this section we consider a perturbation of the system of linear integral equa-
tions (A.9) of this form:

u(t) =

∫ t

0

K(t− s)u(s) + P [u(·), c(·)](t) (A.27)

where K is linear and satis�es (A.10). �e nonlinear part

P : C0([0,∞);Rn)× L1([a, b];Rm)→ C0([0,∞);Rn),

is supposed to satisfy the following conditions:

P [0, 0] = 0; (A.28)

there exists a constant M > 0, such that:

‖P [0, c(·)]‖∞ ≤M |c|1 ∀c ∈ L1([a, b];Rm); (A.29)

there exists a function S 7→ L(S) with lim
S→0

L(S) = 0, such that for
‖u‖∞, ‖ũ‖∞, |c|1 < S :

‖P [u(·), c(·)]− P [ũ(·), c(·)]‖∞ ≤ L(S)‖u− ũ‖∞. (A.30)

Note that in (A.27) the term c is supposed to be assigned as a sort of initial con-
dition.
Writing the resolvent equation associated to (A.27) we obtain:

u(t) = P [u(·), c(·)](t)−
∫ t

0

R(t− s)P [u(·), c(·)](s)ds (A.31)
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A.2. Volterra linear equations and a special nonlinear case

�e following result allows us to apply the Paley-Wiener theorem to the system
(A.27).

�eoremA.2.4. LetK,R ∈ L1([0,∞);L(Rn)), and letP satisfy the assumptions
(A.28)-(A.29). �en for any ε > 0 there exists δ such that for any c ∈ L1([a, b];Rm)
with |c|1 ≤ δ, the equation (A.27) has a unique solution u ∈ C0([0,+∞);Rn) such
that ‖u‖∞ < ε.

Proof. Let ε > 0; we take η < ε such that

L(η) <
1

2(1 +M)(1 + ‖R‖1)
, (A.32)

where L is the function of (A.30), M is the constant of (A.29) and ‖R‖1 is the L1

norm of R. �en we set
δ = L(η)η

and consider
K = {u ∈ C0([0,+∞);Rn)|‖u‖∞ ≤ η}

which is a closed subset of C0([0,+∞);Rn). Now for any c ∈ L1([a, b];Rm),
with |c|1 ≤ δ we de�ne the mapping T as

(T u)(t) = P [u(·), c(·)](t)−
∫ t

0

R(t− s)P [u(·), c(·)](s)ds ∀u ∈ K. (A.33)

Certainly T maps K into C0([0,+∞);Rn), but for u ∈ K, using (A.32), we have

‖(T u)(t)‖∞ ≤ ‖(T u)− (T 0) + (T 0)‖∞ ≤ (1 + |R|1)(L(η)‖u‖∞ +K|c|1)

≤ (1 + ‖R‖1)(1 +K)L(η)η < η

so that T maps K into itself. Furthermore using (A.32) again, we have for u, ũ ∈
K

‖(T u)− (T ũ)‖∞ ≤ (1 + ‖R‖1)L(η)‖u− ũ‖∞ <
1

2
‖u− ũ‖∞.

Hence T is a contraction and has a unique �xed point in K. �is proves the
theorem.
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Appendix B

Bessel functions

�is appendix is devoted to some de�nitions and properties concerning Bessel
functions. �ey are usually well known, but it is useful to collect here some of
them, in order to justify easily some results and observations through the thesis.
We just give few proofs, and we refer instead to two classical books: we suggest F.
Bowman [Bow58] for an organic introduction to this argument and G.N. Watson
[Wat44] for a complete treatment.
We restrict ourselves to Bessel functions of positive integer order, although there
are more generally Bessel functions of arbitrarily real order. �e results and
properties presented here can be generalized to that case.

B.1 De�nitions and properties
In this section we de�ne the Bessel functions of �rst and second kind and state
some classic properties.
We introduce the Bessel functions of the �rst kind as power series:

De�nition B.1.1. �e Bessel function of the �rst kind and zero order is de�ned by

J0(x) =
∞∑
m=0

(−1)m

(m!)2

(
x

2

)2m

. (B.1)

Similarly, the Bessel function of the �rst kind and order n ∈ N, is de�ned by:

Jn(x) =
∞∑
m=0

(−1)m

m!(m+ n)!

(
x

2

)2m+n

. (B.2)

It is obvious that for every n ∈ N the above series converges for all values of
x ∈ C, so that Jn is an entire holomorphic function.
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Figure B.1: Bessel function of �rst kind and order i = 0, . . . , 4

Now we deduce the Bessel di�erential equations: from the above de�nition,
di�erentiating (B.1) we obtain that

J ′0(x) = −J1(x); (B.3)

therefore multiplying J1(x) for x and di�erentiating we get

d

dx
[xJ1(x)] = xJ0x, (B.4)

and substituting (B.3) in (B.4) we have that

d

dx

[
x
d

dx
J0(x)

]
+ xJ0(x) = 0.

�e above equation, full�lled by J0(x), is called Bessel equation of zero order :

d

dx
[xy′] + xy = 0; (B.5)

it can be wri�en also in the form

xy′′J0(x) + y′ + xy = 0. (B.6)
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In the same way we obtain equations of order n: indeed

x
d

dx

[
x
d

dx
Jn(x)

]
=

∞∑
m=0

(−1)m
(2m+ n)2

m!(m+ n)!

(
x

2

)2m+n

=
∞∑
m=0

(−1)m
n2 + 4m(m+ n)

m!(m+ n)!

(
x

2

)2m+n

= (n2 − x2)Jn(x),

hence we have the Bessel equation of order n :

x2y′′ + xy′ + (x2 − n2)y = 0, (B.7)

which can be wri�en also in the form:

y′′ +
1

x
y′ + (1− n2

x2
)y = 0. (B.8)

Now we introduce Bessel functions of the second kind: as above we start with
order zero and then we proceed with di�erent orders. Consider (B.6): since it is a
second order di�erential equation, it admits another solution which is indepen-
dent of J0(x). Let u be such solution and let v = J0(x); we have

xu′′ + u′ + xu = 0

xv′′ + v′ + xv = 0.

Hence multiplying respectively the two equations by v and u and subtracting,
we get

x(u′′v − v′′u) + u′v − v′u = 0

which can be rewri�en as
d

dx
[x(u′v − v′u)] = 0.

�erefore
x(u′v − v′u) = B

where B is a constant; then dividing by xv2 we get

d

dx

(
u

v

)
=
u′v − uv′

v2
=

B

xv2
,

so that, by integration,
u

v
= A+B

∫
dx

xv2
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where A is another constant. �en we obtain

u(x) = AJ0(x) +BJ0(x)

∫ x

1

dt

tJ2
0 (t)

,

and we de�ne the Bessel function of the second kind and zero order as follows:

Y0(x) = J0(x)

∫ x

1

dt

tJ2
0 (t)

. (B.9)

Note that inserting (B.1) in (B.9), we see that Y0(x) has a singularity in x = 0.
Analogously, from (B.7) we de�ne the Bessel functions of the second kind and
order n, that have the same property.
�e Bessel functions of the �rst kind Jn(x) can be also de�ned as the coe�cients
of tn, in the Laurent expansion of the function e

x
2

(t− 1
t
) : indeed, writing this

function as a Cauchy product of the Maclaurin expansions of ex2 t and e− x
2t we

get

e
x
2

(t− 1
t
) = e

x
2
t · e−

x
2t =

[ ∞∑
n=0

xntn

2nn!

][ ∞∑
p=0

(−1)pxp

2ptpp!

]

=
∞∑
n=0

[ n∑
p=0

xntn−2p(−1)p

2n(n− p)!p!

]
=
∞∑
p=0

[ ∞∑
n=p

xntn−2p(−1)p

2n(n− p)!p!

]

=
∞∑
p=0

[ ∞∑
m=−p

(x
2

)m+2p tm(−1)p

(m+ p)!p!

]
=

=
∞∑
p=0

[ ∞∑
m=0

(x
2

)m+2p tm(−1)p

(m+ p)!p!

]
+
∞∑
p=1

[ −1∑
m=−p

(x
2

)m+2p tm(−1)p

(m+ p)!p!

]

=
∞∑
m=0

Jm(x)tm +
∞∑
m=1

[ ∞∑
p=m

(x
2

)2p−m t−m(−1)p

(p−m)!p!

]

=
∞∑
m=0

Jm(x)tm +
∞∑
m=1

(−1)mJm(x)t−m.
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Now se�ing t = eiθ, with θ ∈ [0, 2π], we have:

eix sin θ =
∞∑
m=0

Jm(x)eimθ +
∞∑
m=1

(−1)mJm(x)e−imθ

=
∞∑
m=0

Jm(x)(cosmθ + i sinmθ) +
∞∑
m=1

(−1)mJm(x)(cosmθ − i sinmθ)

= J0(x) + 2
∞∑
n=1

J2n(x) cos(2nθ) + i
∞∑
n=0

J2n+1 sin((2n+ 1)θ).

On the other hand

eix sin θ = cos(x sin θ) + i sin(x sin θ).

Now, for the uniqueness of the Fourier expansion series, we obtain that the Bessel
function of the �rst kind are the Fourier coe�cient of the function cos(x sin θ)+
i sin(x sin θ). Hence for every n ∈ N :

J2n(x) =
1

π

∫ π

0

cos(x sin θ) cos(2nθ)dθ, (B.10)

J2n+1(x) =
1

π

∫ π

0

sin(x sin θ) sin((2n+ 1)θ)dθ. (B.11)

Adding the two previous identities we get that:

Jn(x) =
1

π

∫ π

0

cos(nθ − x sin θ)dθ, (B.12)

which is known as the Bessel integral for Jn(x). In particular the Bessel functions
of the �rst kind are uniformly bounded.

B.2 Orthogonality and completeness

In this section we prove the orthogonality properties of Bessel functions of the
�rst kind.
We begin with some recurrence formulae, involving functions of consecutive
orders and their derivatives:
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Proposition B.2.1. Let n ≥ 1.�en the Bessel functions of the �rst kind satisfy:

2n

x
Jn(x) = Jn−1(x) + Jn+1(x) (B.13)

2J ′n(x) = Jn−1(x)− Jn+1(x) (B.14)

Jn−1(x) =
n

x
Jn(x) + J ′n(x) (B.15)

Jn+1(x) =
n

x
Jn(x)− J ′n(x) (B.16)

Proof. To prove (B.13) we only have to write (B.2) for three consecutive orders:

2n

x
Jn(x) =

∞∑
m=0

(−1)mn

m!(m+ n)!

(
x

2

)2m+n−1

=
∞∑
m=0

(−1)m(m+ n)

m!(m+ n)!

(
x

2

)2m+n−1

−
∞∑
m=0

(−1)mm

m!(m+ n)!

(
x

2

)2m+n−1

and we see that the �rst term is equal to Jn−1(x) and the second to −Jn+1(x).
�e proof of (B.14) is analogous:

2J ′n(x) =
∞∑
m=0

(−1)m(2m+ n)

m!(m+ n)!

(
x

2

)2m+n−1

=
∞∑
m=0

(−1)m(m+ n)

m!(m+ n)!

(
x

2

)2m+n−1

+
∞∑
m=0

(−1)mm

m!(m+ n)!

(
x

2

)2m+n−1

,

that is our thesis.
Summing (B.13) with (B.14) we obtain (B.15), and subtracting (B.14) from (B.13) we
get (B.16).

Now we observe that if α 6= 0 is a real number, by (B.8) Jn(αx) satis�es

u′′ +
1

x
u′ +

(
α2 − n2

x2

)
u = 0. (B.17)

As a consequence we have the following result.

Proposition B.2.2. Let n ∈ N, then the equation

Jn(x) = 0 (B.18)

has in�nitely many simple roots di�erent from 0. Moreover the solutions of (B.18)
are not solutions of Jn+1(x) = 0.
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Proof. We prove that for k > 1 and su�ciently large a > 0, the equation
Jn(kx) = 0 has at least one root between a and a + π; this will imply the �rst
part of the statement. �e function y(x) = Jn(kx) satis�es (B.17) with α = k; if
u(x) = y(x)

√
kx, then u satis�es

d2u

dx2
= −

(
k2 −

n2 − 1
4

x2

)
u. (B.19)

Now let v = sin(x− a); then
d2v

dx2
= −v.

Hence multiplying this equation by u and (B.19) by v and subtracting, we get:

d

dx

[
u
dv

dx
− vdu

dx

]
=

(
k2 − 1−

n2 − 1
4

x2

)
uv.

Now integrating between a and a+ π, we get

−u(a+ π)− u(a) =

∫ a+π

a

(
k2 − 1−

n2 − 1
4

x2

)
uvdx.

Within the integral on the right-hand side, u is continuous, v is positive and the
remaining part of the integrand is positive for a large enough. Hence, for the
mean value theorem, there exists ξ ∈ (a, a+ π) such that

−u(a+ π)− u(a) = u(ξ)

∫ a+π

a

(
k2 − 1−

n2 − 1
4

x2

)
vdx.

Now the integral in the right-hand side is positive for a su�ciently large; there-
fore u(a), u(ξ), u(a+π) cannot all have the same sign, so the equation u(x) = 0
has at least one solution in the interval (a, a+π).Hence the equation Jn(x) = 0
has at least one solution between a and a+kπ for k > 1 and a su�ciently large.
Concerning the simplicity of the roots, suppose that α satis�es Jn(α) = J ′n(α) =
0; by (B.7) it must be J ′′n(α) = 0. Di�erentiating (B.7) we see that all derivatives
of Jn vanish in α; hence Jn ≡ 0, a contradiction.
Finally if Jn(α) = Jn+1(α) = 0, by (B.16) we get J ′n(α) = 0, which contradicts
the previous statement.

Now we can prove the orthogonality result for Bessel functions of the �rst
kind:

�eorem B.2.1. Let n ∈ N and α, β two di�erent roots of Jn(x) = 0.�en:∫ 1

0

Jn(αx)Jn(βx)xdx = 0. (B.20)
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Moreover ∫ 1

0

J2
n(αx)dx =

J2
n+1(α)

2
. (B.21)

Proof. Let u(x) = Jn(αx) and v(x) = Jn(βx); they satisfy an equation of the
form (B.17). �e same argument used in the previous section to de�ne the Bessel
functions of the second kind now yields

d

dx
[x(uv′ − v′u)] = (β2 − α2)xuv.

Integrating in [0, 1] we obtain

(β2 − α2)

∫ 1

0

xJn(αx)Jn(βx)dx = αJ ′n(α)Jn(β)− βJ ′n(β)Jn(α) = 0. (B.22)

that imply our thesis.
Concerning the second part, we multiply (B.17) by 2x2u′, where u(x) = Jn(αx),
obtaining:

2xu′
d

dx
[xu′] + 2(α2x2 − n2)u′u = 0

which is equivalent to

d

dx
[x2(u′)2 + (α2x2 − n2)u2] = 2α2xu2.

Integrating the last equation and substituting u = Jn(αx) we obtain that∫ 1

0

xJ2
n(αx)dx =

1

2

[
x2(J ′n(αx))2 +

(
x2 − n2

α2

)
J2
n(αx)

]1

0

, (B.23)

and using (B.16) we get (B.21).

�e previous result can be generalized:

�eorem B.2.2. Let n ∈ N and γ, δ two di�erent roots of xJ ′n(x) +HJn(x) = 0,
where H is a real constant; then:∫ 1

0

Jn(δx)Jn(γx)xdx = 0. (B.24)

Moreover ∫ 1

0

J2
n(δx)dx =

(δ2 − n2)J2
n(δ) + δ2(J ′n(δ))2

2δ2
. (B.25)
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Proof. To prove the �rst part we proceed as in the previous theorem, obtaining
(B.22), the �rst statement follows.
Also for the second part, we proceed as above and get (B.23), from which we
deduce (B.25).

Denote by {λm}m≥0 the positive roots of the equation Jn(x) = 0, arranged
in ascending order of magnitude, and let f be a function de�ned in (0, 1). Using
�eorem B.2.1 we want to investigate whether f can be expanded in a series of
the form

∑∞
m=0 amJn(λmx),where am = 2

J2
n+1(λm)

∫ 1

0
f(t)Jn(λmt)tdt.When this

expansion exists, it is called Fourier-Bessel series of f of order n. We just give the
�nal part of the proof; for the whole argument we refer to [Wat44],Ch.XVIII.

�eorem B.2.3. Let n ∈ N and

qm(x) =
2

[Jn+1(λm)]
Jn(λmx)

where {λm}m≥0 are the roots of equation Jn(x) = 0 in ascending order. �en the
system {qm}m≥0 is orthonormal and complete within the space L2([0, 1];xdx).

Proof. �e orthonormality of the system is proved in �eorem B.2.1. Concerning
the completeness we refer to [Wat44],Ch.XVIII, §18.24, where it is shown that,
for every f ∈ L1([0, 1];

√
tdt) ∩BV ([0, 1]), the series

∑∞
m=0 amJn(λmx) (called

Fourier-Bessel series) is convergent with sum 1
2
[f(x+) + f(x−)], where

am =
2

J2
n+1(λm)

∫ 1

0

f(t)Jn(λmt)tdt = 〈f, qm〉L2([0,1];tdt).

Now consider the subspace B = span{qm}m∈N ⊆ L2([0, 1]; tdt). By the above
convergence result, we have C1([0, 1]) ⊆ BV ([0, 1]) ∩ L1([0, 1];

√
tdt) ⊆ B.

As C1([0, 1]) is obviously dense in L2([0, 1]; tdt), we obtain that B is dense in
L2([0, 1]; tdt), and the result follows.

An expansion similar to the previous one, but based upon the roots of the
equation

x−n[xJ ′n(x) +HJn(x)] = 0, (B.26)
(whereH is a constant) is called theDini expansion of f of ordern. We distinguish
three cases, depending on the values of the constant H :

(i) IfH > −n the Dini expansion has the same form as the Fourier-Bessel one,
i.e. f(x) =

∑∞
m=1 bmJn(µmx), where {µm}m≥1 are the positive roots of

(B.26) and

bm =
2µ2

m

(µ2
m − n2)J2

n(µm) + µm(J ′n(λmx))2

∫ 1

0

tf(t)Jn(µmt)dt.
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(ii) If H = −n, equation (B.26) becomes x−n[xJ ′n(x)− nJn(x)] = 0, which by
(B.16) is equivalent to

x−n+1Jn+1(x) = 0

that has x = 0 as a double root. Hence we adjoin an initial term to the Dini
expansion, obtaining the following form: f(x) = b0x

n+
∑∞

m=1 bmJn(µmx),
which may be regarded as an expansion based upon the non-negative roots
(including zero) of the equation Jn+1(x) = 0.�e constant b0 may be found
in the same way

b0 =

∫ 1

0
xn+1f(x)dx∫ 1

0
x2n+1dx

.

�e constants bm are given, analogously to the case of Fourier-Bessel series,
by bm = 2

J2
n(µm)

∫ 1

0
tf(t)Jn(µmt)dt.

(iii) If H < −n, equation (B.26) has two purely imaginary roots ±iµ0 Hence
the Dini expansion begins with a term depending on them and has the
form f(x) = b0In(µ0x) +

∑∞
m=1 bmJn(µmx), where In(x) is the modi-

�ed Bessel function of order n (see Bowman [Bow58], Ch. VI, §85). �e
coe�cients bm (for m 6= 0) are determined as in the �rst case and b0 =

2

I2
n(µ0) + In−1(µ0)In+1(µ0)

∫ 1

0

tf(t)In(tµ0)dt.

Again, we give here only the �nal part of the proof of completeness; the whole
argument can be found in [Wat44], Ch. XVIII, where it is proved that for every
f ∈ L1([0, 1];

√
tdt) ∩ BV ([0, 1]), the series

∑∞
m=1 bmJn(µmx) (called Fourier-

Dini series) is convergent with sum 1
2
[f(x+) + f(x−)], where

bm =
2µ2

m

(µ2
m − n2)J2

n(µm) + µm(J ′n(λmx))2

∫ 1

0

tf(t)Jn(µmt)dt = 〈f, pm〉L2([0,1];tdt).

As a consequence, we have the following theorem:

�eorem B.2.4. Let n ∈ N and

pm(x) =
2µ2

m

(µ2
m − n2)J2

n(µm) + µm(J ′n(λmx))2
Jn(µmx)

where {µm}m≥1 are the roots of equation (B.26) xJ ′n(x)+HJn(x) = 0 in ascending
order (for H > −n). Hence the system {pm}m≥1 is orthonormal and complete
within the space L2([0, 1];xdx).

Proof. �e orthonormality was proved in �eorem B.2.2. About the complete-
ness, using the convergence result quoted before, we may proceed as in the pre-
vious proof.
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comunque di averlo un po’ soddisfa�o;

a chi mi ha insegnato a fare ”pane aceto e olio” e a chi ho dovuto insegnare io, a
farlo;

a chi mi ha dato un posto dove dormire e un te�o so�o cui studiare in questo
ultimo periodo e a chi me lo assicura da anni;

a chi, in questi mesi mi ha fa�o da terapista, tradu�ore, compagno di viaggio,
confessore e in�ne da relatore, spero che non rimpianga troppo le partite per-
dute per colpa mia;

a chi ha accolto un perfe�o sconosciuto all’interno del suo studio, con gentilezza
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