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Introduction

During the last century the application of mathematical sciences to biological
problems increased a lot. Mathematicians, physicists and biologists began to
study different biological situations, human reactions, cellular interactions
and found their cooperation really useful to represent realistically many
mechanisms.
In this work I refer to some mathematical models of brain system neural
interactions; in particular I pay attention to two different neural groups,
whose interaction produces the alternation of REM and NON REM phases
during human sleep.
I start from the model of Hobson and McCarley (1975); they represented
through a Lotka-Volterra system the interaction between two neural groups
involved in REM and NREM cycle.
Let x(t) be the level of discharge activity in cells that promote the REM
phase; let y(t) be the level of discharge activity in cells that inhibit it; and
let a, b, c, and d be positive constants. These terms are related by the
Lotka-Volterra system:{

dx
dt (t) = ax(t)− bx(t)y(t)

dy
dt (t) = −cy(t) + dx(t)y(t),

(1)

As it is well known, the system periodically goes back to its initial state and
this is a non-realistic scenario.
In a second step I use the recent interaction model of Kuramoto to obtain
another system for the neurons activity and I generalize it to:{

dθ
dt = ω1 + g(θ − φ)

dφ
dt = ω2 − g(θ − φ)

(2)

where g is a nonlinear function, ωj , j = 1, 2 are the frequencies of the neurons
and θ and φ are the ”phases” of neurons of the two different neural groups.
Finally, after a chapter of ”mathematical tools”, I introduce a diffusive model
for this interaction, starting from the previous Kuramoto model. So I study
the solutions, as well as their qualitative behavior, of the system{

∂θ
dt −∆θ = ω + g(θ − φ)

∂φ
dt −∆φ = ω − g(θ − φ)

(3)
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where g is a nonlinear function with appropriate properties.
In the conclusive chapter I observe that my work is based on scientific data
and it potentially leaves room to different applications.
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Chapter 1

Biological overview

In this first chapter, I will give a sketch on basic biological background
needed to realize this work.
I begin to describe neurons, their functions and their interaction and then
I will say something on the structure of the sleep and on the brain neurons
role in the alternation of REM and NREM phases.

1.1 The Neurons

The central nervous system [CNS] is composed entirely of two kinds of spe-
cialized cells: neurons and glia.
Neurons are the basic information processing structures in the CNS. The
function of a neuron is to receive INPUT ”information” from other neurons,
to process that information, then to send ”information” as OUTPUT to
other neurons. Synapses are connections between neurons through which
”information” flows from one neuron to another. Hence, neurons process all
of the ”information” that flows within, to, or out of the CNS. Processing
many kinds of information requires many types of neurons; there may be as
many as 10,000 types of them. Processing so much information requires a
lot of neurons. ”Best estimates” indicate that there are around 200 billion
neurons in the brain alone!
Glia (or glial cells) are the cells that provide support to the neurons: not
only glia provide the structural framework that allows networks of neurons
to remain connected, they also attend to the brain’s various ”house” keeping
functions (such as removing debris after neuronal death).
Since our main interest lies in exploring how information processing occurs
in the brain, we are going to ignore glia. But before we see how neurons
process information (and what that means), we need to know a few things
about the structure of neurons.
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1.1.1 Structure of neurons

Neurons have various morphologies depending on their functions. We can
see an example in the following figure:

Figure 1.1: The structure of a neuron.

The signal is picked up by the neuron via the dendrites, branched struc-
ture extending less than one millimeter. Then the soma, also said the body
of the neuron, deals with the processing of the signal. We can imagine the
soma as an object approximately spherical having a diameter less than 70µm
that may or may not release an electrical signal which propagates along the
axon towards the other neurons. The axon is presented as a long protuber-
ance with a diameter of few µm and it is connected to the dendrites of one
or more neurons. A neuron may have many thousands of dendrites, but it
will have only one axon. The fourth distinct part of a neuron lies at the end
of the axon, the axon terminals. These are the structures that contain neu-
rotransmitters. Neurotransmitters are the chemical medium through which
signals flow from one neuron to the next at chemical synapses.

1.1.2 Neuronal signaling

To support the general function of the nervous system, neurons have evolved
unique capabilities for intracellular signaling (communication within the
cell) and intercellular signaling (communication between cells). To achieve
long distance, rapid communication, neurons have evolved special abilities
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for sending electrical signals (action potentials) along axons. This mecha-
nism, called conduction, is how the cell body of a neuron communicates
with its own terminals via the axon. Communication between neurons is
achieved at synapses by the process of neurotransmission.

1.1.3 Action potentials

To begin conduction, an action potential is generated near the cell body
portion of the axon. An action potential is an electrical signal very much
like the electrical signals in electronic devices. But whereas an electrical
signal in an electronic device occurs because electrons move along a wire, an
electrical signal in a neuron occurs because ions move across the neuronal
membrane. Ions are electrically charged particles.
The protein membrane of a neuron acts as a barrier to ions. Ions move
across the membrane through ion channels that open and close due to the
presence of neurotransmitters. When the concentration of ions on the inside
of the neuron changes, the electrical property of the membrane itself changes.
Normally, the membrane potential of a neuron,i. e. the difference in voltage
between the inside and the outside of the cell’s membrane, rests as −70
millivolts. (Fig. 1.2 on the top)
At this resting potential, the neuron is said polarized and its ion channels
(protein structures) are closed.

Figure 1.2: Resting potential phase.

When a neuron is stimulated as a result of neurotransmission the mem-
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brane potential becomes slightly more positive: it partially de-polarizes (Fig.
1.2 on the bottom.) When this depolarization reaches a point of no return
called a threshold, a large electrical signal is generated (Fig. 1.3 on the top).
This is the action potential, also called spike. During complete depolariza-
tion, sodium channels open and sodium ions rush in. The sodium channels
then close.
The potassium channels now open and some of the potassium ions, repelled
by the positive charge inside, move to the outside (and the membrane’s
potential begins to return normal). This phase is said repolarization and
then the potassium channels close (Fig. 1.3 on the bottom). Before the
membrane potential stabilizes, there is a small undershoot in the membrane
potential and the neuron cannot fire another action potential.

Figure 1.3: The action potential.

After this refractory period, the neuron is now ready to fire another
action potential. Once fired, an action potential quickly (moving at rates
up to 150 meters) spreads along the membrane of the axon like a wave until
it reaches its axon terminals and via synapses with other neurons, axon
terminal is where chemical neurotrasmission begins.

1.1.4 Neurotransmission

Neurotransmission (or synaptic transmission) is communication between
neurons as accomplished by the movement of chemicals or electrical sig-
nals across a synapse. For any interneuron, its function is to receive INPUT
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”information” from other neurons through synapses, to process that infor-
mation, then to send ”information” as OUTPUT to other neurons through
synapses. Consequently, an interneuron cannot fulfill its function if it is not
connected to other neurons in a network. A network of neurons (or neural
network) is merely a group of neurons through which information flows from
one neuron to another. The image below represents a neural network.

Figure 1.4: An example of neural network.

”Information” flows between the blue neurons through electrical synapses.
”Information” flows from yellow neuron A, through blue neuron B, to pink
neuron C via chemical synapses (Fig. 1.4).

An electrical synapses between two neurons occurs when a gap junction
fuses the membranes of a pair of dendrites. Gap junctions permit changes in
the electrical properties of one neuron to effect the other (through a direct
exchange of ions), so the two neurons essentially behave as one. Electrical
neurotransmission is the process where an impulse (synaptic potential) in
one neuron will cause a synchronous impulse in the other (Fig. 1.5).

Chemical neurotransmission occurs at chemical synapses. In chemical
neurotransmission, the presynaptic neuron and the postsynaptic neuron are
separated by a small gap, the synaptic cleft. The synaptic cleft is filled
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Figure 1.5: Electrical synapse.

with extracellular fluid (the fluid bathing all the cells in the brain). Al-
though very small, typically on the order of a few nanometers, the synaptic
cleft creates a physical barrier for the electrical signal carried by one neu-
ron to be transferred to another neuron (Fig. 1.6). In electrical terms, the
synaptic cleft would be considered a ”short” in an electrical circuit. Chemi-
cal neurotransmission requires releasing neurotransmitter into the synaptic
cleft before a synaptic potential can be produced as INPUT to the other
cell. Neurotransmitter acts like a chemical messenger, linking the action
potential of one neuron with a synaptic potential in another.

Figure 1.6: Chemical synapse.

Resuming, a typical neuron has thousands of INPUT synapses. The
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synaptic potentials produced through those synapses determine whether it
fires an action potential as OUTPUT.
When the sum of all its synaptic potential equals or exceeds the threshold,
the neuron will fire an action potential along its axon.
The action potential will travel until it reaches the chemical synapse at its
axon terminal (OUTPUT). Once there, it will trigger release of its own neu-
rotransmitter, which will cause a synaptic potential in the new postsynaptic
neuron.

From the functional point of view, the synapses are classified in two types:
the excitatory synapses which enable impulses in the nervous system to
be spread and the inhibitory ones, which cause their attenuation.
During an excitatory synapse an action potential in a presynaptic neuron
increases the probability of an action potential occurring in a postsynaptic
cell.
Inhibitory synapses, on the other hand, cause the neurotransmitters in the
postsynaptic membrane to depolarize, decreasing its likelihood of the firing
action potential.
Chemical synapses are the most prevalent and are the main player involved
in excitatory synapses.

1.2 Dynamic neuron

In this little section I mention some different models made to simulate neu-
ral behaviors and their spiking.
Scientists investigated how the types of currents determine neuronal dynam-
ics. We divide all currents into two major classes: amplifying and resonant,
with the persistent Na+ current INa,p and the persistent K+ current IK
being the typical examples of the former and the latter, respectively. Since
there are tens of known currents, purely combinatorial argument implies
that there are millions of different electrophysiological mechanisms of spike
generation. They showed that any such mechanism must have at least one
amplifying and one resonant current. Some mechanisms have one resonant
and one amplifying current.
So, many models focused on system of equations where the variables in-
volved are these currents.
They made correspondences between resting, excitable, and periodic spik-
ing activity to a stable equilibrium or limit cycle, respectively, of a dynamic
system.
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However, in the first section, we saw that in electrical neurotransmission an
impulse (synaptic potential) from one neuron causes a synchronous impulse
in the other.
So like any other kind of physical, chemical, or biological oscillators, such
neurons can synchronize and exhibit collective behavior that is not intrinsic
to any individual neuron. For example, partial synchrony in cortical net-
works is believed to generate various brain oscillations, such as the alpha
and gamma EEG rhythms. Increased synchrony may result in pathological
types of activity, such as epilepsy.
Depending on the circumstances, synchrony can be good or bad, and it is
important to know what factors contribute to synchrony and how to control
it. There are various methods of reduction of coupled oscillators to simple
phase models. The reduction method and the exact form of the phase model
depend on the type of coupling (i.e., whether it is pulsed, weak, or slow).

Many types of physical, chemical, and biological oscillators share an aston-
ishing feature: they can be described by a single phase variable θ. In the
context of tonic spiking, the phase is usually taken to be the time since the
last spike.
Many models pay attention to neurons as biological oscillators. Most of
them reduces the interaction between n neurons with phases φi (i = n), to
a system of the form:

d

dt
φi = εωi + ε

n∑
j 6=i

Hi,j(φi − φj) ε > 0. (1.1)

where ωi = Hi,i(0) describes a constant frequency deviation from the free-
running oscillation and Hi,j correspond to a gap-junction coupling of oscil-
lators.
If we think of two neurons, we can describe their interaction with the system:{

dφ1
dt = ω1 −+H1(φ2 − φ1)

dφ2
dt = ω2 −+H1(φ1 − φ2),

In general, determining the stability of equilibria is a difficult problem.
Ermentrout (1992) found a simple sufficient condition. Namely, if

• aij = H ′ij(φj − φi) ≥ 0,

• the directed graph defined by the matrix A = (aij) is connected (each
oscillator is influenced by every other oscillator),

then the equilibrium φ ( the vector φ = (φ1, ..., φn) such that (1.1) is satis-
fied) is neutrally stable and the correspondent limit cycle is asympotically
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stable.
Another sufficient condition was found by Hoppensteadt and Izhikevich
(1997). It states that if (1.1) satisfies

• ω1 = ... = ωn = ω

• Hij(−χ) = −Hij(χ), where χ = φj − φi

for all i, j, then the network dynamics converge to a limit cycle.
However we pay attention to Kuramoto’s theory (1975), with H(χ) = sinχ.
Kuramoto, a physicist in the Nonlinear Dynamics group at Kyoto University,
solved the problem for N interacting ”smooth” oscillators. They continu-
ously interact by accelerating or decelerating and the modification of the
speed of each oscillator is a function of the current position of all others. If
the given conditions are met they eventually synchronize. The interaction
also depends on a constant K that represents the”strength” of the commu-
nication.
According to Kuramoto, the angular speed of the i−th oscillator is modified
in this way:

dφi
dt

= ωi +
K

N

N∑
j=1

sin(φj − φi).

1.3 REM-ON and REM-OFF phases

The aim of this section is to analyze the biological mechanisms which un-
derlies the alternation of sleep and wake, and of REM and NREM phases.
If we want to define sleep, we can say that it:

• is a naturally-occurring state;

• is periodic and recurring;

• involves both the mind and the body;

• involves the temporary suspension of consciousness;

• involves the relaxation and inactivity of muscles.

Our nightly sleep is made up of several sleep cycles, each of which is com-
posed of several different sleep stages, and the physiological and neurological
differences between the two main types of sleep, NREM and REM are al-
most as profound as the differences between sleep and wakefulness (or, for
that matter, night and day).
The sleep-wake cycle, is regulated by two separate biological mechanisms in
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the body, which interact together and balance each other. This model, first
posited by the Swiss sleep researcher Alexander Borbely in the early 1980s,
is often referred to as the two-process model of sleep-wake regulation. The
two processes are:

• circadian rhythm, also known as Process C, the regulation of the
body’s internal processes and alertness levels which is governed by the
internal biological or circadian clock;

• sleep-wake homeostasis, or Process S, the accumulation of hypno-
genic (sleep-inducing) substances in the brain, which generates a home-
ostatic sleep drive.

Both of these processes are influenced to some extent by the genes of the
individual. In addition, various external factors can also have a direct or
indirect effect on an individual’s sleep-wake cycle.

The different types and stages of sleep can be best identified using polysomnog-
raphy, which simultaneously measures several body functions such as brain
wave activity (electroencephalogram or EEG), eye movement (electroocu-
logram or EOG), muscle activity (electromyogram or EMG), respiration,
heart rhythm, etc. A simplified summary of these results can be combined
into a graph called a hypnogram, which gives a useful visual cross-section
of sleep patterns and sleep architecture.
The EEG is an extracellular recording obtained using macroelectrodes placed
on the scalp, and it measures the electrical activity of cortical neurons of
the area underlying the electrodes. More in detail, an EEG records the ex-
tracellular ionic current flow associated with the summed activity of many
hundreds of thousands of neurons, located under the recording electrodes.
The frequencies of the potentials recorded from the surface of the scalp of a
normal human typically vary from 1 to 30 Hz, and the amplitudes typically
range from 20 to 100µV . Although the frequency characteristics of EEG
potential are extremely complex and the amplitude may vary considerably
over a short time interval, a few dominant frequency bands and amplitudes
are typically observed.
We distinguish the following EEG rhythms:

• β waves, with frequencies > 15Hz, correspond to activated cerebral
cortex, during states of vigilance;

• α waves, with frequencies 8− 11Hz, associated with a state of relaxed
wakefulness;

• θ waves, with frequencies di 3, 5− 7, 5Hz, recorded during some sleep
stages especially during light sleep;
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• δ waves, with low frequencies (< 3, 5Hz) and large amplitudes, corre-
spond to deep states of sleep.

There are two main broad types of sleep, each with its own distinct physio-
logical, neurological and psychological features: rapid eye movement (REM)
sleep and non-rapid eye movement ( NREM) sleep, the latter of which can
in turn be divided into three or four separate stages.
NREM sleep is also called ”synchronized sleep” because during this phase
slow, regular, high-voltage, synchronized EEG waves are recorded. On the
other hand in REM sleep, the brain is highly activated, and EEG waves
are desynchronized, much as they are in waking, so REM sleep is called
”desynchronized sleep”

NREM sleep consists of four separate stages (stage1, stage 2, stage 3,
stage 4 ), which are followed in order upwards and downwards as sleep cycles
progress.

• Stage 1 is the stage between wakefulness and sleep, in which the
muscles are still quite active and the eyes roll around slowly and may
open and close from time to time. During this stage are recorded α
waves and θ waves.

• Stage 2 is the first unequivocal stage of sleep, during which muscle
activity decreases still further and conscious awareness of the outside
world begins to fade completely. Brain waves during stage 2 are mainly
in the θ wave range, but in addition stage 2 is also characterized by
K-complexes, short negative high voltage peaks, followed by a slower
positive complex, and then a final negative peak.

• Stage 3 is also known as deep or delta or slow-wave sleep (SWS), and
during this period the sleeper is even less responsive to the outside
environment, essentially cut off from the world and unaware of any
sounds or other stimuli. This stage is characterized by δ brain waves
and by some sleep spindles, short bursts of increased brain activity
last maybe half a second.

• Stage 4 is characterized essentially by δ brain waves, for 20-40 min-
utes.

REM sleep occurs in cycles of about 90-120 minutes throughout the night,
and it accounts for up to 20 − 25% of total sleep time in adult humans,
although the proportion decreases with age. In particular, REM sleep dom-
inates the latter half of the sleep period, especially the hours before waking,
and the REM component of each sleep cycle typically increases as the night
goes on.
As the name suggests, it is associated with rapid (and apparently random)
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side-to-side movements of the closed eyes, a phenomenon which can be mon-
itored and measured by a technique called electrooculography (EOG). This
eye motion is not constant (tonic) but intermittent (phasic). It is still not
known exactly to what purpose it serves, but it is believed that the eye
movements may relate to the internal visual images of the dreams that oc-
cur during REM sleep, especially as they are associated with brain wave
spikes in the regions of the brain involved with vision (as well as elsewhere
in the cerebral cortex).

Brain activity during REM sleep is largely characterized by low-amplitude
mixed-frequency brain waves, quite similar to those experienced during the
waking state: θ waves, α waves and even the high frequency β waves more
typical of high-level active concentration and thinking.

We may now ask ourselves something more about the factors which cause
REM/NREM alternation. Since late 1950s, it was believed that the brain-
system played an important role in the sleep-wake cycle. Giuseppe Moruzzi
and his his team were the first to prove the existence of different populations
of neurons whose activity was required for the regulation of wakefulness and
sleep. These groups were located in various part of reticular formation (a
part of the midbrain, which is shown in figure ref7), but the physiologists
were not able to explain how the alternation process worked.

brain.png

Figure 1.7: Human brain

Some steps further were made by other scientists: as illustrated in the
next Chapter, a first mathematical model of REM/NREM cycle was de-
veloped in late 1970’s by Hobson and McCarley. After this, some other
followed, but much of the sleep mechanism is to be discovered yet.

17



Before analyzing Hobson and McCarley model and a recent neuronal model
that can influence REM/NREM cycle, it is important to say something else
on sleep-wake cycle.

The body’s built-in circadian clock, which is centered in the hypothala-
mus organ in the brain, is the main mechanism that controls the timing of
sleep, and is independent of the amount of preceding sleep or wakefulness.
This internal clock is coordinated with the day-night / light-dark cycle over
a 24-hour period, and regulates the body’s sleep patterns, feeding patterns,
core body temperature, brain wave activity, cell regeneration, hormone pro-
duction, and other biological activities.
But circadian rhythms alone are not sufficient to cause and regulate sleep.
There is also an inbuilt propensity toward sleep-wake homeostasis, which
is balanced against the circadian element. Sleep-wake homeostasis is an
internal biochemical system that operates as a kind of timer or counter,
generating a homeostatic sleep drive or pressure to sleep and regulating
sleep intensity. It effectively reminds the body that it needs to sleep after a
certain time, and it works quite intuitively: the longer we have been awake,
the stronger the desire and need to sleep becomes, and the more the like-
lihood of falling asleep increases; the longer we have been asleep, the more
the pressure to sleep dissipates, and the more the likelihood of awakening
increases.
The interaction between the two processes can visualized graphically as fol-
lows:

Figure 1.8: Sleep-wake regulation: interaction between the homeostatic sleep
drive (Process S) and the circadian drive for arousal (Process C)

While homeostatic sleep drive typically increases throughout the day,
effectively making a person more and more sleepy as the day goes on, it is
countered and moderated by the circadian drive for arousal, at least until
late evening, when the circadian clock slackens off its alerting system and be-
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gins sleep-inducing melatonin production instead. This opens the so-called
”sleep gate” (marked by the point in the diagram above where the home-
ostatic sleep drive is at its greatest distance above the circadian drive for
arousal). The exact way in which this occurs is still not fully understood, but
the recent neuronal group theory of sleep theorizes that individual groups
of neurons in the brain enter into a state of sleep after a certain threshold
of activity has been reached, and that, once enough groups of neurons are
in this sleep state, the whole organism falls asleep.
During the night, while sleep is actually being experienced, the homeostatic
sleep drive rapidly dissipates, and circadian-regulated melatonin production
continues. In the early morning, melatonin secretion stops and the circadian
alerting system begins to increase its activity again. Eventually, the point is
reached where the circadian drive for arousal begins to overcome the home-
ostatic sleep drive (marked by the point in the diagram above where the two
curves meet), triggering awakening, and the process begins all over again.
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Chapter 2

Mathematical model

In a general Lotka-Volterra model, if we suppose that there is not a compe-
tition between the two groups involved (preys and predators), we obtain:{

dx
dt (t) = ax(t)− f(x(t), y(t))

dy
dt (t) = −cy(t) + g(x(t), y(t)),

where x(t) and y(t) indicate the prey and predator populations at the in-
stant t.
Their derivatives indicate the growth rate of the populations; the functions
f and g express the dynamics of the populations. The constants a and c are
positive and represent the decreasing and growth rates of the two popula-
tions in absence of interaction.

We analyze the reciprocal interaction model (proposed by R. McCarley
and A. Hobson), which explains REM-NREM alternation as a result of the
antagonist role played by two neuronal populations, FTG − neurons and
LC − neurons.
The most important features of the discharge time course of FTG are the
periodically occurring peaks of discharge activity, each of which corresponds
to a desynchronized (REM) sleep episode.
The process of transition to high discharge levels in desynchronized sleep in
FTG neurons is of exponential order, so we can think of a self-excitation.
The activity from FTG to LC cells which is postulated to utilize acetyl-
choline is excitatory.
Connections from LC to FTG and from LC to LC cells are revealed by
the presence of norepinephrine containing varicosities in each area; these
synapses are assumed to utilize norepinephrine as a neurotransmitter and
to be inhibitory.
The mathematical form of terms describing the influence of each population
on itself is suggested by evidence that the rate of change of activity levels
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in the FTG population is proportional to the current level of activity, and
we propose that the same is true for the LC population, but with a negative
sign because the recurrent feedback is inhibitory. The highly nonsinusoidal
nature of FTG activity suggests that nonlinear FTG-LC interaction is to
be expected. We model this effect by the simplest form of nonlinearity, the
product of activities in the two populations; according with the reasonable
physiological postulate that the effect of an excitatory or inhibitory input
to the two populations will be proportional to the current level of discharge
activity. Let x(t) be the level of discharge activity in FTG cells and let y(t)
be the level of discharge activity in LC cells; and let a, b, c, and d be positive
constants. These terms are related by the Lotka-Volterra system:{

dx
dt (t) = ax(t)− bx(t)y(t)

dy
dt (t) = −cy(t) + dx(t)y(t),

(2.1)

In our model, the FTG (excitatory) cells are analogous to the prey popula-
tion, and the LC (inhibitory) cells are analogous to the predator population.
These equations and more complicated variants have been extensively stud-
ied and the behavior of their solutions has been well documented, although
no explicit solution in terms of elementary functions is available.
For the simple model and the parameters used here, there is a periodic so-
lution. The equilibrium points of (2.1) are in (0, 0) and in z = ( cd ,

a
b ). If

we study the jacobian matrix in (0, 0), we deduce that the origin is a saddle
point, so it is unstable. The eigenvalues of the Jacobian in z are pure imag-
inary so we have no information about the stability.
If we draw the two lines

y =
a

b
, x =

c

d
,

we divide the first quadrant of the coordinate plane into four sectors.
In each sector the sign of ẋ and ẏ and is constant. The positive half-lines of
the x-axis and y-axis are trajectories with the origin as limit set. The other
solutions (x(t), y(t)) turn around the point z crossing the four sectors. We
want to find a Lyapunov function H(x, y) = F (x) +G(y) so that:

Ḣ =
dF

dx
ẋ+

dG

dy
ẏ = x

dF

dx
(a− by) + y

dG

dy
(dx− c) ≤ 0

We obtain Ḣ = 0 if

xdFdx
dx− c

=
y dGdy
by − a

= k (k constant).

So with k = 1, we have

dF
dx = d− c

x ⇒ F (x) = dx− c log x+A, A ∈ R
dG
dy = b− a

y ⇒ G(y) = by − a log y +B. B ∈ R
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Finally the function

H(x, y) = dx− c log x+ by − a log y

defined for x > 0, y > 0, is constant along the solutions of (2.1).
If we study the sign of ∂H

dx and ∂H
dy we can show that z is an absolute

minimum point, so that H(·) −H(z) is a Lyapunov function for z and the
point z is a stable equilibrium.
Now, through the following theorem we have a description of the type of
solutins of the system (2.1).

Theorem 2.1. The trajectories of the system (2.1) which are different from
the equilibrium point z and from the positive axis are closed orbits.

The system periodically returns to its initial state, with possibly very
large oscillations.

2.1 Neurons as biological oscillators

If we think of FTF-cells and LC-cells as oscillators, we can use some physical
model to study their interaction.
As seen in the first chapter, according to Kuramoto, the angular speed of
the i− th oscillator is modified in this way:

dφi
dt

= ωi +
K

N

N∑
j=1

sin(φj − φi).

So we can describe two coupled oscillators (with phases θ and φ) through
the following phase model:{

dθ
dt = ω1 +A sin(θ − φ)

dφ
dt = ω2 +A sin(φ− θ)

(2.2)

where ω1 and ω2 are the constant frequency deviations from the free-running
oscillation and A is a costant, because the alternation of REM-NREM cycles
depends from a symmetric activation of the two neuronal groups (FTG and
LC).
Later on, we will to study also the general case{

dθ
dt = ω1 + g(θ − φ)

dφ
dt = ω2 − g(θ − φ)

(2.3)

where g is a nonlinear, locally Lypschitz function such that there is A ∈ R
such that g(u) ∼ Au in a small neighborhod of u = 0.
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Going back to (2.2), we can suppose ω1 = ω2 because the two neurons are
similar (because they are brain system neurons) and we obtain:

d(θ + φ)

dt
= 2ω

which implies the conservation law : θ + φ = 2ωt+ k.

In order to make null the nonlinear part, we suppose that sin(θ−φ) = 0, in
such a way θ and φ are synchronized:

θ = φ or θ = φ+ kπ

and we deduce: {
dθ
dt = ω

dφ
dt = ω

and {
θ(t) = ωt+ θ0

φ(t) = ωt+ φ0

with θ0 = φ0.
So, we can start finding steady states of the form θs(t) = ωt + θ0 and
φs(t) = ωt+ φ0 and without loss of generality θ0 = φ0 = 0.
Generic solution of the system (2.2) with ω1 = ω2 = ω, can be expressed by

θ(t) = θs(t) + θr(t), φ(t) = φs(t) + φr(t),

where θs = φs = ωt.
If we replace θ with θs + θr in the first equation of (2.4), φ = φs + φr in the
second and remind that dθ

dt = dφ
dt = ω we get:{

dθr
dt = A sin(θr − φr)
dφr
dt = A sin(φr − θr)

(2.4)

In order to have informations of the qualitative behavior of the solution, we
linearize this system and we obtain[

θ̇r
φ̇r

]
= A

[
1 −1
−1 1

] [
θr
φr

]
.

The eigenvalues of this matrix are 0 and 2A, so we cannot use the Lyapunov
exponents theory to determine the system stability.
If we turn to the case in which A sin(θ − φ) is replaced with g(θ − φ), we
find the system: {

dθ
dt = ω + g(θ − φ)

dφ
dt = ω − g(θ − φ)

(2.5)

23



As before, if we sum the two equations we get:

θ(t) + φ(t)− 2ωt = k,

that implies we can start considering solutions of the form θs(t) = φs(t) =
ωt.
To study the asymptotic stability, we consider a small perturbation:

θr = θ − ωt, φr = φ− ωt.

We substitute in (2.5) and the system becomes:{
dθr
dt = g(θr − φr)
dφr
dt = −g(θr − φr)

(2.6)

We linearize: {
dθr
dt = A(θr − φr)
dφr
dt = −A(θr − φr)

and the eigenvalues of the associated matrix are 0 and 2A; again we cannot
use the Lyapunov exponents theory.

However we want to study the solution of the systems (2.4) and (2.6).
We remind that θ̇r + φ̇r = 0, so θr(t) + φr(t) is a conserved quantity of the
two systems.
Now we pay attention to the difference of the phases u = θr −φr. With this
definition, the system (2.4) becomes:

u̇ = 2A sinu, (2.7)

and, if we start from initial conditions θ(0) = θ0 + ε1 and φ(0) = φ0 + ε2,
then u(0) = ε1 − ε2.
Similarly if we replace u in (2.6), we obtain:

u̇ = 2g(u) = 2Au+O(u2) (2.8)

with initial conditions u(0) = ε1 − ε2, where ε1 = θr(0) and ε2 = φr(0).
We would like to find some conditions on the costant A, from which we can
deduce the stability or instability of these new systems.

2.1.1 Case A < 0.

We can prove that if A < 0, the solution u(t) of (2.7) and (2.8) is asymp-
totically stable.
We use the foloowing theorem:
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Theorem 2.2 (Asymptotic stability of the solitary wave). Suppose g is a
nonlinear, locally Lipschitz function such that there exists A < 0, satisfying
g(u) ∼ Au in a small neighborhood of u = 0 and the system{

dθ
dt = ω + g(θ − φ)

dφ
dt = ω − g(θ − φ)

has initial condition θ(0) = θ0, φ(0) = φ0. Then there exists a sufficiently
small ε > 0 so that, if the initial conditions satisfy |θ0−φ0| ≤ ε, the Cauchy
problem associated with the system above has global solution

θ(t) = ωt+
θ0 + φ0

2
+ v(t),

where
|v(t)| ≤ Cεe−2t

for every t > 0.

Proof. As seen, if η = θ − φ and ξ = θ + φ, then{
dη
dt = 2g(η)

η(0) = θ0 − φ0

and {
dξ
dt = 2ω

ξ(0) = θ0 + φ0.

So,
ξ(t) = θ0 + φ0 + 2ωt ∀t ≥ 0.

Since there exist A > 0, k > 0, γ > 0 such that

g(η) = Aη + σ(η)

with |σ(η)| ≤ k|η|2 for |η| ≤ γ, we have{
dη
dt = 2A(η) + 2σ(η)

η(0) = θ0 − φ0

which implies, multiplying for e−2At,

d

dt
(e−2Atη) = 2e−2Atσ(η)

therefore

e−2Atη(t)− (θ0 − φ0) = 2

∫ t

0
e−2Asσ(η(s))ds
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and

η(t) = e2At(θ0 − φ0) + 2

∫ t

0
e2A(t−s)σ(η(s))ds. (2.9)

If
N(τ) = sup

t∈[0,τ ]
[|η(t)|e−2At]

then, by (2.9), we have:

N(τ) ≤ |θ0 − φ0|+ 2

∫ τ

0
e2AskN(τ)2ds

= |θ0 − φ0|+
1

A
|e2Aτ−1|KN(τ)2

≤ |θ0 − φ0|+
k

A
N(τ)2.

We obtain:
k

A
N(τ)2 −N(τ) + |θ0 − φ0| ≥ 0

which is satisfied by

N(τ) ≤
1−

√
1− 4k

A |θ0 − φ0|

2 kA
.

We have to exclude the values

N(τ) ≥
1 +

√
1− 4k

A |θ0 − φ0|

2 kA
≥ A

k
,

because N(0) = |θ0 − φ0| and, since |θ0 − φ0| is sufficiently little, we can’t
accept N(τ) ≥ A

k .
Since 1−

√
1− x ≤ x

2 for each x > 0, we obtain:

N(τ) ≤
1−

√
1− 4k

A |θ0 − φ0|

2 kA
≤ 2|θ0 − φ0|.

So, we can say that

sup
t>0

e−2At|η(t)| ≤ |θ0 − φ0| |θ0 − φ0| < ε <
A

k
.

Hence the solution is global and:

|η(t)| ≤ e2At|θ0 − φ0|

if |θ0 − φ0| < ε < A
k . Finally we conclude that θ and φ satisfy

dθ
dt (t) = η(t)+ξ(t)

2 = θ0+φ0
2 + ωt+ v(t)

dφ
dt (t) = ξ(t)−η(t)

2 = θ0+φ0
2 + ωt− v(t)

where |v(t)| ≤ e2At|θ0 − φ0|.

26



2.1.2 Case A > 0.

Now we analyze the behavior of system{
u̇ = 2g(u)

u(0) = ε
(2.10)

when g(u) ∼ Au as u→ 0 and A > 0.
More precisely, we suppose that g : R→ R is a C1 function such that:

g(0) = g(B) = 0,

g > 0 in (0, B),

g′(0) = A > 0,

g′(B) < 0

(2.11)

Lemma 2.3. If g : [0, B] → R is a C1 function satisfying (2.11), then for
every ε ∈ (0, B) we have ∫ B

ε

du

g(u)
= +∞.

Proof. In a neighborhood of B we have

g(u) = g′(u)(u−B) + o(B − u)

so that the integral must diverge.

We are going to apply this lemma in order to prove that, under assumption
(2.11), the solution of (2.10) is global and satisfies

lim
t→∞

u(t) = B.

First of all, if ε ∈ (0, B), the solution of (2.10) is global: indeed there are
two stationary solutions u = 0 and u = B, and for 0 < ε < B the solution u
of (2.10) must lie between 0 and B, so it cannot blow up at any t > 0.
Next, by separating variables we have∫ T

0

u̇(t)

g(u(t))
dt = T ∀T > 0,

i. e. ∫ u(t)

ε

dτ

g(τ)
= T ∀T > 0. (2.12)
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Introduce now a primitive G of 1
g , such that In the assumptions made in

the last theorem, let G(s) a function such that: G(ε) = 0; then, by lemma
2.3,

lim
T→B−

G(T ) = lim
T→B−

∫ T

ε

du

g(u)
= +∞

and also
lim
T→0+

G(T ) = −∞.

Moreover G is strictly increasing, hence there exists G−1 : R →]0, B[, such
that

lim
s→∞

G−1(s) = B, lim
s→−∞

G−1(s) = 0.

In particular

G(u(T )) =

∫ u(T )

ε

dτ

g(τ)
= T ∀T > 0,

i. e.
u(T ) = G−1(T ) ∀T > 0

and finally
lim

T→B−
u(T ) = lim

T→B−
G−1(T ) = +∞.

Moreover we can say something on the behavior of B − u(t).
We want to prove that there exists a > 0 such that

lim
t→∞

eat(B − u(t)) = 0.

Let us consider again the Taylor development at B:

du

dt
= g(u) = g(B) + g′(B)(u−B) + o(u−B).

We have, for 0 < B − u < δ,

du

dt
≥ |g′(B)||B − u| − ε(B − u) = k(B − u)

where k = |g′(B)| − ε > 0.
We set v = B − u. Then

dv

dt
= −du

dt
≤ −kv

which implies

ekt
dv

dt
+ kektv ≤ 0.
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We deduce that:
d

dt
(ektv(t)) ≤ 0

and we conclude
v(t) ≤ v(0)e−kt

that is what we wanted to prove.

2.2 Kuramoto Model

The Kuramoto model has been the focus of extensive research and provides
a system that can model synchronisation and desynchronisation in groups of
coupled oscillators. Various modifications to the standard Kuramoto model
have been made in order to enable it to be used as a model for alternative,
specific applications.
The Kuramoto model considers a system of globally coupled oscillators,
defined using the following equation:

dφi
dt

= ωi +
K

N

N∑
j=1

sin(φj − φi),

where φi is the phase of oscillator i, ωi is the natural frequency of oscillator
i, N is the total number of oscillators in the system and K is a constant
referred to as the coupling constant.

The Kuramoto model and its corresponding analysis assumes the follow-
ing to be true:

• All oscillators in the system are globally coupled.

• Individually, the oscillators are identical, except for possibly different
natural frequencies ωi.

• The phase response curve depends on the phase between two oscilla-
tors.

• The phase response curve has f a sinusoidal form.

Now we refer to the neuronal groups REM-ON as ”neurons θi” and to
the REM-OFF neurons as ”φi” .
We use Kuramoto model to describe the interaction between neurons of the
same group and between neurons of different groups. We suppose that their
communication is of the following type:

We suppose, precisely, that the i− th neuron REM −ON with phase θi
will be mostly influenced by its interaction with the i+ 1− th and i− 1− th
neurons REM-ON and with the i− th neuron REM-OFF with phase φi.
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So, from Kuramoto model, we deduce that the interaction between two
neurons of different groups is described by following system:{

dθi
dt = ω + ki,1[sin(θi+1 − θi) + sin(θi−1 − θi)] + ki,1 sin(φi − θi)
dφi
dt = ω + ki,2[sin(φi+1 − φi) + sin(φi−1 − φi)] + ki,2 sin(θi − φi)]

where ω is the natural frequency of brain system neurons and ki,j , j = 1, 2
are constants of interaction.
We remember that sinx = x+ o(x2) as x→ 0, so the system becomes:{

dθi
dt ∼ ω + ki,1[(θi+1 − θi) + (θi−1 − θi)] + ki,1 sin(φi − θi)
dφi
dt ∼ ω + ki,2[(φi+1 − φi) + (φi−1 − φi)] + ki,2 sin(θi − φi)]

(2.13)

Now, we recognize the discretization of the Laplacian operator ∆θ ∼ θi+1−
2θi + θi−1; passing to the limit, we obtain:{

∂θ
dt −∆θ = ω +A sin(θ − φ)

∂φ
dt −∆φ = ω +A sin(φ− θ).

(2.14)

where A is an appropriate constant. It is the diffusive model that we will
study in the fourth chapter in its general form{

∂θ
dt −∆θ = ω + g(θ − φ)

∂φ
dt −∆φ = ω − g(θ − φ)

(2.15)

where g is a particular nonlinear function.
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Chapter 3

Mathematical tools

In this chapter, we recall some mathematical concepts and theorems in order
to study a more complex model linked with the previous analyzed.
We refer to Lp(Ω), p ∈ (1,∞) as the linear space of p− th order integrable
functions on Ω, which is a Banach space respect to the norm

||u||Lp(Ω) =

(∫
Ω
|u(x)|pdx

) 1
p

By C∞0 (Ω) we denote the class of infinitely smooth functions in Ω with
compact support.

3.1 Linear operators

In this section some results on linear operators are reported, most of them
without proof. Let X,Y two normed spaces.

Definition 3.1. A map A : X → Y is a linear operator if A(αx + βz) =
αA(x) + βA(z),for all x, z ∈ X and for all α, β ∈ R (or α, β ∈ C).

We can write Ax instead of A(x).

Definition 3.2. The image (or range) of A is the linear subspace of Y ,
I(A) = {Ax : x ∈ X}. The kernel of A is the linear subspace of X,
kerA = {x ∈ X : Ax = 0}.

Definition 3.3. A linear operator A : X → Y is bounded if there exists
M ≥ 0 such that ‖Ax‖Y ≤M‖x‖X , for every x ∈ X.
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The set of bounded linear operator from X to Y is a vector space denoted
by L(X,Y ); if X = Y we use L(X) instead of L(X,X).
The space L(X,Y ) becomes a normed space with norm

‖A‖L(X,Y ) = sup
‖u‖X=1

‖Au‖Y .

Theorem 3.4. Let X,Y normed spaces. If Y is a Banach space, then
L(X,Y ) is a Banach space.

Theorem 3.5. Let A a bijective linear operator in L(X,Y ), then its inverse
operator is in L(Y,X).

Let X be a Banach space and let A : D(A) → X be a linear operator
with domain D(A) ⊆ X . Let I denote the identity operator on X. For any
λ ∈ C, let

Aλ = A− λI;

λ is said to be a regular value if Rλ(A), the inverse operator to Aλ:

1. exists;

2. is a bounded linear operator;

3. is defined on a dense subspace of X (and hence in all of X).

The resolvent set of A is the set of all regular values of A:

ρ(A) = {λ ∈ C|λ is a regular value of A}.

The spectrum of A is the set of all λ ∈ C for which the operator A−λI does
not have a bounded inverse. In other words the spectrum is the complement
of the resolvent set:

σ(A) = C \ ρ(A).

If λ is an eigenvalue of A then the operator A − λI is not one-to-one, and
therefore its inverse (A−λI)−1 is not defined. So the spectrum of an operator
always contains all its eigenvalues, but is not limited to them.

Lemma 3.6. If A ∈ L(X) and |λ| > ‖A‖, then λ ∈ ρ(A) and Rλ(A) can be
expressed by a Neumann series:

Rλ(A) = − 1

λ

∞∑
n=0

(
A

λ

)n
.

The spectrum of a bounded operator A is always a closed, bounded
and non-empty subset of the complex plane. The boundedness of the spec-
trum follows from the Neumann series expansion in λ; the spectrum σ(A) is
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bounded by ||A||. The bound ||A|| on the spectrum can be refined somewhat.
The convergence radius of Neumann series is

r = lim sup
n→∞

‖An‖
1
n ≤ ‖A‖, (3.1)

So σ(A) ⊆ {λ ∈ C : |λ| ≤ r} and we define the spectral radius as:

r(A) = sup{|λ| : λ ∈ σ(A)|}.

It holds
∃ lim
n→∞

‖An‖1/n = r(A).

Let A ∈ L(X). We can decompose σ(A) as σ(A) = σp(A)∪σc(A)∪σr(A),
where these sets are disjoint and:

1. σp(A) = {λ ∈ C : ker(A−λI) 6= 0} is the point spectrum and contains
the eigenvalues of A;

2. σc(A) = {λ ∈ C : (A − λI) has a dense range but (A − λI)−1 is not
bounded} is the continuous spectrum;

3. σr(A) = {λ ∈ C : (A − λI) has not dense range} is the residual
spectrum.

3.2 Fourier transform in L2(RN)

Let f ∈ L1(RN ). The Fourier transform f̂ of f is:

f̂(ξ) =

∫
RN

e−i(x,ξ)f(x)dmN (x) ξ ∈ RN (3.2)

where (x, ξ) is the scalar product on RN . The operator f → f̂ is denoted
by F .

Proposition 3.7. The Fourier transform F : L1(RN )→ L∞(RN ) is a linear
bounded operator; so:

‖f̂‖L∞ ≤ ‖f‖L1 .

It is also unitary.
Moreover for every f ∈ L1(RN ), f̂ is uniformly continuous on RN .

Remark 3.8. The Fourier transform f̂ is C1 and

Dj f̂(ξ) = [F(−ixjf(x))](ξ). (3.3)

Proposition 3.9. Let f, g ∈ L1(RN ), we have:

(̂f ∗ g)(ξ) = f̂(ξ)ĝ(ξ) ∀ξ ∈ RN .
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Theorem 3.10 (Inverse of the Fourier transform). If f ∈ L1(RN ) is such
that f̂ ∈ L1(RN ), then

f = (2π)−N F̄(f̂)

where F̄(f̂) =
∫
RN e

i(x,ξ)f̂(ξ)dmN (ξ).

We are interested in the properties of Fourier transform in L2. So we
introduce the Schwartz space S(RN ) that is dense in L2(RN ) and we see
some properties of Fourier transform on this space.

Definition 3.11. The Schwartz space S(RN ) is defined by:

S(RN ) = {φ ∈ C∞(RN ) : x→ xαDβφ(x) ∈ L∞(RN ) ∀α, β ∈ NN}

where xα = xα1
1 · ... · x

αN
N and Dβ = Dβ1

1 ...DβN
N .

We define |β| = β1 + ...+ βN .

Properties of S(RN ) .

• It has a seminorm:

Np(φ) =
∑

|α|≤p,|β|≤p

||xαDβφ(x)||L∞ <∞ ∀p ∈ Z;

• there exists a constant Cp such that∑
|α|≤p,|β|≤p

||xαDβφ(x)||L1 ≤ CpNp+N+1(φ) ∀φ ∈ S(RN );

• F maps S(RN ) in S(RN ) and there exists a constant Kp such that

Np(φ̂) ≤ KpNp+N+1(φ);

• F is an isomorphism and we have the inverse formula:

φ(x) = (2π)−N
∫
RN

φ̂(ξ)ei(x,ξ)dmN (ξ) = (2π)−N φ̂(−x).

At the basis of these facts there are some properties of Fourier transform.

Proposition 3.12. Let φ ∈ S(RN ); then

D̂αφ(ξ) = i|α|ξαφ̂(ξ) ∀ξ ∈ RN

and
Dαφ̂(ξ) = (−i)|α|F(xαφ(x))(ξ) ∀ξ ∈ RN .
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Proof. We obtain the first property integrating by parts |α| times in

the integral that defines D̂αφ and this is possible because

lim
|x|→∞

|xαDβφ(x)| = 0 ∀α, β ∈ NN , ∀φ ∈ S(RN ).

The second property is an easy verification.
We have seen that F is an isomorphism from (S(RN ), ‖ · ‖L2(RN ) into

itself and, since S(RN ) is dense in L2(RN ), it can be extended in a unique
way to an isomorphism of L2(RN ) into itself.

Theorem 3.13 (di Plancherel). For all f, g ∈ S(RN ) we have the Parseval
formula:

(f̂ , ĝ)L2(RN ) = (2π)N (f, g)L2(RN ).

In particular:

‖f̂‖L2(RN ) = (2π)
N
2 ‖f‖L2(RN ) ∀f ∈ S(RN )

Corollary 3.14. The Fourier transform extends to a unique isomorphism
of L2(RN ) into itself. In particular we have

(f̂ , ĝ)L2(RN ) = (2π)N (f, g)L2(RN ) ∀f, g ∈ L2(RN )

and
f(x) = (2π)−N

ˆ̂
f(−x)q. o. inRN ∀f ∈ L2(RN ).

3.3 Sobolev spaces

Definition 3.15. Let Ω ⊂ RN be an open set and fix m ∈ N,p ∈ [1,∞). Set

Em,p(Ω) =

u ∈ Cm(Ω) :

 ∑
|α|≤m

∫
Ω
|Dαu|pdx

 1
p

= ‖u‖m,p <∞


Remark 3.16. Em,p(Ω) is a normed space with norm ‖ · ‖m,p.

We remember that a completion of a metric space (X, d) is a pair con-
sisting of a complete metric space (X∗, d∗) and an isometry φ : X → X∗

such that φ(X) is dense in X∗. Every metric space has a completion.

Definition 3.17. The Sobolev space Hm,p(Ω) is the completion of Em,p(Ω)
with respect to the norm ‖ · ‖m,p.
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Definition 3.18. Let u ∈ Lp(Ω). The function u is said to have a strong
derivative in Lp(Ω) up to the order m if there exists (uk) ⊂ Em,p(Ω) such
that uk → u in Lp(Ω) and (Dαuk) is a Cauchy sequence in Lp(Ω) for 1 ≤
|α| ≤ m. The functions uα = limk→∞(Dαuk) are the strong derivatives of
u.

Remark 3.19. Strong derivatives are indipendent from the approximating
sequences.

Proposition 3.20. u ∈ Hm,p(Ω) ⇔ u has strong derivatives in Lp(Ω) up
to the order m.

Definition 3.21. Let u ∈ L1(Ω) and let α ∈ Nd0 a multi-index. The function
u is said to have a weak derivative v = Dαu if there exists a function v ∈
L1(Ω) such that∫

Ω
uDαφdx = (−1)|α|

∫
Ω
vφdx, ∀φ ∈ C∞0 (Ω)

The notion ”weak derivative” suggests that it is a generalization of the
classical concept of differentiability and that there are functions which are
weakly differentiable, but not differentiable in the classical sense. We give
an example.

Exemple 3.22. Let d = 1, and Ω = (−1,+1). The function u(x) = |x|,
x ∈ Ω is not differentiable in the classical sense. However, it admits a weak
derivative D1u given by

D1u =

{
−1, x < 0
+1, x > 0

The proof is easy.

Definition 3.23. The Sobolev Space Wm,p(Ω) is the set of functions u ∈
Lp(Ω) with weak derivatives in Lp(Ω) up to the order m

Proposition 3.24. Wm,p(Ω) is a Banach space with the norm || · ||m,p.

Proof. Let (un) ⊂Wm,p(Ω) a Cauchy sequence with respect to || · ||m,p.
For each α ∈ NN , with |α| ≤ m, there exist u and vα in ∈ Lp(Ω) such that
un → u and Dαun → vα in Lp(Ω)
For all n and for all φ ∈ C∞0 (Ω)∫

Ω
unD

αφdx = (−1)α
∫

Ω
Dαunφdx ∀α ∈ NN , |α| ≤ m

and, for n→∞∫
Ω
uDαφdx = (−1)α

∫
Ω
vαφdx ∀φ ∈ C∞0 (Ω), |α| ≤ m

So, vα is the α − th weak derivative of u and it is easy to see that ‖un −
u‖m,p → 0.
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Remark 3.25. Weak and strong derivatives are unique.

Proof. If uα and vα are two α− th weak derivatives of u, then
∫

Ω(uα−
vα)φdx = 0 forall φ ∈ C∞0 (Ω). Let q the conjugate exponent to p, and let
φn ⊂ C∞0 (Ω) with φn → sign(uα − vα)|uα − vα|p−1 in Lq(Ω); for n→∞ we
obtain

∫
Ω |uα − vα|

p = 0, so uα = vαv.

3.3.1 Characterization of Sobolev spaces

Usually Hm,p(Ω) ⊂ Wm,p(Ω). We say that Ω is a bounded set with locally
Lipschitz boundary if for every x0 ∈ ∂Ω exists a neighborhood U of x0 such
that U ∩∂Ω is graph of a Lipschitz function of N −1 variables. In this case,
Hm,p(Ω) = Wm,p(Ω). In this section we assume to be in this situation.

Proposition 3.26. Let u ∈ Wm,p(Ω) and v ∈ Cm(Ω) ∩Wm,∞(Ω) (i. e.
Dαv are bounded in Ω for |α| ≤ m), then u · v is in Wm,p(Ω) and

Dα(uv) =
∑
|β|≤|α|

(
α

β

)
Dα−βuDβv

Definition 3.27. Wm,p
0 (Ω) = C∞0 (Ω) in ‖ · ‖m,p. In particular Wm,p

0 (Ω) is
complete.

Remark 3.28. If Ω = RN we have Wm,p
0 (RN ) = Wm,p(RN ), i. e. C∞0 (RN )

is dense in Wm,p(RN ).

Now we see some fundamental results.

Theorem 3.29 (Poincarè Inequality). Let Ω ⊂ RN a bounded set. There
exists c = c(Ω,m, p) such that∑

|α|=k

‖Dαu‖Lp(Ω) ≤ c
∑
|α|=m

‖Dαu‖Lp(Ω) ∀u ∈Wm,p
0 (RN ), 0 ≤ k ≤ m

Theorem 3.30 (Sobolev theorem). Let Ω ⊂ RN a bounded locally Lipschitz
open, let p ∈ [1,∞[. Then

• p < N ⇒W 1,p(Ω) ↪→ Lp
∗
(Ω), p∗ = Np

N−p

• p = N ⇒W 1,p(Ω) ↪→ Lq(Ω), ∀q <∞

• p > N ⇒W 1,p(Ω) ↪→ C0,α(Ω̄), α = 1− N
p .

Theorem 3.31 (Rellich). Moreover (see section 3.5 below)

• p < N ⇒ Id : W 1,p(Ω)→ Lq(Ω), q < p∗ is compact;

• p = N ⇒ Id : W 1,p(Ω)→ Lq(Ω), q <∞ is compact;
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• p > N ⇒ Id : W 1,p(Ω)→ C0,α(Ω̄), α = 1− N
p is compact.

Remark 3.32. Let Ω =]0, 2π[ and consider S1. We have L2(0, 2π) ' L2(S1)
and H1,2(S1) ⊂ H1,2(0, 2π) (indeed N = 1, p = 2 > 1, so if u ∈ H1,2(S1),
then u continuous and periodic, whereas the elements of H1,2(0, 2π) are
continuous but not necessarily periodic.)
If u ∈ H1,2(S1), then u′ ∈ L2(S1). Let be uk and u′k the Fourier coefficients
of u and u′ in the system {eikt}k∈Z:

uk =
1

2π

∫ 2π

0
u(t)e−iktdt, u′k =

1

2π

∫ 2π

0
u′(t)e−iktdt,

then integrating by parts,

u′k = ikuk ∀k 6= 0, u′0 = 0.

So, by Bessel equality (
∫ 2π

0 |u|
2dt = 2π

∑
k∈Z |uk|2 ∀u ∈ L2(S1)), we obtain

u ∈ H1,2(S1)⇔
∑
k∈Z

k2|uk|2 <∞

and
u ∈ L2(S1)⇔

∑
k∈Z
|uk|2 <∞.

These properties allow to define Sobolev fractional spaces as follows:

Hs,2(S1) = {u ∈ L2(S1) :
∑
k∈Z

(1 + |k|2)s|uk|2 <∞}, s ∈]0, 1].

We observe that:

• if 0 < s < s′ ≤ 1 then H1,2(S1) ⊂ Hs′,2(S1) ⊂ Hs,2(S1) ⊂ L2(S1)

• if s > 1
2 the functions of Hs,2(S1) are continuous because their Fourier

series converges totally: indeed

∞∑
|k|≥n

|ukeikt| =
∑
|k|≥n

|uk|ks

ks

≤

∑
|k|≥n

k2s|uk|2
 1

2
∑
|k|≥n

1

k2s

 1
2

≤ ‖u‖Hs,2

∑
|k|≥n

1

k2s

 1
2

(3.4)

goes to zero as n→∞, since 2s > 1.
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For the case p = 2, we use the notation Hs(Ω) instead of Hs,2(Ω) for
s ∈ R. So in the last observation we have Hs,2(S1) = Hs(S1).
In the case of Ω = RN we can introduce the Sobolev spaces Hs(RN ), also
in another way, through the distribution theory.
Briefly, we see the principal definitions to define the space Hs(RN ).
Firstly we note that, if Ω ⊂ RN and u ∈ L1

loc(Ω), the expression

(f, φ) =

∫
Ω
f(x)φ(x) φ ∈ C∞0 (Ω)

is meaningful.

Definition 3.33. Let s ∈ R, let Ω ⊂ RN an open set.
A linear form u is a distribution on Ω if there exist p ∈ Z and a constant
c such that, for all compact K ⊂ Ω:

|(u, φ)| ≤ c
∑
|α|≤p

‖Dαφ‖L∞(K) ∀φ ∈ C∞0 (Ω).

The vectorial space of the distributions on Ω is denoted by D′(Ω)

Definition 3.34. Let u ∈ D′(RN ). We say that u ∈ S′(RN ) if there exist
p ∈ N and C ≥ 0 such that

|(u, φ)| ≤ CNp(φ) ∀φ ∈ C∞0 (RN ).

Properties of S′(RN )

• {uj} ⊂ S′(RN ), uj → u in S′(RN ) if we have

lim
j→∞

(uj , φ) = (u, φ) ∀φ ∈ S(RN );

• If u ∈ S′(RN ) then all its derivatives are in S′(RN );

• If uj → u in S′(RN ) then Dαuj → Dαu in S′(RN );

• If u ∈ S′(RN ) then its Fourier transform û is defined by

(û, φ) = (u, φ̂) ∀φ ∈ S(RN ).

Finally we can introduce the spaces Hs(RN ).

Definition 3.35. Let s ∈ R and u ∈ D′(RN ), then u ∈ Hs(RN ) if

1. u ∈ S′(RN )

2. û ∈ L1
loc(RN )
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3. ∫
RN

(1 + |ξ|2)s|û(ξ)|2dξ <∞.

Remark 3.36. It is equivalent to say that u ∈ Hs(RN ) if (1+ |ξ|2)
s
2 |û(ξ)| ∈

L2(RN ).

Proposition 3.37. The spaces Hs(RN ) are Hilbert spaces with the scalar
product:

(u, v) =

∫
RN

(1 + |ξ|2)sv̂(ξ)û(ξ)dξ

and this scalar product induces the norm:

‖u‖Hs = ‖(1 + |ξ|2)
s
2 û‖L2

In the proof of this proposition it is important to note that the map
ψ : Hs → L2 such that

ψ(u) = (1 + |ξ|2)
s
2 ˆu(ξ)

is a surjective isometry. So Hs(RN ) is complete because L2(RN ) is complete
too.

Proposition 3.38. If s ≥ s′ then Hs(RN ) ⊂ Hs′(RN )

Proof. We know that (1 + |ξ|2)
s
2 ˆu(ξ) ∈ L2(RN ). Now we want to prove

that
(1 + |ξ|2)s

′ |û(ξ)|2 ∈ L2(RN ).

But this is true. In fact:

(1 + |ξ|2)s
′ |û(ξ)|2 = [(1 + |ξ|2)

s′
2 |û(ξ)|][(1 + |ξ|2)s

′− s
2 |û(ξ)|]

The two terms are in L2(RN ), so by Holder inequality we conclude.

Theorem 3.39. The spaces Hs(RN ) is an algebra for s > n
2 .

In the case N = 1, the case that we will use in the next chapter, we have
similarly:

Proposition 3.40. If v, w ∈ Hs(S1) with s > 1
2 , then v · w ∈ Hs(S1).

3.4 Unbounded closed operators.

We can generalize the results of the first section on linear operators to un-
bounded operators, on a Hilbert space, for simplicity.
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3.4.1 Unbounded operators

We consider a complex Hilbert space H. The scalar product will be denoted
by (u, v). We take the convention that the scalar product is antilinear with
respect to the second argument.
We recall a well known result for Hilbert spaces.

Theorem 3.41 (Riesz’s Theorem). Let u→ F (u) a linear continuous form
on H. Then there exists a unique w ∈ H such that

F (u) = (u,w) ∀u ∈ H

There is a similar version with antilinear maps.

Theorem 3.42. Let u → F (u) an antilinear continuous form on H. Then
there exists a unique w ∈ H such that

F (u) = (w, u) ∀u ∈ H

If a linear operator T : u→ Tu, is defined on a subspace H0 of H, then
H0 is denoted by D(T ) and is called the domain of T .
T is bounded if it is continuous from D(T ) (with the topology induced by
the topology of H) into H. When D(T ) = H, we recover the notion of linear
continuous operators on H.
When D(T ) is not equal to H, we shall always assume that:

D(T ) is dense in H (3.5)

Note that, if T is bounded, then it admits a unique continuous extension to
H. In this case the generalized notion is not interesting. We are mainly in-
terested in extensions of this theory and will consider unbounded operators.
The point is to find a natural notion replacing this notion of boundedness.
This is the object of the next definition.

Definition 3.43. The operator T is called closed if the graph G(T ) of T
is closed in H ×H.

We recall that

G(T ) = {(x, y) ∈ H ×H, x ∈ D(T ), y = Tx} (3.6)

Equivalently, we can say:

Definition 3.44 (Closed operator). Let T be an operator on H with (dense)
domain D(T ). We say that T is closed if the conditions

• un ∈ D(T )

• un → u ∈ H
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• Tun → v ∈ H

imply

• u ∈ D(T )

• v = Tu.

Theorem 3.45 (Closed graph theorem). If X, Y are Hilbert spaces and T
is a closed operator, T : X → Y , then T ∈ L(X,Y ).

3.4.2 Adjoints

When we have an operator T in L(H), it is easy to define the Hilbertian
adjoint T ∗ by the identity:

(T ∗u, v) = (u, Tv) ∀u ∈ H,∀v ∈ H. (3.7)

The map v → (u, Tv) defines a continuous antilinear map on H and can be
expressed, using Riesz’s Theorem, by the scalar product by an element which
is called T ∗u. The linearity and the continuity of T ∗ is then easily proved
using (3.7). Let us now give the definition of the adjoint of an unbounded
operator.

Definition 3.46. If T is an unbounded operator on H whose domain D(T )
is dense in H, we first define the domain of T ∗ by

D(T ∗) = {u ∈ H : ∃ku ≥ 0 : |(u, Tv)| ≤ ku‖u‖H , ∀v ∈ D(T )}. (3.8)

The map v 7→ (u, Tv) is then extensible to an antilinear continuous form on
H.
Using Riesz’ Theorem, there exists f ∈ H such that

(f, v) = (u, Tv) ∀u ∈ D(T ∗), ∀v ∈ D(T ).

The uniqueness of f is a consequence of the density of D(T ) in H and we
can then define T ∗u by

T ∗u = f.

Proposition 3.47. T ∗ is a closed operator.

Proof. Let (vn) be a sequence in D(T ∗) such that vn → v in H and
T ∗vn → w∗ in H for some pair (v, w∗). We would like to show that (v, w∗)
belongs to the graph of T ∗.
For all u ∈ D(T ), we have:

(Tu, v) = lim
n→+∞

(Tu, vn) = lim
n→+∞

(u, T ∗vn) = (u,w∗) (3.9)

Coming back to the definition of D(T ∗) we get from (3.9) that v ∈ D(T ∗)
and T ∗v = w∗.
This means that (v, w∗) belongs to the graph of T ∗.
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Exemple 3.48. We consider T0 = −∆ with D(T0) = C∞0 (Rm). This oper-
ator is not closed. For this, it is enough to consider some u in H2(Rm) and
not in C∞0 (Rm) and to consider a sequence un ∈ C∞0 (Rm) such that un → u
in H2(Rm). The sequence (un,−∆un) is contained in G(T0) and converges
in L2(Rm)× L2(Rm) to (u,−∆u) which does not belong to G(T0).
Now, we denote T1 = −∆ with D(T1) = H2(Rm). Let us show that:

T ∗0 = T1.

We have to prove that:

H2(Rm) = D(T ∗0 )

= {u ∈ L2(Rm) : |(u, T0v)L2(Rm)| ≤ Cu‖v‖L2(Rm)∀v ∈ C∞0 (Rm)}

(⊆).
If u ∈ H2(Rm), then

|(u, T0v)L2(Rm)| =

∣∣∣∣∫
Rm

u(x)(−∆v(x))dx

∣∣∣∣ =

∣∣∣∣∫
Rm

(−∆u(x))v(x)dx

∣∣∣∣
≤ ‖∆u‖L2(Rm‖v‖L2(Rm ∀v ∈ C∞0 (Rm)}

and we deduce that u ∈ D(T ∗0 ), with Ck = ‖∆u‖L2(RN ).
(⊇).
If u ∈ L2(Rm) is such that there exists Cu that satisfies:∣∣∣∣∫

Rm
u(x)(−∆v(x))dx

∣∣∣∣ ≤ Cu‖v‖L2(Rm) ∀v ∈ C∞0 (Rm)},

then −∆u ∈ L2(Rm) and

|(−∆u, v)| = |(u,−∆v)| ≤ Cu‖v‖L2(RN ) ∀v ∈ C∞0 (Rm)} (3.10)

Hence, by Parseval equality, |ξ|2û(ξ) ∈ L2(Rm) which implies (1+|ξ|2)û(ξ) ∈
L2(Rm), i. e. u ∈ H2(Rm).
By proposition (3.47), we conclude that T1 is a closed operator.

3.4.3 Symmetric and selfadjoint operators

Definition 3.49. We shall say that T : D(T ) ⊆ H → H is symmetric if
it satisfies

(Tu, v) = (u, Tv) ∀u, v ∈ D(T ).

Definition 3.50. We shall say that T is selfadjoint if T ∗ = T , i. e.

D(T ) = D(T ∗) and Tu = T ∗u, ∀u ∈ D(T ).

Proposition 3.51. A selfadjoint operator is closed.

This is immediate because T ∗ is closed.

Remark 3.52. If T is selfadjoint then T + λI is selfadjoint for any real λ.
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3.5 Compact operators

Definition 3.53. Let X and Y be normed spaces. A linear operator T :
X → Y is compact if it is continuous and transforms bounded sets of X
into relatively compact sets of Y .

Now we see some important results about compact operators.

Proposition 3.54. Let X be a normed space and Y a Banach space. If
{Tn}n∈N+ is a sequence of compact operators from X to Y such that Tn →
T ∈ L(X,Y ), then T is a compact operator.

Proposition 3.55. If X is a normed space and T ∈ L(X) a injective com-
pact operator, then

0 ∈ ρ(T )⇔ dim(X) <∞

Corollary 3.56. If X is a normed space, dim(X) < ∞ and T ∈ L(X) a
injective compact operator, then 0 ∈ σ(T )

Proposition 3.57. Let X and Y be normed spaces and T ∈ L(X,Y ). If T
is a compact operator, then T ∗ is compact too.
If T ∗ is a compact operators and Y is a Banach space, then T is compact.

In a Hilbert space, we have more interesting results.

Proposition 3.58. If H is a Hilbert space and T ∈ L(H), then

T is compact ⇔ ∀{xn} ⊆ H, with xn ⇀ x ∈ H, we have Txn → Tx ∈ H

Proposition 3.59. If H is a Hilbert space and T ∈ L(H) is a selfadjoint
operator, then:

• all eigenvalues of T are real;

• different eigenvalues relative to different eigenvectors are mutually or-
thogonal.

Theorem 3.60. Let H be a Hilbert space and let T ∈ L(H). T is a compact
operator if and only if there exists a sequence of operators Tn ⊆ L(H), such
that dim I(Tn) <∞ for all n ∈ N and Tn → T in L(H).

Definition 3.61. A linear operator T : H → H is positive if (Tu, u) ≥ 0
for all u ∈ H.

Theorem 3.62. Let H be a Hilbert space and let T : H → H be a linear
operator which is compact, selfadjoint and positive, with I(T ) dense in H.
Then:
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• the eigenvalues of T are real and positive;

• they are at most a countable infinity {µk}k∈N+ ;

• all eigenvalues have a finite multiplicity;

• µk ≥ µk+1 and decrease to zero as k →∞;

• eigenvectors relative to different eigenvalues are orthogonal.

3.6 Semigroups of linear operators

Linear equations of mathematical physics can often be written in the ab-
stract form {

u′(t) = Au(t), t ∈ [0, T ]

u(0) = x
(3.11)

where A is a linear, usually unbounded, operator defined on a linear subspace
D(A), the domain of A, of a Banach space E. typically a space of functions.

Exemple 3.63. Let D be an open domain in RN with topological boundary
∂D. We consider the heat equation on D × [0, T ]

∂u
dt (t, ξ) = ∆u(t, ξ), t ∈ [0, T ], ξ ∈ D

u(t, ξ) = 0, t ∈ [0, T ], ξ ∈ ∂D

u(0, ξ) = u0(ξ), ξ ∈ D.

(3.12)

For initial values x = u0 ∈ Lp(D) with 1 ≤ p < ∞, this problem can be
rewritten in the abstract form (3.11) by taking X = Lp(D) and defining A
by {

D(A) = {f ∈W 2,p(D) : f = 0 su ∂D} = W 2,p(D) ∩W 1,p
0 (D)

Af = ∆f, ∀f ∈ D(A).

The idea is now that instead of looking for a solution u : [0, T ]×D → R of
(3.12) one looks for a solution u : [0, T ] → Lp(D) of (3.11). To get an idea
how this may be done we first take a look at the much simpler case where
X = RN and A : D(A) = X → X is represented by a (N ×N)-matrix. In
that case, the unique solution of (3.12) is given by

u(t) = etAu0, t ∈ [0, T ],

where etA =
∑∞

n=0
tnAn

n! . The matrices etA may be thought of as ”solution
operators” mapping the initial value u0 to the solution etAu0 at time t.
Clearly, e0A = I, etAesA = e(t+s)A, and t→ etA is continuous. We generalise
these properties to infinite dimensions as follows.
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Let X be a real or complex Banach space.

Definition 3.64. A family S = S(t)t>0 of bounded linear operators act-
ing on a Banach space X is called a C0−semigroup if the following three
properties are satisfied:

1. S(0) = I;

2. S(t)S(s) = S(t+ s) for all t, s ≥ 0;

3. limt↓0 ||S(t)x− x|| = 0 for all x ∈ X.

Remark 3.65. In general a family S = S(t)t>0 of linear operators acting on
a Banach space X is called a semigroup if satisfies the first two properties
of the precedent definition.

The infinitesimal generator, or briefly the generator, of S is the linear
operator A with domain D(A) defined by

D(A) =

{
x ∈ X : ∃ lim

t↓0

1

t
(S(t)x− x)

}
and

Ax = lim
t↓0

1

t
(S(t)x− x), x ∈ D(A).

Remark 3.66. If A generates the C0− semigroup (S(t))t>0, then A − µ
generates the C0−semigroup (e−µtS(t))t>0.

Proposition 3.67. Let S be a C0−semigroup on X. There exist constants
M > 1 and ω ∈ R such that ||S(t)||L(X) ≤Meωt for all t ≥ 0.

Proposition 3.68. Let S be a C0− semigroup on X with generator A.

• For all x ∈ X the orbit t→ S(t)x is continuous for t ≥ 0.

• For all x ∈ D(A) and t ≥ 0, S(t)x ∈ D(A) and AS(t)x = S(t)Ax.

• For all x ∈ X,
∫ t

0 S(s)xds ∈ D(A) and

A

∫ t

0
S(s)xds = S(t)x− x.

If x ∈ D(A), than both sides are equal to
∫ t

0 S(s)Axds.

• The generator A is a closed and densely defined operator.
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• For all x ∈ D(A) and t ≥ 0, the orbit t → S(t)x is continuously
differentiable and

d

dt
S(t)x = AS(t)x = S(t)Ax.

Definition 3.69. A classical solution of (3.11) is a continuous function
u : [0, T ]→ X which belongs to C1((0, T ];X)∩C((0, T ], D(A)) and satisfies
u(0) = x and u′(t) = Au(t) for all t ∈ (0, T ].

Corollary 3.70. For initial values x ∈ D(A) the problem (3.11) has a
unique classical solution, which is given by u(t) = S(t)x and, by (3.67), we
have

‖u(t)‖X ≤Meωt‖u0‖X .

Proof. The last proposition proves that t→ u(t) = S(t)x is a classical
solution. Suppose that t → v(t) is another classical solution. It is easy
to check that the function s → S(t − s)v(s) is continuous on [0, t] and
continuously differentiable on (0, t) with derivative

d

dt
S(t− s)v(s) = −AS(t− s)v(s) + S(t− s)v′(s) = 0

where we used that v is a classical solution. Thus, s → S(t − s)v(s) is
constant on every interval [0, t]. Since v(0) = x it follows that v(t) =
S(t− t)v(t) = S(t− 0)v(0) = S(t)x = u(t).

Theorem 3.71. Let S be a C0− semigroup on the Banach space X and let
ω ∈ R, M ≥ 0 be as in (3.67) such that:

‖S(t)‖L(X) ≤Meωt ∀t ≥ 0.

If (A,D(A)) is the generator of (S(t))t≥0, then:

• if there exists λ ∈ C such that R(λ)x =
∫ t

0 e
−λtS(t)xdt, x ∈ X, is a

well defined and bounded operator from X to X, then λ ∈ ρ(A) and
R(λ,A) = R(λ);

• if Reλ > ω, then λ ∈ ρ(A) and R(λ,A) = R(λ);

• for all λ ∈ C, such that Reλ > ω,

‖R(λ,A)‖L(X) ≤
M

Reλ− ω
.

47



Remark 3.72. The expression

R(λ,A)x =

∫ ∞
0

e−λtS(t)xdt, x ∈ X,

is the integral representation of the resolvent. The integral exists as
improper Riemann integral:

R(λ,A)x = lim
T→∞

∫ T

0
e−λtS(t)xdt.

Theorem 3.73 (Hille - Yosida). Let (A,D(A) be a linear operator on the
Banach space X. Let ω ∈ R, M ≥ 0, the following statements are equiva-
lent:

• A is the generator of a C0− semigroup (S(t))t≥0 such that ‖T (t)‖L(X) ≤
Meωt for all t ≥ 0.

• A is closed, D(A) = X, (ω,∞) ⊂ ρ(A) and

‖R(λ,A)‖nL(X) ≤
M

(λ− ω)n
∀λ > ω, n ∈ N. (3.13)

Moreover, if one of these conditions is verified, then {Reλ > ω} ⊂ ρ(A) and

‖R(λ,A)‖nL(X) ≤
M

(Reλ− ω)n
(3.14)

for every λ ∈ C such that Reλ > ω and n ∈ N.

3.7 Sectorial operators and analytic semigroups

Let us first define the main objects of our study.

Definition 3.74. For θ ∈ (π2 , π), ω ∈ R, consider the sector

Sθ,ω = {λ ∈ C \ {ω} : | arg(λ− ω)| < θ}.

Let X be a Banach space and let A : D(A) ⊂ X → X be a linear
operator, with not necessarily dense domain.

Definition 3.75. A is said to be sectorial if there are constants ω ∈ R,
θ ∈ (π2 , π), M > 0 such that{

ρ(A) ⊃ Sθ,ω,

‖R(λ,A)‖L(X) ≤ M
|λ−ω| λ ∈ Sθ,ω.

(3.15)
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Figure 3.1: Resolvent set and spectrum of a sectorial operator.

The fact that the resolvent set of A is not empty implies that A is closed,
so that D(A), endowed with the graph norm:

‖x‖D(A) = ‖x‖X + ‖Ax‖X

is a Banach space.
For every t > 0, (3.15) allows us to define a linear bounded operator etA in
X, by means of the Dunford integral

etA =
1

2πi

∫
ω+γr,η

etλR(λ,A)dλ, (3.16)

where r > 0, η ∈ (π2 , θ) and γr,η is the curve

{λ ∈ C : | arg(λ)| = η, ||λ| ≥ r} ∪ {λ ∈ C : | arg(λ)| ≤ η, ||λ| = r}

oriented counterclockwise.
We also set:

e0Ax = x ∀x ∈ X. (3.17)

Since the function λ → etAR(λ,A) is holomorphic in Sθ,ω, the definition of
etA is independent of the choice of η and r.

Definition 3.76. Let A : D(A) → X be a sectorial operator. The family
{etA : t ≥ 0} is said to be the analytic semigroup generated by A in X.

Definition 3.77. A semigroup S(t) is said analytic if the function t→ S(t)
is analytic in (0,∞) with values in L(X).
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3.7.1 Basic Properties of etA

Let A : D(A) → X be a sectorial operator and let etA be the analytic
semigroup generated by A.

1. etAx ∈ D(Ak) for each t > 0, x ∈ X, k ∈ N. If x ∈ D(Ak), then

AketAx = etAAkx, ∀t ≥ 0.

2. etAesA = e(t+s)A, for every t, s ≥ 0.

3. There are constants M0,M1,M2, ..., such that{
‖etA‖L(X) ≤M0e

ωt, t > 0,

‖tk(A− ωI)ketA‖L(X) ≤Mke
ωt, t > 0,

(3.18)

where ω is the constant of the assumption (3.15).

4. The function t→ etA belongs to C∞(]0,+∞[,L(X)) and

dk

dtk
etA = AketA, t > 0.

Now we state a sufficient condition to be a sectorial operator.

Proposition 3.78. Let A : D(A) ⊂ X → X be a linear operator such that
ρ(A) contains a half plane {λ ∈ C : Reλ ≥ ω}, and

‖λR(λ,A)‖L(X) ≤M, Reλ ≥ ω

with ω ∈ R, M > 0. Then A is sectorial.

Proposition 3.79. If A is sectorial with dense domain in X, then

lim
t→0

etAx = x ∀x ∈ X,

so {etA}t≥0 is a C0−semigroup.

3.8 Laplacian operator

We consider the Laplacian operator:

∆ = ∂2
x1 + ...+ ∂2

xn , n ≥ 1;

• It is symmetric and positive.

• As seen in the example (3.48), −∆ with D(−∆) = H2(Rm) is a closed
operator.
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• It is a sectorial operator.
Indeed let us consider the equation

zu(x)−∆u(x) = f(x), x ∈ Rm, (3.19)

where f ∈ L2(Rm) and z ∈ C, z = a+ ib with a > 0.
Taking the Fourier transform, we obtain

zû+ |ξ|2û = f̂

which implies

û =
f̂

z + |ξ|2
. (3.20)

By (3.19) we deduce that u = R(z,∆)f ; since a = Rez > 0,

‖zR(z,∆)f‖L2 = ‖zu‖L2 = |z|‖û‖L2 ≤ |z|

∥∥∥∥∥ f̂

z + |ξ|2

∥∥∥∥∥
L2

≤ ‖f̂‖L2 = ‖f‖L2 .

With this result we are in the assumptions of the proposition (3.78),
so we conclude that the Laplacian is sectorial.
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Chapter 4

A diffusive model

In this chapter we try to connect the discharge activity of REM-on and
REM-off neurons to their position in a bounded set. We want to generalize
the phase models (2.2) and (2.3), studied in the first chapter, analyzing the
case θ = θ(t, x) and φ = φ(t, x), where the variable x represents the neuron
position.
We study the diffusive model that we obtain at the end of the first chapter.
We start from Kuramoto model to model the interaction between two neu-
rons of different groups, REM-ON and REM-OFF neurons, and we obtain
a discretization of Laplacian operator; so we arrived to the following phase
model: {

∂θ
∂t −∆θ = ω +A sin(θ − φ)

∂φ
∂t −∆φ = ω −A sin(θ − φ)

(4.1)

where ∆ is the Laplacian operator.
We set

D(∆) = {f : S1 → R|f(0) = f(2π) and
∑
k∈Z
|f̂(k)|2(1+k2)2 <∞} = H2(S1)

We generalize (4.1) to the system:{
∂θ
∂t −∆θ = ω + g(θ − φ)

∂φ
∂t −∆φ = ω − g(θ − φ)

(4.2)

where g is a nonlinear function with appropriate properties.
Let us see some general results.

Lemma 4.1. Let f(t, x) =
∑

k∈Z fk(t)e
ikx in H1([0,∞)× S1). The system{

∂θ
∂t (t, x)−∆θ(t, x) = f(t, x)

θ(0) = 0
(4.3)
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has the solution

θ(t, x) =
∑
k∈Z

(∫ t

0
e−k

2(t−s)fk(s, x)ds

)
eikx.

Proof. We look for a solution in the following form:

θ(t, x) =
∑
k∈Z

θk(t)e
ikx.

If we put it in the equation of the system (4.3) and we differentiate termwise,
obtaining

∂θ

∂t
(t)−∆θ(t, x) =

∑
k∈Z

(
∂θk
dt

(t) + k2θk(t)

)
eikx =

∑
k∈Z

fk(t, x)eikx.

So, {
∂θk
dt (t) + k2θk(t) = fk(t, x)

θk(0) = 0

which is solved by

θk(t) =

∫ t

0
e−k

2(t−s)fk(s, x)ds.

So we obtain:

θ(t, x) =
∑
k∈Z

(∫ t

0
e−k

2(t−s)fk(s, x)ds

)
eikx

and we can really differentiate termwise, since f ∈ H1((0,∞) × S1). By
definition of Fourier coefficient, we have

θ(t, x) =
1

2π

∑
k∈Z

∫ t

0

(∫ 2π

0
e−k

2(t−s)f(s, y)e−ikydy

)
eikxds

=
1

2π

∫ t

0

∫ 2π

0

∑
k∈Z

e−k
2(t−s)f(s, y)e−ikyeikxdyds

=

∫ t

0

∫ 2π

0
G(t, s, x, y)f(s, y)dyds

where x and y are in S1, t ≥ s and

G(t, s, x, y) =
∑
k∈Z

e−k
2(t−s)e−ikyeikx.

The series converges with all its derivatives if t > s > 0. So θ satisfies the
differential equation in ((0,∞)×S1). Moreover if f ∈ C((0,∞)× S1)) then
θ is continuous.
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Lemma 4.2. Let χ(x) ∈ L2(S1),{
∂θ
dt (t, x)−∆θ(t, x) = 0

θ(0, x) = χ(x)
(4.4)

has the solution
θ(t, x) =

∑
k∈Z

e−k
2tχk(x)eikx.

Proof. By separation of variables, we obtain this solution.
It converges in L2(S1) for every fixed t and satisfies (4.2) in (0,∞)× S1.
Moreover if

∑
k∈Z |χk| <∞, θ(t, x) is also continuous in [0,∞)× S1.

Remark 4.3. We have
θ = e∆tχ,

and
[θ(t, ·)]k = (e∆tχ)k = e−k

2tχk.

Lemma 4.4. Let f ∈ H1([0,∞)× S1), χ ∈ L2(S1). The system{
∂θ
dt (t, x)−∆θ(t, x) = f(t, x)
θ(0, x) = χ(x)

(4.5)

has the solution

θ(t, x) =
∑
k∈Z

(
e−k

2tχk +

∫ t

0
e−k

2(t−s)fk(s)ds

)
eikx.

Proof.
We conclude using the results of two last lemmas and the linearity of the
equations involved.

We can prove these results also using semigroups properties.

Remark 4.5. By a simple integration by parts twice, it follows that −∆ is
a selfadjoint operator in L2(S1).

Remark 4.6. The operator ∆ generates an analytic semigroup in L2(S1).
Indeed, from the equation

λu−∆u = f

with Reλ > 0, we get, multiplying by an integrating by parts:

λ‖u‖2L2 + ‖∇u‖2L2(S1) = (f, u) ≤ ‖f‖L2(S1)‖u‖L2(S1),

so that ‖u‖L2(S1) ≤
‖f‖L2(S1)

|λ| .
Hence

‖e∆t‖L2(S1) ≤ 1 ∀t ≥ 0.

54



From remark 4.3 and lemma 4.4 we obtain the following lemma.

Lemma 4.7. Let f ∈ H1([0,∞) × S1), χ ∈ L2(S1). The system (4.5) has
the solution

θ(t, x) = e∆tχ(x) +

∫ t

0
e∆(t−s)f(s)ds.

Therefore, from the system{
∂θ
∂t −∆θ = ω + f(θ − φ)

∂φ
∂t −∆φ = ω − f(θ − φ)

(4.6)

we obtain: {
θ(t) = e∆tθ0 +

∫ t
0 e

∆(t−s)[ω + f(θ(s)− φ(s))]ds

φ(t) = e∆tφ0 +
∫ t

0 e
∆(t−s)[ω − f(θ(s)− φ(s))]ds

(4.7)

From the case of a general function f , let us return to our initial system
(4.2), with g a nonlinear function,{

∂θ
∂t −∆θ = ω +A(θ − φ) + h(θ − φ)

∂φ
∂t −∆φ = ω −A(θ − φ)− h(θ − φ)

(4.8)

where we assume that g(u) = A(u) + h(u), where A ∈ R and
h ∈ C1(S1)

|h(u)| ≤ c1|u|2 for u ∈ Hs(S1)

|h′(u)| ≤ c2|u| for u ∈ Hs(S1).

(4.9)

We rewrite the system as:{
∂θ
∂t −∆θ − ω −A(θ − φ) = h(θ − φ)

∂φ
∂t −∆φ− ω +A(θ − φ) = −h(θ − φ).

(4.10)

If we set {
θ(t) = ωt+ θ̃(t)

φ(t) = ωt+ φ̃(t)

we obtain: 
∂θ̃
∂t −∆θ̃ −A(θ̃ − φ̃) = h(θ̃ − φ̃)

∂φ̃
∂t −∆φ̃+A(θ̃ − φ̃) = −h(θ̃ − φ̃).
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Summing the two equation of the system, we obtain

∂(θ̃ + φ̃)

∂t
−∆(θ̃ + φ̃) = 0.

Hence
θ̃ + φ̃ = e∆t(θ̃0 + φ̃0)

which is a bonded function.
Subtracting, we obtain

∂(θ̃ − φ̃)

∂t
−∆(θ̃ − φ̃)− 2A(θ̃ − φ̃) = 2h(θ̃ − φ̃). (4.11)

We recall u = θ̃ − φ̃ and the last equation becomes

∂u

∂t
−∆u− 2Au = 2h(u), (4.12)

and we add the initial conditions:{
θ(0, x) = θ0(x), x ∈ S1

φ(0, x) = φ0(x), x ∈ S1.

4.1 Case A < 0.

Let us study equation (4.12) with A < 0.

Theorem 4.8. [Asymptotic stability] Consider the system:{
∂u
∂t (t, x)−∆u(t, x)− 2Au(t, x) = 2h(u(t, x)), (t, x) ∈ [0,∞[×S1

u(0, x) = u0(x), x ∈ S1

(4.13)
with the assumption (4.9) on h and A < 0.
If ‖u0‖Hs(S1) < ε, there exists a unique solution u ∈ C([0,+∞), Hs(S1))
satisfying

u(t, x) = e−Gtu(0, x) + 2

∫ t

0
e−G(t−τ)h(u(τ, x))dτ,

where G = −∆− 2A, and

‖u(t, x)‖Hs(S1) ≤ ce−δt‖u0‖Hs(S1)

for some δ > 0.

Before proving this result, we make a remark.
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Remark 4.9. The operator G is sectorial and, in fact,

e−Gtx = e2Ate∆tx ∀x ∈ L2(S1).

This follows by observing that:

R(λ,−G) = R(λ− 2A,∆)

and using the integral representation (3.16). In particular

‖e−Gt‖L2(S1) = e2At‖e∆t‖L2(S1) ≤ e2At.

Proof.
We want to prove that:

‖e−Gtf‖Hs(S1) ≤ e2At‖f‖Hs(S1). (4.14)

Indeed, for f ∈ Hs(S1), we have:

‖e−Gtf‖Hs(S1) = e2At‖e−∆tf‖Hs(S1)

= e2At
(∑

−k ∈ Z|1 + k2|s|e−∆tf |2k
) 1

2

= e2At
(∑

−k ∈ Z|1 + k2|sek2t|fk|2
) 1

2

≤ e2At
(∑

−k ∈ Z|1 + k2|s|fk|2
) 1

2

≤ e2At‖f‖Hs(S1). (4.15)

We have also:
‖h(u)‖Hs ≤ L‖u‖2Hs(S1)(S

1) (4.16)

for a positive constant L, as a consequence of 3.40 and (4.9).
Now we write the solution of (4.22) is

u(t) = e−Gtu0 + 2

∫ t

0
e−G(t−τ)h(u(τ))dτ (4.17)

We introduce the Banach space:

B = {u : [0,∞[→ Hs(S1) : sup
t≥0

eδt‖u(t, ·)‖Hs(S1) <∞}

where δ is a constant and s > 1
2 .

It is easy to prove that this space is complete in relation to the norm:

‖u‖B = sup
t≥0

eδt‖u(t, ·)‖Hs(S1).
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By this definition, we deduce the following property:

‖u(t, ·)‖Hs(S1) ≤ e−δt‖u‖B. (4.18)

We take δ such that δ ≤ |A|2 .
Now we define the map:

φ : Bε = {u ∈ B : ‖u‖B ≤ pε} → B

u 7→ e−Gtu(0) + 2

∫ t

0
e−G(t−τ)h(u(τ))dτ, (4.19)

where p > 1.

To conclude the proof of the theorem, we shaw that the map φ is a con-
traction in the complete metric space (Bε, d) where d is the metric induced
by ‖ · ‖B.
To use this result, we have to check two assumptions:

1. φ(u) ∈ Bε for every u ∈ Bε;

2. If u1, u2 are in Bε then

‖φ(u1)− φ(u2)‖B ≤
1

2
‖u1 − u2‖B

We begin from the first point.

Lemma 4.10. If B is the Banach space just introduced and φ : Bε → B, as
above, there exists ε0 > 0 such that φ(Bε) ⊂ Bε, for all ε ∈ (0, ε0).

Proof
By (4.14), (4.16) and (4.18), we have:

2

∥∥∥∥∫ t

0
e−G(t−τ)h(u(τ))dτ

∥∥∥∥
Hs(S1)

≤ 2

∫ t

0
e−2|A|(t−τ)‖h(u(τ))‖Hs(S1)dτ

≤ 2L

∫ t

0
e−2|A|(t−τ)‖u(τ)‖2Hs(S1)dτ

≤ 2L

∫ t

0
e−2|A|(t−τ)e−2δτ‖u(τ)‖2Bdτ
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Now, we use that δ ≤ |A|2 ,

2

∥∥∥∥∫ t

0
e−G(t−τ)h(u(τ))dτ

∥∥∥∥
Hs(S1)

≤ 2L‖u(t)‖2B
∫ t

0
e−4δ(t−τ)e−2δτdτ

≤ Le−4δt‖u‖2B
∫ t

0
2e2δτdτ

≤ L

δ
e−2δt‖u‖2B

So, by (4.14), we have:

‖φ(u(t))‖Hs(S1) ≤ e−2|A|t‖u0‖Hs(S1) +
L

δ
e−2δt‖u‖2B

≤ e−4δt‖u0‖Hs(S1) +
L

δ
e−2δt‖u‖2B

≤ e−δt
(
‖u0‖Hs(S1) +

L

δ
‖u‖2B

)

We initially supposed ‖u0‖Hs(S1) ≤ ε; hence ‖u‖B ≤ pε. So:

‖φ(u(t))‖Hs(S1) ≤ e−δt[ε+
L

δ
‖u‖2B] ≤ e−δt[ε+

L

δ
(pε)2]

and a fortiori

‖φ(u)‖B ≤ ε+
L

δ
p2ε2.

If we take ε0 = δ(p−1)
Lp2

, the lemma is proved.

For the second point we consider:

φ(u1)− φ(u2) = 2

∫ t

0
e−G(t−τ)[h(u1(τ))− h(u2(τ))]dτ.

Since Hs(S1) is an algebra for s > 1
2 , and the function h satisfies (4.8),

‖h(u1)−h(u2)‖Hs(S1) ≤ c2‖u1−u2‖Hs(S1)(‖u1‖Hs(S1) +‖u2‖Hs(S1)). (4.20)

Now, proceeding as in the precedent lemma,

‖φ(u1)−φ(u2)‖Hs(S1) ≤ c1

∫ t

0
e−2|A|(t−τ)e−2δτ‖u1−u2‖B(‖u1‖B+ ‖u2‖B)dτ

(4.21)
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and, as above, we conclude:

‖φ(u1)− φ(u2)‖B ≤ c2‖u1 − u2‖B(‖u1‖B + ‖u2‖B)

≤ 2c2pε‖u1 − u2‖B

≤ 1

2
‖u1 − u2‖B

provided we choose ε such that 2c2pε ≤ 1
2 .

We have just proved that φ has a fixed point, so we have exactly:

u(t) = φ(u(t)).

By (4.18), we deduce the asymptotic stability with respect to the norm of

Hs(S1) and theorem 4.8 is proved with δ ≤ |A|2 .

Finally, we have shown that:

• θ̃(t, x) + φ̃(t, x) = e∆t(θ̃0(x) + φ̃0(x));

• ‖θ̃(t, x)− φ̃(t, x)‖Hs(S1) ≤ cεe−δt;

where {
θ(t, x) + φ(t, x) = θ̃(t, x) + φ̃(t, x) + 2ωt

θ(t, x)− φ(t, x) = θ̃(t, x)− φ̃(t, x) = u(t, x).

We deduce that{
θ(t, x) = 1

2 [u(t, x) + θ̃(t, x) + φ̃(t, x) + 2ωt]

φ(t, x) = 1
2 [−u(t, x) + θ̃(t, x) + φ̃(t, x) + 2ωt];

which implies that the two phases have the same asymptotic behavior when
t→∞.
We have found the same result as in the model without diffusion in the first
chapter.

4.2 Case A > 0.

Before studying the system{
∂u
∂t (t, x)−∆u(t, x)− 2Au(t, x) = 2h(u(t, x)) (t, x) ∈ [0,∞[×S1

u(0, x) = u0(x) x ∈ S1

(4.22)
with the assumption (4.9) and A > 0, we need some results.
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Proposition 4.11 (Maximum principle). Let u(t, x) be a regular function
in [0, T ]× S1 such that{

∂u
∂t (t, x)−∆u(t, x) ≥ 0 (t, x) ∈ [0, T [×S1

u(0, x) ≥ 0 x ∈ S1
(4.23)

Then
u(t, x) ≥ 0 (t, x) ∈ [0, T [×S1.

Proof. Let ε > 0 and

v(t, x) = u(t, x) + εt.

We have{
∂v
∂t (t, x)−∆v(t, x) = ∂u

∂t (t, x)−∆u(t, x) + ε > 0 (t, x) ∈ [0, T [×S1

v(0, x) = u(0, x) ≥ 0 x ∈ S1

Let (t0, x0) be a minimum of the function v in [0, T [×S1, then (t0, x0) ∈
[0, T [×S1 or t0 = 0, x0 ∈ S1.
In the first case

∂v

∂t
(t, x) < 0 and vx,x(t0, x0) = ∆v(t0, x0) ≥ 0

so
∂v

∂t
(t0, x0)−∆v(t0, x0) ≤ 0

but this is not possible.
Therefore t0 = 0 and

v(t, x) ≥ v(0, x) = min
[0,T [×S1

v ≥ 0.

So
u(t, x) = v(t, x)− εt ≥ −εT ∀(t, x) ∈ [0, T [×S1

and, since ε is a free parameter

u(t, x) ≥ 0

in [0, T [×S1.

Theorem 4.12 (Comparison theorem). Let v, w be regular functions in
[0, T ]× S1, such that{

∂v
∂t (t, x)−∆v(t, x)− f(v(t, x)) ≥ 0, (t, x) ∈ [0, T ]× S1

v(0, x) ≥ φ0(x), x ∈ S1
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and {
∂w
∂t (t, x)−∆w(t, x)− f(w(t, x)) ≤ 0, (t, x) ∈ [0, T ]× S1

w(0, x) ≤ φ0(x), x ∈ S1

where φ0 is continuous in S1 and f ∈ C1(R) with |f ′(u)| ≤ Mk for every
u ∈ [−k, k]. Then

w(t, x) ≤ v(t, x), (t, x) ∈ [0, T ]× S1.

Proof. We introduce the function

γ(t, x) =

{
f(v(t,x))−f(w(t,x))
v(t,x))−w(t,x) if v(t, x) 6= w(t, x)

f ′(v(t, x)) if v(t, x) = w(t, x).

By Lagrange theorem, we have

|γ(t, x)| ≤Mk (t, x) ∈ [0, T ]× S1

where k = max{‖v‖∞, ‖w‖∞}. If we set z = v − w, then z satisfies:{
∂z
∂t (t, x)−∆z(t, x) = ∂v

∂t (t, x)−∆v(t, x)− ∂w
∂t (t, x) + ∆w(t, x) (t, x) ∈ [0, T ]× S1

v(0, x) ≥ 0, x ∈ S1

and we note that

∂z

∂t
(t, x)−∆z(t, x) ≥ f(v)−f(w) ≥ −M(v−w) = −Mz, (t, x) ∈ [0, T ]×S1.

Moreover, if y(t, x) = eMtz(t, x) then{
∂y
∂t (t, x)−∆y(t, x) = eMt(∂z∂t (t, x)−∆z(t, x) +Mz) ≥ 0, (t, x) ∈ [0, T ]× S1

y(0, x) = z(0, x) ≥ 0, x ∈ S1.

By the maximum principle, y(t, x) ≥ 0 in [0, T ] × S1, therefore z(t, x) ≥ 0
in [0, T ]× S1 and we deduce that w(t, x) ≤ v(t, x) in [0, T ]× S1.

Corollary 4.13. If g : R→ R such that

• g ∈ C1(R);

• g(0) = g(B) = 0 with B > 0;

• g′(0) > 0, g′(B) < 0, g > 0 in (0, B).

and if u is a regular function such that{
∂u
∂t (t, x)−∆u(t, x) = g(u), (t, x) ∈ [0, T ]× S1

u(0, x) = u0(x), x ∈ S1.

with 0 ≤ u0(x) ≤ B for every x in S1, then

0 ≤ u(t, x) ≤ B ∀(t, x) ∈ [0, T ]× S1
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Proof. We apply the comparison theorem in two different cases:

• firstly we take v ≡ u and w ≡ 0, so we obtain u ≥ 0;

• then we take v ≡ B and w ≡ u so we obtain u ≤ B.

Remark 4.14. The solution of the above corollary is defined in [0,∞)×S1,
with the assumption that 0 ≤ u0(x) ≤ B. In fact it cannot diverge to infinity
because 0 ≤ u(t, x) ≤ B.

Now, we consider the equation

∂u

∂t
(t, x)−∆u(t, x) = g(u), (t, x) ∈ [0, T ]× S1 (4.24)

with g as in (4.13).

Proposition 4.15. The equation above has the stationary solutions u ≡ 0
and u ≡ B and:

1. the solution u ≡ 0 is unstable;

2. the solution u ≡ B is asymptotically stable.

Proof. (1.) We write

g(u) = g′(0)u+ h(u),

where g′(0) = A > 0, |h(u)| ≤ Lu2 and |h′(u)| ≤ L1|u|.
The equation becomes

∂u

∂t
(t, x)− (∆ +A)u(t, x) = h(u), (t, x) ∈ [0, T ]× S1

with u0(x) = u(0, x).
If we suppose that 0 is stable, then for every ε > 0 there exist γ,M > 0 such
that

‖u0‖∞ ≤ γ ⇒ ‖u(t, ·)‖∞ ≤ ε ∀t ≥M.

If we choose α ∈ (0, A), ρ ∈ (0, A−αL1
), we note that{

|u| ≤ ρ⇒ g′(u) = A+ h′(u) ≥ A− L1|u| ≥ A− L1ρ ≥ α

0 ≤ u ≤ ρ⇒ g(u) = g(u)− g(0) = g′(ξ)u ≥ αu.

Now, let ε = 1
n , n ∈ N+. If we choose σ in

(
1− 1

np , 1
)

, so that ρ(1−σ) <
1
n and θ in

(
0, α( 1

σ − 1)
)

so that σ(θ + α) < α, we set

u1(t, x) = ρ[1− σe−θt].
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We note that u1(0) = ρ(1− σ) < 1
n .

Obviously we have

0 < u1(t, x) ≤ ρ, (t, x) ∈ [0, T ]× S1.

Moreover

∂u1

dt
(t, x)−∆u1(t, x)− g(u1) = ρσθe−θt − g(u1)

≤ ρσθe−θt − αu1

= ρσθe−θt − αρ(1− σe−θt)

= ρσ(θ + α)e−θt − αρ

< ραe−θt − ρα = ρα(e−θt − 1) < 0.

Now choose u0(x) ≡ 1
n and let u(t, x) the correspondent solution.

By the maximum principle

u1(t, x) ≤ u(t, x);

So
lim inf
t→∞

u(t, x) ≥ lim inf
t→∞

u1(t, x) = ρ,

therefore
‖u‖∞ ≥ ρ

although ‖u0‖∞ = 1
n < γ, for all n ≥ nε. So, if we choose ε < ρ we have a

contradiction with the stability condition.
(2.) Let v = B − u, with u a generic solution of the equation (4.24), such

that u(0, x) = u0(x).
It follows that:{

∂v
∂t (t, x)−∆v(t, x) = −g(B − u), (t, x) ∈]0,∞[×S1

v(0, x) = B − u0(x), x ∈ S1.

We note that:
g(B − v) = g(B)− g′(B)v + φ(v),

where g(B) = 0, g′(B) < 0 and{
|φ(v)| ≤ L|v|2

|φ′(v)| ≤ L1|v|.

Let us set

Y = {u ∈ C([0,∞)× S1) : sup
t≥0

eδt‖u(t, ·)‖∞ <∞},
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and
‖u‖Y = sup

[0,∞)×S1

eδt|u(t, x)|,

where 0 < δ < |g′(B)|, i. e. δ + g′(B) < 0.
Let be Γ : BY (0, r)→ C([0,∞)×S1) a map defined by Γ(v) = w such that:{

∂w
∂t (t, x)−∆w(t, x)− g′(B)w = φ(v), (t, x) ∈]0,∞[×S1

w(0, x) = B − u0(x), x ∈ S1.

Remark 4.16. We have:

‖e∆tf‖∞ ≤ ‖f‖∞. (4.25)

Proof. It follows from the maximum principle: let u(x, t) = (e∆tf)(x).
It satisfies {

∂u
∂t (t, x)−∆u(t, x) = 0, (t, x) ∈]0,∞[×S1

u(0, x) = f(x), x ∈ S1.

So, if m = minx∈S1 f(x), v = m satisfies{
∂v
∂t (t, x)−∆v(t, x) = 0, (t, x) ∈]0,∞[×S1

v(0, x) ≥ 0, x ∈ S1.

and, by the maximum principle, v ≥ 0, i. e. u ≥ m.
Similarly, if M = maxx∈S1 f(x), w = M − u satisfies{

∂w
∂t (t, x)−∆w(t, x) = 0, (t, x) ∈]0,∞[×S1

w(0, x) ≥ 0, x ∈ S1.

and, by the maximum principle, v ≥ 0, i. e. u ≤M.
Therefore:

m ≤ u(t, x) ≤M,

i. e. ‖u‖∞ ≤ min{|m|, |M |} = ‖f‖∞, and this proves the Remark.

Now, from (4.25), if v, z ∈ BY (0, r) we have:

eδt|Γ(v)(t)− Γ(z)(t)| = eδt
∣∣∣∣∫ t

0
e[∆+g′(B)](t−s)[φ(v(s, ·))− φ(z(s, ·))]ds

∣∣∣∣
≤ eδt

∫ t

0
e|−g

′(B)|(t−s)|φ′(ξ(s, ·))||v(s, ·)− z(s, ·)|ds

≤
∫ t

0
e[δ−g′(B)](t−s)L1re

δs|v(s, ·)− z(s, ·)|ds

≤ ‖v − z‖Y L1r
1

|δ + g′(B)|
. (4.26)
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Therefore, if r L1
|δ+g′(B)| ≤

1
2 then

‖Γ(v)− Γ(z)‖Y ≤
1

2
‖v − z‖Y .

Moreover, let v ∈ BY (0, r), we have

eδt|Γ(v)(t)| ≤ eδt|Γ(v)(t)− Γ(0)(t)|+ eδt|Γ(0)(t)|

≤ 1

2
‖v‖Y + eδt|e[∆+g′(B)]t[B − u0](x)|

≤ 1

2
‖v‖Y + 2π‖B − u0‖∞ ≤ r (4.27)

provided ‖B − u0‖∞ ≤ r0 with 1
2r + 2πr0 ≤ r, i . e. r0 ≤ r

4π .

So, if r < |δ+g′(B)|
2L1

and ‖B − u0‖∞ ≤ r
4π , Γ is a map from By(0, r) in itself

and is a contraction.
Therefore there exists a unique v in BY (0, r) such that v = Γ(v), i. e.
satisfies: {

∂v
∂t (t, x)−∆v(t, x) = g(v), (t, x) ∈]0,∞[×S1

v(0, x) = B − u0(x), x ∈ S1.

with ‖B − u0‖∞ ≤ r
4π . Moreover, as seen,

‖v‖Y ≤
1

2
‖v‖Y + 2π‖B − u0‖∞

which implies ‖v‖Y ≤ 4π‖B − u0‖∞
So, if ‖B − u0‖∞ ≤ r

4π ,

|B − u(t)| = |v(t)| ≤ 4πe−δt‖B − u0‖∞.

Therefore u ≡ B is asymptotically stable.

Finally, as in the case A < 0, we have{
θ(t, x) = 1

2 [u(t, x) + θ̃(t, x) + φ̃(t, x) + 2ωt]

φ(t, x) = 1
2 [−u(t, x) + θ̃(t, x) + φ̃(t, x) + 2ωt];

but if A > 0 they asymptotically will have a difference of phase B, as in the
non-diffusive model.
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Chapter 5

Conclusion

Mathematical models generally analyze the temporal dynamics of the neu-
ronal behavior; we also considered a spatial coordinate. This chapter justifies
our analysis of the neuronal phases based also on on the localization of their
electrical signals.
In fact during the last decays sleep has been investigated using functional
neuroimaging.
The main technique used is positron emission tomography (PET), which
shows the distribution of compounds labeled with positron-emitting iso-
topes. Moreover, recently, functional magnetic resonance imaging (fMRI)
has also been used to study brain activity across the sleep-wake cycle. This
technique measures the variations in brain perfusion related to neural activ-
ity, by assessing the blood oxygen level-dependent (BOLD) signal.
Functional brain imaging offers the opportunity to study the brain struc-
tures, at the cortical and subcortical levels (not easily accessible through
standard scalp EEG recordings), that participate in the generation or prop-
agation of cerebral rhythms of NREM and REM sleep. Recent studies using
mainly EEG/ fMRI have successfully characterized the neural correlates of
these phasic activities of sleep. These studies refine the description of brain
function beyond the stages of sleep and provide new insight into the mech-
anisms of spontaneous brain activity in humans.
They have shown a decrease in brain activity during NREM sleep and a sus-
tained level of brain function during REM sleep when compared to wake-
fulness, in addition to specifically segregated patterns of regional neural
activity for each sleep stage.

PET and block-design fMRI (i.e., contrasting ”blocks” of NREM sleep with
”blocks” of waking) have consistently found a drop of brain activity during
NREM sleep when compared to wakefulness.
Regionally, reductions of brain activity were located in subcortical (brain-
stem, thalamus, basal ganglia, basal forebrain) and cortical (prefrontal cor-
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tex, anterior cingulate cortex, and precuneus) regions. These brain struc-
tures include neuronal populations involved in arousal and awakening, as
well as areas which are among the most active ones during wakefulness.

Patterns of brain activity during REM sleep, as assessed by PET, are dras-
tically different from patterns in NREM sleep.
Several brain structures enhance their activity during REM sleep compared
to waking (pontine tegmentum, thalamus, basal forebrain, amygdala, hip-
pocampus, anterior cingulate cortex, temporo-occipital areas) while oth-
ers decrease (dorsolateral prefrontal cortex, posterior cingulate gyrus, pre-
cuneus, and inferior parietal cortex).

More recent neuroimaging studies have addressed the correlates of phasic
neural events that build up the architecture of sleep stages. These studies
are based on the assumption that brain activity during a specific stage of
sleep is not constant and homogeneous over time, but is structured by spon-
taneous, transient, and recurrent neural processes.
The following figures show neural correlates of NREM sleep oscillations as
demonstrated by PET.

Figure A shows PET correlates of spindles.
The upper panel shows a (stage 2) NREM sleep epoch depicting a typical
spindle on scalp EEG recording. Brain activity is averaged over the duration
of PET acquisition (∼ 1 min) within the NREM sleep epoch and correlated
with sigma activity calculated for the corresponding period. The middle
panel shows that the only significant correlation is located in the thalamus
bilaterally.
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Figure B shows PET correlates of slow waves.
The upper panel shows a (stage 4) NREM sleep epoch depicting typical
slow waves on scalp EEG recording. Brain activity is averaged over the
duration of PET acquisition (∼ 1 min) within the NREM sleep epoch and
correlated with delta activity calculated for the corresponding period. The
middle panel shows the significant correlations located in anterior cingulate
cortex, basal forebrain, striatum, insula, and precuneus. Similar results can
be also reached by EEG and fMRI.
We conclude that these data support our study of the localization of the
neural activity.
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