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Part I. Introduction

Utility maximization problems represent a fundamental part of modern eco-

nomic growth models, since the works by Ramsey (1929), Lucas (1954),

Romer (1986), Barro and Sala-i-Martin (1995).

These models aim to formalize the dynamics of an economy throughout the

quantitative description of the consumers' behaviour. Consumers are seen

as homogeneous entities, as far as their operative decisions are concerned;

hence the time series of their consuming choices, or consumption path, is

represented by a single function, and they as a collective are named after

social planner, or simply agent.

This de�nition suggests the idea that the analysis of these models �nds its

natural mathematical framework in the techniques and methods of Control

Theory. This is precisely the case, if we look at the consumption of the agent

as the control strategy, and if we assume that this function is involved in a

suitable (dynamical) relation with other signi�cant economic quantities, such

as the average income.

Turning back to the illustration of this class of models, the social planner's

purpose is to maximize the utility in function of the series of the consumption

choices in a �xed time interval; this can be �nite or more often (as far as

economic growth literature is concerned) in�nite.

From the application viewpoint, the target of the analysis is the study of

the optimal � in relation to this utility functional � trajectories: regularity,

monotonicity, asymptotic behaviour properties and similar are expected to

be investigated. Hence good existence results are specially needed, as well as

handy su�cient and necessary conditions for the optimum.

As outlined above, these problems are treated mathematically as optimal

control problems; often external reasons such as the pursuit of more em-

pirical description power imply the presence of additional control and state

constraints, which we call �static� constraints since do not involve the deriva-



3

tive of the state variable.

It is worth noticing that the introduction of the static state constraints usu-

ally makes the problem quite harder, insomuch that it is considered extra-

neous to the usual setting of control theory. As an example, we see that the

main properties of optimal trajectories are still not characterized in recent

literature, at least in the case of non-concave production function.

Hence this kind of program is quite complex, especially in the above men-

tioned case � and has to be dealt with in many phases. With this dissertation

we undertake the work providing an existence result and various necessary

conditions related to the Hamilton-Jacobi-Bellman problem, on the basis of

a draft by F. Gozzi and D. Fiaschi ([1]) and of some original results.

The main method which we rely on in order to �nd the proper necessary

conditions for the value function (the supremum of the objective functional)

and for the optimal control is the so-called Dynamic Programming (which

sometimes also provides su�cient conditions). The structure of this method

can be summarized in some main steps:

• letting the initial data vary, �nd a suitable functional equation for the

value function: this will be called Bellman functional equation (BE);

• consider the in�nitesimal version of BE, the Hamilton-Jacobi-Bellman

equation (HJB), which is a non-linear �rst order PDE;

• solve (whenever possible) the HJB equation to �nd the value function.

Sometimes one can go further and try to prove that the present value of

the optimal control strategy can be expressed as a function of the present

value of the optimal state trajectory: this will be the so-called closed loop (or

feedback) relation for the optimal control. If this is accomplished, then the

control by its closed loop expression in the state equation, and try to solve

the equation he has obtained - which is called Closed Loop Equation.
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In our case we chose to give a direct existence proof for the optimal control,

because of the very peculiar weakness of certain assumptions on the data

we imposed to ourselves, with the result that couplings with the traditional

literature such as Cesari, Zabczyk and Yong-Zhou were missing.

Of course it is not clear a priori (and not true in general, see on this Bardi and

Capuzzo Dolcetta (1997)) that the value function solves the HJB equation.

Two main problems arise: the value function is not necessarily di�erentiable,

so it could not satisfy the HJB equation in the classical sense; moreover, the

equation could have other solutions.

In general these problems are not easy. The dynamic programming approach

consists in fact in dealing with such problems studying directly the HJB equa-

tion in relation to the weaker notion of viscosity solution. This new notion

is a kind of nonsmooth solution to partial di�erential equations, whose key

feature is to replace the conventional derivatives by the (set-valued) super- /

sub-di�erentials while maintaining the uniqueness of the solution under very

mild conditions. These make the theory a powerful tool in tackling optimal

control problems. The viscosity solutions that we are going to discuss can

be merely continuous (not necessarily di�erentiable).

This notion can be characterized both in terms of super- and sub-di�erentials

and of test functions; in any case these auxiliary tools must match the nec-

essary restrictions to the domain of the Hamiltonian function involved in the

equation, at least for the solutions we are interested in verifying. Hence,

naming �Hamiltonian problem� the question whether the value function is a

viscosity solution to the proper HJB equation, we see that the well�posedness

itself of the Hamiltonian problem is in general at risk. Fortunately, we are

able to prove certain regularity properties of the value function ensuring that

this is not the case. The peculiar fact is that this proof involves the existence

of the optimal control - quite naturally, indeed.
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1 Plan of work

It is straightforward that the contents of the dissertation have been organized

in accordance with these observations.

For the sake of completeness, the dissertation begins with a section on �nite-

horizon minimization problems. There we treat a wide class of problems

characterized by very general functional and dynamics. In this case the well-

posedeness of the Hamiltonian problem reduce to the continuity of the value

function, which is its turn not obvious. Then the advantages of the dynamic

programming approach are deeply examined, proving that

(i) the value function solves the Bellman functional equation (the so-called

Dynamic Programming Principle, of which we also provide a set-theoretic

formulation);

(ii) the Hamilton-Jacobi-Bellman equation (HJB) is also solved by the same

function, supposed that it is regular enough.

The limits of the methods are also faced up, as we give an example of an

optimization problem generating a non di�erentiable value function and a

HJB equation with no di�erentiable solution. Hence we introduce the notion

of viscosity solution for a general class of PDE's, and prove that the value

function is in our case a viscosity solution to the HJB equation introduced

before. Finally, we give a uniqueness result for the viscosity solutions to HJB

in the class of continuous functions satisfying a suitable boundary condition,

which the value function belongs to.

As far as utility maximization in in�nite-horizon framework is concerned, a

few words have to be spent in order to pinpoint the speci�c problems one has

to face up in the analysis of the Gozzi-Fiaschi model. Of course one wants to

implement at least part of the techniques developed in the �rst part of the

thesis; nevertheless many technical di�culties arise as an e�ect of the above
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mentioned generality of the hypothesis on the data, which are supposed to

be the reason of the versatility and wide-range applicability of this model.

In particular the dynamics (where the state variable represents total endow-

ment of the social planner or average capital of the representative dynasty)

contains a convex-concave function representing production.

It is well known that the presence of non concavity in an optimization prob-

lem can lead to many di�culties in establishing the necessary and su�cient

conditions for the optimum, as well as in examining the regularity properties

of the value function.

Moreover, the presence of the static state constraint makes any admissibility

proof much more complicated than usual.

As a third relevant (and unusual) feature, we require that the admissible

controls are not more than locally integrable in the positive half-line: this is

the maximal class if one wants the control strategy to be a function and the

state equation to have solution. This is a weak regularity requirement which

is of very little help; conversely it generates unexpected issues in various

respects.

We can summarize the main criticalities entailed by these three traits as

follows:

1. Certain questions appear that in other "bounded-control" models are

not even present, such as the �niteness of the value function and the

well-posedness of the Hamiltonian problem.

2. The problem of the existence of an optimal control strategy (for every

�xed initial state) is unusually di�cult. Speci�cally, it is a natural

idea to make use of the traditional compactness results, such as the

Dunford-Pettis criterion, in order to generate a convergent approxima-

tion procedure. As we commit ourselves to deal with merely (locally)

integrable control functions, the application of such compactness re-

sults is not straightforward. Indeed, a very careful preliminary work
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is needed in order to set up a proper approximation procedure, which

has to be further re�ned so that we can �nd a limit function which is

admissible in the sense that it satis�es the state static constraint, and

so that the approximation works also as far as the objective functionals

are concerned.

3. Additional work to the usual proof of the fact that the value function

indeed solves HJB is needed; in fact we not only use the optimal con-

trol, but also, separately, a preliminary result which appears in the

optimality construction: the fundamental Lemma 33.

4. The regularity property stated in Theorem 50.ii), which is necessary in

order that the HJB problem is well-posed, not only requires � as we

have seen � optimal controls. It can be proven by a standard argument

under the hypothesis that the admissible controls are locally bounded;

in our case it shows again to be useful to come back to the preliminary

tools (Lemmas 33 and 34) in order to move around the obstacle and

have the result proven with merely integrable control functions.

The contents of this second part are consequently arranged: �rst, the reader

will come across an introductory paragraph which intends to clear up the

genesis of the model and the economic motivations for the assumptions.

Then comes a section dedicated to the preliminary results that are crucial

for the development of the theory. All of them are technical lemmas strictly

connected to the nature of the problem they are going to be applied to (even

if likely applicable to a wider class of problems), except Lemma 27, and

Corollary 28 which states and proves the comparison principle for ordinary

di�erential equations in a context-adapted form.

Afterwards, some basic properties of the value function are proven, such as

its behaviour near the origin and near +∞. These results require careful ma-

nipulations of the data and some standard results about ordinary di�erential

equations, but do not require the existence of optimal control functions.
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Next comes the pivotal section in which we prove the existence of an optimal

control strategy for every initial state. Here we make wide use of the prelim-

inary lemmas in association with a special diagonal procedure generating a

weakly convergent sequence of control functions from a family of sequences

which are not extracted neatly one from the other, as in the Ascoli-Arzelà's

theorem.

Afterwards, we will be able to prove other important regularity properties of

the value function, using optimal functions.

Eventually we give an application of the methods of Dynamic Programming

to our model. As mentioned before, the proof of the admissibility of the

value function as a viscosity solution is made more complicated by the use of

the preliminary lemmas and of the optimal control function, but it allows to

obtain the result independently of the regularity of the Hamiltonian function,

which contributes to make this problem peculiar and hopefully a source of

further motives of scienti�c interest.

Last but not least, I feel the moral duty and the pleasure to remind that I

owe everything of the good that may harbour in this work to the inspiration,

the support and the guidance of my masters, Paolo Acquistapace and Fausto

Gozzi, to whom I express my sincere gratitude.
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Part II. Finite-horizon optimization

and viscosity solutions to

Hamilton-Jacobi-Bellman equations

2 Basic de�nitions and continuity of the value

function.

Let us now state the basic properties required for the functions describing

the dynamics of the sistem, which we indicate by b, and the cost functional.

In fact, the requirements for b are a little stronger than the hypotheses of

Cauchy's existence and uniqueness result:

b : [0, T ]×Rn×U → Rn is uniformly continuous over the whole domain (1)

There exists a real number L ≥ 0 such that∥b(t, x, u)− b(t, y, u)∥ ≤ L∥x− y∥ ∀t ∈ [0, T ], x, y ∈ Rn, u ∈ U

∥b(t, 0, u)∥ ≤ L ∀t ∈ [0, T ], u ∈ U
(2)

Note that condition (2) implies

∥b(t, x, u)∥ ≤ ∥b(t, x, u)− b(t, 0, u)∥+ ∥b(t, 0, u)∥ ≤ L(∥x∥+ 1) (3)

∀t ∈ [0, T ], x ∈ Rn, u ∈ U

We will use this fact together with global uniform continuity many times

later.

Now let f and h be functions satisfying analogous assumptions.

f : [0, T ]×Rn×U → R is uniformly continuous over the whole domain (4)
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There exists a real number L ≥ 0 such that|f(t, x, u)− f(t, y, u)| ≤ L∥x− y∥ ∀t ∈ [0, T ], x, y ∈ Rn, u ∈ U

|f(t, 0, u)| ≤ L ∀t ∈ [0, T ], u ∈ U
(5)

Hence

|f(t, x, u)| ≤ L(∥x∥+ 1) (6)

∀t ∈ [0, T ], x ∈ Rn, u ∈ U (7)

Finally

h : Rn → R is uniformly continuous (8)

There exists a real number L ≥ 0 such that|h(x)− h(y))| ≤ L∥x− y∥ ∀x, y ∈ Rn

|h(0)| ≤ L
(9)

First of all, we observe that the above conditions (1), (2) imply by Cauchy's

theorem that every di�erential (controlled) systemẋ(t) = b(t, x(t), u(t)) t ∈ (s, T ]

x(s) = y

with (s, y) ∈ [0, T ]×Rn, is solved by a unique function in C1([0, T ],Rn) which

we denote by x(·; s, y, u) or simply x(·) if there is no possible misunderstand-

ing.

De�nition 1. Let (s, y) ∈ [0, T ]× Rn and

Λ(s) := {u(·) : [s, T ] → U / u(·) is measurable}.
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The cost functional J(·; s, y) : Λ(s) → R is

J(u; s, y) =

T̂

s

f(t, x(t; s, y, u), u(t))dt+ h(x(T ; s, y, u)) ∀u ∈ Λ(s)

(note that J(u;T, y) = h(x(T ;T, y, u)) = y does not depend on u).

The value function V : [0, T ]× Rn → R isV (s, y) = inf
u∈Λ(s)

J(u; s, y) ∀(s, y) ∈ [0, T )× Rn

V (T, y) = h(y) ∀y ∈ Rn

We now state and prove the basic result about the value function; but �rst

we need to establish a very important property of measurable functions.

Lemma 2 (Gronwall's inequality). Let f ∈ L1 ([a, b] ,R) satifying the

integral inequality:

f (t) ≤ g (t) +N

ˆ t

a

f (s) ds for a.e. t ∈ [a, b]

where g ∈ L∞ ([a, b] ,R) and N ≥ 0. Then

f (t) ≤ g (t) +NeNt

ˆ t

a

g (s) e−Nsds for a.e. t ∈ [a, b] .

In particular, if g is increasing, the last quantity is bounded above by

g (t) eN(t−a)

for every t ∈ [a, b].

Proof. Multiplying both sides of the intergal inequality we obtain, for almost
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every t ∈ [a, b]:

f (t) e−N(t−a) −Ne−N(t−a)

ˆ t

a

f (s) ds ≤ g (t) e−N(t−a).

Observe that the left-hand side coincides with d
dt

(
e−N(t−a)

´ t

a
f (s) ds

)
. Hence

integrating both members of the latter inequality between a and any t ∈ (a, b]

such that the inequality holds, we obtain

e−N(t−a)

ˆ t

a

f (s) ds ≤
ˆ t

a

g (s) e−N(s−a)ds.

Hence by hypothesis

f (t) e−N(t−a) ≤ g (t) e−N(t−a) +N

ˆ t

a

g (s) e−N(s−a)ds

which implies

f (t) ≤ g (t) +NeNt

ˆ t

a

g (s) e−Nsds;

as this holds for almost every t ∈ (a, b], we have the thesis.

Theorem 3. The value function V : [0, T ]× Rn → R is continuous.

Precisely, for some K > 0

|V (s, y)− V (s̄, ȳ)| ≤ K{∥y − ȳ∥+ (1 + max{∥y∥, ∥ȳ∥})|s− s̄|}

∀(s, y), (s̄, ȳ) ∈ [0, T ]× Rn

Proof. We split the proof in various inequalities.

First, let (s, y) ∈ [0, T ]× Rn, u ∈ Λ(s), t ∈ [s, T ], x(t) := x(t; s, y, u).

Since ẋ(r) = b(t, x(r), u(r)) for every r ∈ [s, t], integrating between s and

t leads to x(t) − y =
´ t

s
b(t, x(r), u(r))dr, an equation between n−vectors.
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This implies

∥x(t)∥ ≤ ∥y∥+
∥∥∥∥ˆ t

s

b (r, x(r), u(r)) dr

∥∥∥∥
≤ ∥y∥+

ˆ t

s

∥b (r, x(r), u(r)) ∥dr

≤(3) ∥y∥+
ˆ t

s

L(∥x(r)∥+ 1)dr

≤ ∥y∥+ LT +

ˆ t

s

L∥x(r)∥dr

which is in the form of the antecedent of ii). So we deduce

∥x(t)∥ ≤ (∥y∥+ LT ) exp(

ˆ t

s

L dr) ≤ (∥y∥+ LT )eLT

If LT ≤ 1 we set K0 := eLT ; otherwise, K0 := LTeLT . In any case we obtain

∥x(t)∥ ≤ (∥y∥+ 1)K0

that is

∥x(t; s, y, u)∥ ≤ (∥y∥+ 1)K0 ∀t ∈ [s, T ] (10)

Note thatK0 does not depend on s, y, u; so it does not depend on the solution

x(·; s, y, u) either.
Now we prove another inequality; let

(s, y), (s̄, ȳ) ∈ [0, T ]× Rn, u ∈ Λ(min{s, s̄})
x(t) := x(t; s, y, u), x̄(t) := x(t; s̄, ȳ, u), t ∈ [max{s, s̄}, T ],. From

x(t) = y +

ˆ t

s

b (r, x(r), u(r)) dr

and

x̄(t) = ȳ +

ˆ t

s̄

b(r, x̄(r), u(r))dr
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for all t ∈ [max{s, s̄}, T ], we get

x(t)− x̄(t) = y − ȳ +

ˆ t

s

b(r, x(r), u(r))dr −
ˆ t

s̄

b(r, x(r), u(r))dr

+

ˆ t

s̄

b(r, x(r), u(r))dr −
ˆ t

s̄

b(r, x̄(r), u(r))dr

for all t ∈ [max{s, s̄}, T ].

Hence by (10),

∥x(t)− x̄(t)∥ ≤ ∥y − ȳ∥+
ˆ s̄∨s

s∧s̄
∥b(r, x(r), u(r))∥dr

+

ˆ t

s̄

∥b(r, x(r), u(r))− b(r, x̄(r), u(r))∥dr

≤ ∥y − ȳ∥+
ˆ s̄∨s

s∧s̄
L(∥x(r)∥+ 1)dr +

ˆ t

s̄

L∥x(r)− x̄(r)∥dr

≤ ∥y − ȳ∥+ |s− s̄|L+ |s− s̄|LK0(∥y∥+ 1)

+

ˆ t

s̄

L∥x(r)− x̄(r)∥dr

for all t ∈ [max{s, s̄}, T ].

Observe that ∥y−ȳ∥+|s−s̄|L(1+K0+K0∥y∥) is independent of t, which gives
us the possibility of applying Lemma 2 and obtain, for t ∈ [max{s, s̄}, T ],

∥x(t; s, y, u)− x(t; s̄, ȳ, u)∥ ≤ {∥y − ȳ∥+ |s− s̄|L(1 +K0 +K0∥y∥)}e(t−s̄)L

≤ {∥y − ȳ∥+ |s− s̄|L(1 +K0 +K0M(y, ȳ)}eTL

(11)

where we have set M(y, ȳ) = max{∥y∥, ∥ȳ∥}. Observe that this proves the

continuous dependence of the orbit on the initial state, with �xed control.

Now we can give the proper proof of the continuity of the value function.

Let (s, y), (s̄, ȳ) ∈ [0, T )× Rn. We will exhibit an upper bound of |V (s, y)−
V (s̄, ȳ)|.
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Let ϵ > 0 and suppose without loss of generality that s ≥ s̄ . Since V (s̄, ȳ) =

inf{J(u; s̄, ȳ)/u ∈ Λ(s̄)} we can �nd uϵ ∈ Λ(s̄) such that

V (s̄, ȳ) + ϵ > J(uϵ; s̄, ȳ)

so that

V (s, y)− V (s̄, ȳ) ≤ J(uϵ �[s,T ]; s, y)− J(uϵ; s̄, ȳ) + ϵ

=

T̂

s

f(t, x(t; s, y, uϵ), uϵ(t))dt−
T̂

s̄

f(t, x(t; s̄, ȳ, uϵ), uϵ(t))dt

+h(x(T ; s, y, uϵ))− h(x(T ; s̄, ȳ, uϵ)) + ϵ

Hence, setting x(t) = x(t; s, y, uϵ) and x̄(t) = x(t; s̄, ȳ, uϵ),

V (s, y)− V (s̄, ȳ) ≤
T̂

s

f(t, x(t), uϵ(t))dt−
T̂

s̄

f(t, x(t), uϵ(t))dt

+

T̂

s̄

f(t, x(t), uϵ(t))dt−
T̂

s̄

f(t, x̄(t), uϵ(t))dt

+h(x(T ))− h(x̄(T )) + ϵ

=

s̄ˆ

s

f(t, x(t), uϵ(t))dt+

T̂

s̄

[f(t, x(t), uϵ(t))− f(t, x̄(t), uϵ(t))]dt

+h(x(T ))− h(x̄(T )) + ϵ
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We get by (5),(7), (5) and (9):

|V (s, y)− V (s̄, ȳ)| ≤
ˆ s̄

s

L(∥x(t)∥+ 1)dt+

ˆ T

s̄

L(∥x(t)− x̄(t)∥dt

≤ +L∥x(T )− x̄(T )∥+ ϵ

≤ |s− s̄|L+ |s− s̄|LK0(M(y, ȳ) + 1)

+TLeTL{∥y − ȳ∥+ |s− s̄|L(1 +K0 +K0M(y, ȳ)}

+LeTL{∥y − ȳ∥+ |s− s̄|L(1 +K0 +K0M(y, ȳ)}+ ϵ

Remind that TLeTL ≤ K0 so setting K1 := LeTL +K0 it follows that

|V (s, y)− V (s̄, ȳ)| ≤ ∥y − ȳ∥K1 + {1 +K0M(y, ȳ) + 2K0 +K2
0 +K2

0M(y, ȳ)

+K1 +K1K0 +K1K0M(y, ȳ)}|s− s̄|L+ ϵ

= ∥y − ȳ∥K1 + {LK2 + LK3M(y, ȳ)}|s− s̄|+ ϵ

where we put K2 = 1 + 2K0 +K2
0 +K1 +K1K0 and

K3 = K0 +K2
0 +K0K1. First, note that none of the Ki's depends on control

uϵ - so they neither depend on ϵ:

|V (s, y)− V (s̄, ȳ)| ≤ ∥y − ȳ∥K1 + {LK2 + LK3M(y, ȳ)}|s− s̄|

≤ K{∥y − ȳ∥+ (1 +M(y, ȳ))|s− s̄|}

where K := max{K1, LK2, LK3}. Besides, the Ki's do not depend on

s, y, s̄, ȳ hence also K does not. For this reason the above inequality proves

that V is continuous on [0, T )× Rn.

The case s̄ < s = T is similar. We take u ∈ Λ(s̄) and y, ȳ ∈ Rn. Then

V (s̄, ȳ)− V (T, y) ≤ J(u; s̄, ȳ)− h(y)

=

ˆ T

s̄

f(t, x(t; s̄, ȳ, u), u(t))dt+ h(x(T ; s̄, ȳ, u))− h(x(T ;T, y, u))
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Hence

|V (s̄, ȳ)− V (T, y)| ≤
ˆ T

s̄

L(∥x(t; s̄, ȳ, u)∥+ 1)dt

+|h(x(T ; s̄, ȳ, u))− h(x(T ;T, y, u))|

≤ |T − s̄|L+ |T − s̄|LK0(∥ȳ∥+ 1)

+L∥x(T ; s̄, ȳ, u)− x(T ;T, y, u)∥

≤ |T − s̄|L{1 +K0(∥ȳ∥+ 1)}+ L{∥y − ȳ∥

+|T − s̄|L(1 +K0 +K0∥ȳ∥)}eTL

≤ L∥y − ȳ∥+ (K⋆
0 +K⋆

0M(y, ȳ))|T − s̄|L

≤ K⋆{∥y − ȳ∥+ (1 +M(y, ȳ))|T − s̄|}

where K⋆
0 > 0 is a suitable number independent of s̄, ȳ, y, u and K⋆ :=

max{L,LK⋆
0}.

Finally,

|V (T, y)− V (T, ȳ)| = |h(y)− h(ȳ)| ≤ L∥y − ȳ∥

So the continuity of V on the whole de�nition domain [0, T ]× Rn is proven

by

|V (s, y)−V (s̄, ȳ)| ≤ K̃{∥y−ȳ∥+(1+M(y, ȳ))|s−s̄|} ∀(s, y), (s̄, ȳ) ∈ [0, T ]×Rn

(12)

for a suitable constant K̃.

3 Dynamic Programming

We are now about to state a principle that is quite meaningful in the context

of optimal control formulation of economic models like the one we will study

in Chapter 3. Moreover, the principle has an algorithmic structure which

makes it a useful tool in numerical applications.
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In its purely set-theoretical version it says that, if one wants to �nd the

in�mum of a set which is the image of a function f(x, y) of two variables,

and the variables are subject to constraints p(x, y) and q(x), then one can

i) �x a x̄ satisfying the constraint q(x̄)

ii) search for the least f(x̄, y) when y varies subject to the constraint

p(x̄, y)

iii) minimize the value obtained at ii) letting x̄ vary in the set of the

points satisfying q(x̄).

Formally:

Proposition 4. Let X be a set, (D,<) an ordered set and f : X → D.

If p(·, ·) and q(·) are properties over the elements of X, then

inf{f(x, y) / p(x, y) and q(x)} = inf{inf{f(x, y)/p(x, y)} / q(x)}

Proof. We show that the right member, say µ, is the in�mum of the set at

the left member, say A.

i)µ is a lower bound of A.

Let (x, y) such that p(x, y) and q(x); then f(x, y) ≥ inf{f(x, b) / p(x, b)} ≥
inf{inf{f(a, b)/p(a, b)} / q(a)} = µ

So being (x, y) generic, µ ≤ inf{f(x, y) / p(x, y) and q(x)}

ii) µ is the greatest lower bound of A.

If ϵ > 0, there is x̄ such that q(x̄) and µ+ϵ = µ+ ϵ
2
+ ϵ

2
> inf{f(x̄, y)/p(x̄, y)}+

ϵ
2
> f(x̄, ȳ) for some ȳ such that p(x̄, ȳ). Thus µ + ϵ > f (x̄, ȳ) such that

p (x̄, ȳ) and q (x̄).

Now we can go through the version of the principle which is related to the

identi�cation of the value function in di�erential controlled sistems.
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Theorem 5 (Bellman's dynamic programming principle). The value

function V : [0, T ]× Rn → R satis�es the following functional equation:

∀(s, y) ∈ [0, T )× Rn : ∀s̄ ∈ [s, T ] :

V (s, y) = inf

{ˆ s̄

s

f (t, x(t; s, y, u), u(t)) dt+ V (s̄, x(s̄; s, y, u)) / u ∈ Λ(s)

}
(13)

Proof. Fix (s, y) ∈ [0, T )× Rn and s̄ ∈ [s, T ].

Remembering that V (s, y) = inf{J(u; s, y) / u ∈ Λ(s)}, and setting

µ(s, s̄, y) := inf{
ˆ s̄

s

f(t, x(t; s, y, u), u(t))dt+ V (s̄, x(s̄; s, y, u)) / u ∈ Λ(s)},

(14)

we show that:

∀u ∈ Λ(s) : µ(s, s̄, y) ≤ J(u; s, y) (15)

Let u ∈ Λ(s), ū := u �[s̄,T ], ȳ := x(s̄; s, y, u); then

µ(s, s̄, y) ≤
ˆ s̄

s

f(t, x(t; s, y, u), u(t))dt+ V (s̄, ȳ)

≤
ˆ s̄

s

f(t, x(t; s, y, u), u(t))dt+ J(ū; s̄, ȳ)

=

ˆ s̄

s

f(t, x(t; s, y, u), u(t))dt+

ˆ T

s̄

f(t, x(t; s̄, ȳ,ū), u(t))dt+ h(x(T ; s̄, ȳ, ū))

= J(u; s, y)

where the last equality holds because x(·; s, y, u) = x(·; s̄, ȳ,ū) over [s̄, T ] for
the uniqueness of the orbit.

In the second place, we prove that

∀ϵ > 0 : ∃uϵ ∈ Λ(s) : µ(s, s̄, y) + ϵ > J(uϵ; s, y) (16)
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Let ϵ > 0 and vϵ ∈ Λ(s) such that

µ(s, s̄, y) +
ϵ

2
>

ˆ s̄

s

f(t, x(t; s, y, vϵ), vϵ(t))dt+ V (s̄, x(s̄; s, y, vϵ))

Then we can �nd zϵ ∈ Λ(s̄) such that, taking ȳ := x(s̄; s, y, vϵ)

µ(s, s̄, y) + ϵ >

ˆ s̄

s

f(t, x(t; s, y, vϵ), vϵ(t))dt+ J(zϵ; s̄, ȳ)

Now de�ne uϵ : [s, T ] → U as

uϵ(t) :=

vϵ(t) if t ∈ [s, s̄]

zϵ(t) if t ∈ (s̄, T ]

so that uϵ ∈ Λ(s).

Now observe that the orbit x(·; s, y, uϵ) does reach the state (s̄, ȳ) because

x(s̄; s, y, uϵ) = lim
t↑s̄

x(t; s, y, uϵ) = lim
t↑s̄

x(t; s, y, vϵ) = x(s̄; s, y, vϵ) = ȳ

Hence

x(t; s, y, uϵ) =

x(t; s, y, vϵ) t ∈ [s, s̄]

x(t; s̄, ȳ, zϵ) t ∈ [s̄, T ]

and the above inequality turns into

µ(s, s̄, y) + ϵ > J(uϵ; s, y)

De�nition 6. For (s, y) ∈ [0, T ] × Rn, we say that the control u ∈ Λ(s) is

optimal respect to a state (s, y) if

V (s, y) = J(u; s, y)
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As a consequence of the above theorem, we have a quite predictible result:

a control which is optimal respect to a state is optimal respect to every

�successive� state.

Corollary 7. If (s, y) ∈ [0, T ]×Rn and u⋆ ∈ Λ(s) with V (s, y) = J(u⋆; s, y),

then for every s̄ ∈ [s, T ]

V (s̄, x(s̄; s, y, u⋆)) = J(u⋆ �[s̄,T ]; s̄, x(s̄; s, y, u
⋆))

Proof. Let s, y, u⋆ as in the hypothesis and ȳ := x(s̄; s, y, u⋆). Then, since

V (s, y) ≤ µ(s, s̄, y) for the above theorem, we have

V (s, y) ≤
ˆ s̄

s

f(t, x(t; s, y, u⋆), u⋆(t))dt+ V (s̄, ȳ)

≤
ˆ s̄

s

f(t, x(t; s, y, u⋆), u⋆(t))dt+ J(u⋆ �[s̄,T ]; s̄, ȳ)

= J(u⋆; s, y) = V (s, y)

which implies the thesis.

4 The Hamilton-Jacobi-Bellman equation

Now let us extract some other consequences of the value function being a

solution of Bellman equation.

Suppose as usual (s, y) ∈ [0, T ) × Rn and s̄ ∈ [s, T ], and let u ∈ U (the

space of the control values). Let x(·) be the orbit for (s, y) controlled by the

constant control u, that is x(t) := x(t; s, y,u). From V (s, y) ≤ µ(s, s̄, y) it

follows that

V (s, x(s)) ≤
ˆ s̄

s

f(t, x(t),u)dt+ V (s̄, x(s̄))

⇐⇒
V (s, x(s))− V (s̄, x(s̄))

s̄− s
≤ 1

s̄− s

ˆ s̄

s

f(t, x(t),u)dt (17)



4 The Hamilton-Jacobi-Bellman equation 22

Now if V is di�erentiable, being x(·) ∈ C1([0, T ],Rn) we can take the limit for

s̄ ↓ s of the left hand side of the above inequality (being sure of its existence),

which is

lim
s̄↓s

V (s, x(s))− V (s̄, x(s̄))

s̄− s
= − d

ds
V (s, x(s))

= −⟨DV (s, x(s)) , (1, ẋ(s))⟩

= −Vt(s, x(s))− ⟨Vx(s, x(s)) , b(s, x(s),u)⟩

where DV (τ, z) = (Vt(τ, z), Vx(τ, z)) ∈ R× Rn is the gradient of V : [0, T ]×
Rn → R at the point (τ, z) ∈ (0, T )× Rn.

So taking the limit in (17) leads to

−Vt(s, y)− ⟨Vx(s, y) , b(s, y,u)⟩ − f(s, y,u) ≤ 0

and being u generic and independent from (s, y)

sup
u∈U

{⟨−Vx(s, y) , b(s, y,u)⟩ − f(s, y,u)} ≤ Vt(s, y) (18)

Now the idea is to use the other �side� of Bellman's Dynamic Programming

Equation to show that the reverse inequality also holds.

First of all let us establish a useful property of sequences of orbits having the

same initial point:

Lemma 8. For every (s, y) ∈ [0, T ]×Rn and every sequence (uϵ)ϵ>0 ⊂ Λ(s)

we have:

∀ϵ > 0 : ∀t ∈ [s, s+ ϵ] : ∥x(t; s, y, uϵ)− y∥ ≤ ϵL (∥y∥+ 1) e(t−s)L.

Proof. Let ϵ > 0 and t ∈ [s, s+ ϵ]. Integrating both sides of

dx(r; s, y, uϵ)

dr
= b (r, x (r; s, y, uϵ)uϵ (r))
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for r ∈ [s, t], adding and removing
´ t
s
b (r, y, uϵ(r)) dr to the obtained identity,

and then passing to the norms, we get by (2) and(3):

∥x(t; s, y, uϵ)− y∥ ≤
ˆ t

s

∥b (r, x(r; s, y, uϵ), uϵ(r))− b (r, y, uϵ(r))∥ dr +

+

ˆ t

s

∥b (r, y, uϵ(r))∥ dr

≤
ˆ t

s

L ∥x(r; s, y, uϵ)− y∥ dr + ϵL (∥y∥+ 1)

By Gronwall's inequality

∥x(t; s, y, uϵ)− y∥ ≤ ϵL (∥y∥+ 1) e(t−s)L

Now observe that for s̄ = s + ϵ (and for a �xed ϵ > 0) Bellman's Principle

becomes

V (s, y) = inf

{ˆ s+ϵ

s

f (t, x(t; s, y, u), u(t)) dt+ V (s+ ϵ, x(s+ ϵ; s, y, u)) / u ∈ Λ(s)

}
Hence there exists uϵ ∈ Λ(s) such that

V (s, y) + ϵ2 ≥
ˆ s+ϵ

s

f (t, x(t; s, y, uϵ), uϵ(t)) dt+ V (s+ ϵ, x(s+ ϵ; s, y, uϵ))

which implies, setting xϵ(·) := x(·; s, y, uϵ)

ˆ s+ϵ

s

[Vt (t, xϵ(t)) + ⟨Vx (t, xϵ(t)) , b (t, xϵ(t), uϵ(t))⟩+ f (t, xϵ(t), uϵ(t))] dt ≤ ϵ2

Now assume:

Claim 9. The function:
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(t, y) → sup
u∈U

{⟨−Vx (t, y) , b (t, y,u)⟩ − f (t, y,u))}

is continuous over [0, T ]× Rn.

�

In particular, the function:

Gϵ(t) = −Vt (t, xϵ(t)) + sup
u∈U

{⟨−Vx (t, xϵ(t)) , b (t, xϵ(t),u)⟩ − f (t, xϵ(t),u))}

is measurable over [s, s+ ϵ]. Hence we have:

−ϵ2 ≤
ˆ s+ϵ

s

[−Vt (t, xϵ(t)) + ⟨−Vx (t, xϵ(t)) , b (t, xϵ(t), uϵ(t))⟩ − f (t, xϵ(t), uϵ(t))] dt

≤
ˆ s+ϵ

s

[
−Vt (t, xϵ(t)) + sup

u∈U
{⟨−Vx (t, xϵ(t)) , b (t, xϵ(t),u)⟩ − f (t, xϵ(t),u))}

]
dt

Consequently:

−ϵ ≤ 1

ϵ

ˆ s+ϵ

s

[
−Vt (t, xϵ(t)) + sup

u∈U
{⟨−Vx (t, xϵ(t)) , b (t, xϵ(t),u)⟩ − f (t, xϵ(t),u))}

]
dt

≤ −Vt (τϵ, xϵ(τϵ)) + sup
u∈U

{⟨−Vx (τϵ, xϵ(τϵ)) , b (τϵ, xϵ(τϵ),u)⟩ − f (τϵ, xϵ(τϵ),u))}

where τϵ ∈ [s, s+ ϵ] is one maximum point of the function Gϵ over [s, s+ ϵ].

Now by Lemma 8 we have:

∥xϵ(τϵ)− y∥ ≤ ϵL (∥y∥+ 1) eϵL

so that (τϵ, xϵ(τϵ)) → (s, y) as ϵ → 0. By Claim 9 and the continuity of Vt

we obtain, for ϵ → 0:

0 ≤ −Vt(s, y) + sup
u∈U

{⟨−Vx(s, y) , b(s, y,u)⟩ − f(s, y,u)} . (19)

Observe that this is precisely the reverse inequality of (18).
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To complete the argument, we have to prove the former claim.

Proof of Claim 9. Let us call G the function whose continuity over [0, T ]×Rn

is to be proven, and let (t0, y0) ∈ [0, T ]× Rn, ϵ > 0.

First of all observe that, for the properties of the supremum:

|G (t, y)−G (t0, y0)| ≤

sup
u∈U

|⟨−Vx (t, y) , b (t, y,u)⟩ − f (t, y,u)) + ⟨Vx (t0, y0) , b (t0, y0,u)⟩+ f (t0, y0,u))|

for every (t, y) ∈ [0, T ] × Rn. Hence, in order to prove the continuity of

G in (t0, y0), it is su�cient to show that there exists a δ > 0, depending only

on ϵ and (t0, y0), such that if
√

|t− t0|2 + ∥y − y0∥2 < δ and u ∈ U , then

the absolute value on the right hand side of the latter inequality is less than

a linear function of ϵ.

By the uniform continuity of b and f we can �nd a η1 > 0 such that:

√
|r1 − r2|2 + ∥y1 − y2∥2 < η1 =⇒

|f (r1, y1,u)− f (r2, y2,u)| ≤ ϵ

∥b (r1, y1,u)− b (r2, y2,u)∥ ≤ ϵ

for every (r1, y1,u) , (r2, y2,u) ∈ [0, T ]× Rn × U .

By the continuity of Vx there exists a η2 > 0 such that:

√
|t− t0|2 + ∥y − y0∥2 < η2 =⇒

∥Vx (t0, y0)− Vx (t, y)∥ ≤ ϵ

∥Vx (t, y)∥ ≤ (1 + ∥Vx(t0, y0)∥)

for every(t, y) , (t0, y0) ∈ [0, T ]× Rn.

Now observe that, for (t,u) ∈ [0, T ]× U :

⟨Vx (t0, y0) , b (t0, y0,u)⟩ − ⟨Vx (t, y) , b (t, y,u)⟩ =

⟨Vx (t0, y0) , b (t0, y0,u)⟩ − ⟨Vx (t, y) , b (t, y,u)⟩ ± ⟨Vx (t, y) , b (t0, y0,u)⟩ =

⟨Vx (t0, y0)− Vx (t, y) , b (t0, y0,u)⟩+ ⟨Vx (t, y) , b (t0, y0,u)− b (t, y,u)⟩
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Hence, for
√
|t− t0|2 + ∥y − y0∥2 < δ := min {η1, η2} and for a generic u ∈

U , using Schwarz's inequality we �nd:

|⟨−Vx (t, y) , b (t, y,u)⟩ − f (t, y,u)) + ⟨Vx (t0, y0) , b (t0, y0,u)⟩+ f (t0, y0,u))|

≤ |⟨Vx (t0, y0) , b (t0, y0,u)⟩ − ⟨Vx (t, y) , b (t, y,u)⟩|+ |f (t0, y0,u))− f (t, y,u))|

≤ ∥Vx (t0, y0)− Vx (t, y)∥ ∥b (t0, y0,u)∥+ ∥Vx (t, y)∥ ∥b (t0, y0,u)− b (t, y,u)∥+ ϵ

≤ ϵL (1 + ∥y0∥) + ϵ (1 + ∥Vx (t0, y0)∥) + ϵ

As δ and the last upper bound depend only on ϵ and (t0, y0), we have proven

that

lim
(t,y)→(t0,y0)

G(t, y) = G(t0, y0)

Hence combining (18) with (19) we see that we have given a proof of the

following important result:

Theorem 10. Suppose V ∈ C1([0, T )× Rn,R). In this case V is a solution

of

−vt(s, y) + sup {⟨−vx(s, y) , b(s, y,u)⟩ − f(s, y,u) /u ∈ U} = 0

∀(s, y) ∈ [0, T )× Rn (20)

in the unknown v : [0, T )× Rn → R.

The function

H(s, y, p) := sup
u∈U

{⟨−p, b (s, y,u)⟩ − f (s, y,u)} ∀ (s, y, p) ∈ [0, T ]×Rn×Rn

is called Hamiltonian and the above equation is usually referred to as the

Hamilton-Jacobi-Bellman equation (or HJB).
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The basic property of the Hamiltonian function is the following continuity

result:

Theorem 11. The Hamiltonian function H : [0, T ]×Rn×Rn → R satis�es:

i)

|H (t, x, p)−H (s, y, q)| ≤

L (1 + ∥y∥) ∥p− q∥+ sup
u∈U

{∥p∥ ∥b (s, y,u)− b (t, x,u)∥+ |f (s, y,u)− f (t, x,u)|}

ii) H ∈ C0 ([0, T ]× Rn × Rn,R)

iii) |H (t, x, p)−H (t, y, p)| ≤ L (1 + ∥p∥) ∥x− y∥

iv) |H (t, x, p)−H (t, x, q)| ≤ L (1 + ∥x∥) ∥p− q∥

for every (t, x, p) , (s, y, q) ∈ [0, T ]× Rn × Rn

Proof. For i), we follow the proof of Claim 9. In the �rst place:

|H (t, x, p)−H (s, y, q)| ≤

sup
u∈U

|⟨q, b (s, y,u)⟩ − ⟨p, b (t, x,u)⟩+ f (s, y,u)− f (t, x,u)|

In the second place, for every u ∈ U :

|⟨q, b (s, y,u)⟩ − ⟨p, b (t, x,u)⟩+ f (s, y,u)− f (t, x,u)|

≤ |⟨(p− q) , b (s, y,u)⟩|+ |⟨p, [b (s, y,u)− b (t, x,u)]⟩|+ |f (s, y,u)− f (t, x,u)|

≤ L ∥p− q∥ (1 + ∥y∥) + ∥p∥ ∥b (s, y,u)− b (t, x,u)∥+ |f (s, y,u)− f (t, x,u)| .

For ii), it is su�cient to observe that the last quantity is less than

L ∥p− q∥ (1 + ∥y∥) + (1 + ∥q∥) ϵ+ ϵ

for any ϵ > 0 and for (t, x, p) su�ciently near to (s, y, q), thanks to the

uniform continuity of functions b, f . iii) and iv) follow easily from i).
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Remark 12. The above theorem implies that for every function φ ∈ C1 ([0, T ]× Rn,R),
the function

(t, y) → sup
u∈U

{⟨−φx (t, y) , b (t, y,u)⟩ − f (t, y,u))}

is continuous.

The value function need not be di�erentiable in general, nor must HJB have

a unique solution. So solving HJB could lead to a function which is di�erent

from the value function.

In the following we give an example of an optimal control problem (that is, of

a particular controlled di�erential system) which de�nes a non-di�erentiable

value function and a HJB equation with no di�erentiable solutions.

5 A non di�erentiable value function

De�ne a controlled one-dimensional sistem by setting

i) U := [−1, 1] as the control space,

ii) [0, 1] as the time horizon,

iii) ∀s ∈ [0, 1] : Λ(s) := {u : [s, 1] → U /u is measurable} as the set

of feasible controls starting at time s.

De�ne a set of initial value problemsẋ(t) = u(t)x(t) t ∈ [s, 1]

x(s) = y

for (s, y) ∈ [0, 1]× R



5 A non di�erentiable value function 29

with associated cost functional given by

J(u; s, y) := x(1; s, y, u) ∀u ∈ Λ(s)

(in this case f ≡ 0 and h = Id). We show that:

1. The value function associated to this problem is not di�erentiable - even

though it is continuous (as a consequence of Thoerem 3) and admits

both partial derivatives in its de�nition domain. So it is not possible

to obtain the value function as a solution of HJB because the proof of

Thorem 10 explicitly requires the di�erentiability of V .

2. The HJB equation associated to this problem does not admit any dif-

ferentiable solution.

For point 1, begin by observing that x(·; s, y, u) = y exp
(´ ·

s
u
)
, J(u; s, y) =

y exp
(´ 1

s
u
)
which implies

V (s, y) = inf
u∈Λ(s)

{J(u; s, y)} =

yes−1 if y ≥ 0

ye1−s if y < 0
∀(s, y) ∈ [0, 1]× R.

Hence V : [0, 1] × R → R is continuous and admits both partial derivatives

in its domain; nonetheless V /∈ C1([0, 1]× R,R) since

Vx(s, y) =

es−1 if y ≥ 0

e1−s if y < 0
∀(s, y) ∈ (0, 1)× R

is not continuous at any point of the segment (0, 1)× {0}.
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As far as point 2 is concerned, observe in the �rst place that for (s, y,u, p) ∈
[0, 1]×R×U ×R, ⟨p , b(s, y,u)⟩− f(s, y,u) = pyu; hence the hamiltonian is

H(s, y, p) = sup
u∈U

{pyu} =

py if py ≥ 0

−py if py < 0
= |py|

and HJB takes the form−vt(s, y) + |vx(s, y)y| = 0 ∀(s, y) ∈ [0, 1)× R

v(1, y) = y ∀y ∈ R.

Suppose now that v is a solution of HJB in C1([0, 1] × R,R). In particular

vx is continuous over the line {1} × R, and because vx(1, y) = 1 for every

y ∈ R, there is a neighbourhood (for instance a strip) of {1} × R (say N )

where vx ≥ 0. This allows us to drop down the absolute value in HJB and

obtain that v satis�es the following equations:−vt(s, y) + vx(s, y)y = 0 ∀(s, y) ∈ N ∩ {y ≥ 0}

v(1, y) = y ∀y ≥ 0−vt(s, y)− vx(s, y)y = 0 ∀(s, y) ∈ N ∩ {y < 0}

v(1, y) = y ∀y < 0.

These are �standard� PDEs solved by the change of variable z = xet.

dv(t, ze−t)

dt
= vt(t, ze

−t)− vx(t, ze
−t)ze−t = 0

if (t, ze−t) ∈ N ∩ {y ≥ 0}. Hence for (t, z) such that (t, ze−t) ∈ N ∩ {y ≥ 0}
the function (t, z) → v(t, ze−t) does not depend on t so

v(t, ze−t) = v(1, ze−1) = ze−1.
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Substituting the expression for z we obtain

v(s, y) = yes−1 ∀(s, y) ∈ N ∩ {y ≥ 0} .

In a very similar way we deduce that

v(s, y) = ye1−s ∀(s, y) ∈ N ∩ {y < 0}

which means that v and V coincide over N . But we saw at point 1 that

Vx was discontinuous in the segment (0, 1) × {0} and particulary at the

points of its nonempty intersection with N . So we have found a non empty

subset of [0, 1]×R in which vx is not continuous, against the hypothesis that

v ∈ C1([0, 1]× R,R).

6 Viscosity solutions to a Hamilton-Jacobi equation

The previous section shows that the hypotheses of Theorem 10 are too strong

for practical purposes. Hence we introduce a notion which is weaker than

the notion of regular solution to a PDE, and which implies the uniqueness

of the solution under very mild conditions, as we will see.

De�nition 13. Let Ω an open subset of Rn and F ∈ C0 (Ω× R× Rn,R),
and consider the equation

F (x, v (x) , Dv (x)) = 0 ∀x ∈ Ω (21)

in the unknown v : Ω → R. Then a function u ∈ C0 (Ω,R) is a viscosity

subsolution [supersolution] to (21) if, and only if:

for every φ ∈ C1 (Ω,R) and for every local maximum [minimum] point x0 ∈ Ω
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of u− φ:

F (x0, u (x0) , Dφ (x0)) ≤

[≥ 0]

Remark 14. It follows from the de�nition that u ∈ C0 (Ω,R) is a viscosity

solution of (21) if and only if −u is a viscosity solution of

−F (x,−v (x) ,−Dv (x)) = 0 ∀x ∈ Ω

The test for the viscosity sub- / super-solution property can be weakend

according to the following re�ections, which are developed for the notion of

viscosity sub-solution for simplicity.

Remark 15. Fix u ∈ C0 (Ω,R) and let φ ∈ C1 (Ω,R) , x0 ∈ Ω satisfying

x0 is a local maximum of u− φ in Ω (22)

F (x0, u (x0) , Dφ (x0)) ≤ 0 (23)

Hence if we de�ne:

i) φ1 := φ− φ (x0) + u (x0)

ii) φ2 (y) := φ (y) + ∥y − x0∥2

iii) φ3 (y) := φ (y)− φ (x0) + u (x0) + ∥y − x0∥2

then we have

- x0 is a local maximum of u − φ1 in Ω, φ1 (x0) = u (x0) and Dφ1 (x0) =

Dφ (x0);

- x0 is a strict local maximum of u− φ2 in Ω and Dφ2 (x0) = Dφ (x0);

- x0 is a strict local maximum of u−φ2 in Ω, φ3 (x0) = u (x0) and Dφ3 (x0) =

Dφ (x0);

For istance to see the that this last property holds, it is su�cient to observe
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that by (22), for y near x0 and y ̸= x0:

u (y)− φ3 (y) = u (y)− φ (y) + φ (x0)− u (x0)− ∥y − x0∥2

≤ −∥y − x0∥2 < 0 = u (x0)− φ3 (x0)

Remark 16. Let u ∈ C0 (Ω,R) and de�ne:

A0,−
u :=

{
(x0, φ) ∈ C1 (Ω,R)× Ω/(22) holds

}
B−
u :=

{
(x0, φ) ∈ C1 (Ω,R)× Ω/(23) holds

}
,

then u is a viscosity subsolution to (21) if and only if A0,−
u ⊆ B−

u .

Now de�ne

A1,−
u :=

{
(x0, φ) ∈ C1 (Ω,R)× Ω/x0 is a strict local maximum of u− φ in Ω

}
A2,−

u :=
{
(x0, φ) ∈ C1 (Ω,R)× Ω/(22) holds and φ (x0) = u (x0)

}
A3,−

u := A1,−
u

∩
A2,−

u .

Hence Remark 15 shows that Ai,−
u ⊆ B−

u implies A0,−
u ⊆ B−

u , for i = 1, 2, 3.

This means that for every i = 1, 2, 3, u is a viscosity subsolution to (21) if

and only if Ai,−
u ⊆ B−

u .

So one can choose the test-set Ai,−
u in the most suitable way, in relation to

the context.

Moreover we can de�ne Ai,+
u and B+

u , in the obvious way, and obtain that,

for every i = 0, 1, 2, 3, u is a viscosity supersolution to (21) if and only if

Ai,+
u ⊆ B+

u .

Of course the notion of viscosity solution wolud be useless if it was not an

extension of the classical notion.
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Proposition 17. Let u ∈ C1 (Ω,R). Then u is a (classical) solution of (21)

if and only if u is a viscosity solution of (21).

Proof. ( =⇒ ) Let u be a classical solution of (21) and (φ, x0) ∈ A0,−
u . Then

Du (x0) = Dφ (x0). In particular F (x0, u (x0) , Dφ (x0)) ≤ 0, that is to say

(φ, x0) ∈ B−
u . The same way we see that A0,+

u ⊆ B+
u .

(⇐=) Let u be a viscosity solution of (21). Hence, for any x ∈ Ω, (u, x) ∈
A0,−

u

∩
A0,+

u which implies by viscosity (u, x) ∈ B−
u

∩
B+
u - and this means

F (x, u (x) , Du (x)) = 0. As x is generic, u is a classical solution of (21).

As an example, consider the HJ equation

− |v′ (x)|+ 1 = 0 ∀x ∈ (−1, 1) (24)

(generated by the function F (x, r, p) := − |p|+1, (x, r, p) ∈ (−1, 1)×R×R).

It is clear that the function u (x) = |x| is a regular solution of (24) in Ω′ :=

(−1, 0) ∪ (0, 1); hence by Proposition 17 u is also a viscosity solution in Ω′.

We show that u is a viscosity solution of (24) in Ω := (−ϵ, ϵ).

As far as the subsolution property is cencerned, let (φ, x0) ∈ A1,−
u , x0 ∈ Ω. If

x0 ̸= 0 then there exists u′ (x0) = φ′ (x0) and so − |φ′ (x0)|+1 = − |u′ (x0)|+
1 = 0, which implies (φ, x0) ∈ B−

u .

If 0 is a strict local maximum of u− φ then for x near 0 and x ̸= 0:

|x| − φ (x) < −φ (0) ⇐⇒ 1 <
φ (x)− φ (0)

|x|

which implies
∣∣φ′

+ (0)
∣∣ ̸= ∣∣φ′

− (0)
∣∣, a contradiction. Hence (φ, x0) ∈ A1,−

u

implies x0 ̸= 0, and so (φ, x0) ∈ B−
u .

For the supersolution property, consider (φ, x0) ∈ A1,+
u . If x0 ̸= 0 then
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(φ, x0) ∈ B+
u ; if x0 = 0 then for x su�ciently near to 0 and x ̸= 0 we have:

|x| − φ (x) > −φ (0) ⇐⇒ 1 >
φ (x)− φ (0)

|x|
,

hence φ′ (0) ∈ [−1, 1] which obviously implies (φ, 0) ∈ B+
u .

This proves that u is a viscosity solution of (24) in (−1, 1). Now observe

that, according to Remark 14, −u is a viscosity solution of

|v′ (x)| − 1 = 0 ∀x ∈ (−1, 1) . (25)

This simple unidimensional example shows the complexity of the behaviour

of viscosity solutions, as it is possible to prove that u is not a viscosity

supersolution of the above equation.

Indeed, the function φ (x) = x2 is such that (φ, 0) ∈ A1,+
u but |φ′ (0)|−1 < 0,

which means (φ, 0) /∈ B+
u .

Similarly, considering the test function φ (x) = −x2, we see that −u is not a

subsolution of (24).

More in general, we have, for any K ∈ R:

i) |·|+K is a viscosity solution of (24), while it is not a viscosity supersolution

of (25)

ii) − |·| +K is a viscosity solution of (25), while it is not a viscosity subso-

lution of (24).

Hence, as far as the preservation of the viscosity solutions is concerned, multi-

plying both sides of an equation by the same negative quantity is not allowed.
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7 The value function as a viscosity solution of HJB

Turning back to the study of �nite horizon optimization problems, we see

that equation (20) can be written in the Hamilton-Jacobi form:

F (t, x, v(t, x), Dv(t, x)) = 0 ∀ (t, x) ∈ (0, T )× Rn

setting, for every (t, x, r, p) ∈ (0, T )× Rn × R× Rn+1 :

F (t, x, r, p) = −e1 • p+ sup
u∈U

{
−p •

(
0 ... 0

In

)
• b (t, x,u)− f (t, x,u)

}
.

Moreover, we can pro�tably focus on a notion that is even slightly weaker

then the notion of the latter section.

De�nition 18. A function v : [0, T ] × Rn → R is called a non -regular

viscosity subsolution [supersolution] of (HJB) -(20) if, ond only if:

for every φ ∈ C1 ([0, T )× Rn,R) and for every local maximum [minimum]

point (t0, x0) ∈ [0, T )× Rn of v − φ:

−φt (t0, x0) + sup
u∈U

{⟨−φx (t0, x0) , b (t0, x0,u)⟩ − f (t0, x0,u)} =

−φt (t0, x0) +H (t0, x0, φx (t0, x0)) ≤ 0

[≥ 0]

If v is also continuous then we say that v is a viscosity subsolution [superso-

lution] of (HJB).

Moreover, v is called a viscosity solution of (HJB) if it is both a viscosity

supersolution and a viscosity subsolution of (HJB).

The next step is to show that every (continuous) solution to Bellman's Dy-

namic Programming Equation is also a solution to (HJB) in the viscosity

sense.
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Lemma 19. i) Every solution v : [0, T )×Rn :→ R to the Bellman inequality:

∀(s, y) ∈ [0, T )× Rn : ∀s̄ ∈ [s, T ] :

v(s, y) ≤ inf
u∈Λ(s)

{ˆ s̄

s

f (t, x(t; s, y, u), u(t)) dt+ v (s̄, x(s̄; s, y, u))

}
is also a non-regular viscosity subsolution of (HJB).

ii) Every solution v : [0, T )× Rn :→ R to the Bellman inequality:

∀(s, y) ∈ [0, T )× Rn : ∀s̄ ∈ [s, T ] :

v(s, y) ≥ inf
u∈Λ(s)

{ˆ s̄

s

f (t, x(t; s, y, u), u(t)) dt+ v (s̄, x(s̄; s, y, u))

}
is also a non-regular viscosity supersolution of (HJB).

Proof. i) Let v : [0, T )×Rn → R satisfy the hypothesis, φ ∈ C1 ([0, T )× Rn,R)
and (s, y) ∈ [0, T )× Rn a local maximum point of v − φ, so that:

v (s, y)− v ≥ φ (s, y)− φ

in a neighbourhood of (s, y) . Then pick u ∈ U , set x (·) = x (·; s, y,u) and
observe that by assumption:

v (s, y)− v (s̄, x (s̄)) ≤
ˆ s̄

s

f (t, x (t) ,u) dt

for every s̄ ∈ [s, T ]. Hence, for s̄ su�ciently near to s we have:

φ (s, y)− φ (s̄, x (s̄)) ≤
ˆ s̄

s

f (t, x (t) ,u) dt

which implies, following the �rst part of the proof of Theorem (10):

−φt (s, y)− ⟨φx (s, y) , b (s, y,u)⟩ − f (s, y,u) ≤ 0
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As the argument is independent of u we can take the sup with respect to u

and reach the thesis.

ii) Let v : [0, T )× Rn → R as in the assumption. Hence:

∀ϵ > 0 : ∃uϵ ∈ Λ (s) :

v (s, y) + ϵ2 ≥
ˆ s+ϵ

s

f (t, x (t; s, y, uϵ) , uϵ (t)) dt+ v (s+ ϵ, x (s+ ϵ; s, y, uϵ))

Let xϵ := x (·; s, y, uϵ) for every ϵ > 0 and (s, y) , φ such that φ is continuously

di�erentiable in [0, T )× Rn and:

v − φ ≥ v (s, y)− φ (s, y)

over (s− δ, s+ δ)×Bn (y,R) for some δ, R > 0.

Now let ϵ̂ > 0 such that ϵ̂L (∥y∥+ 1) eϵ̂L ≤ R. Hence, remembering Lemma

(8), for every ϵ < min {δ, ϵ̂} we have:

φ (s+ ϵ, xϵ (s+ ϵ))− φ (s, y) +

ˆ s+ϵ

s

f (t, xϵ (t) , uϵ (t)) dt ≤

v (s+ ϵ, xϵ (s+ ϵ))− v (s, y) +

ˆ s+ϵ

s

f (t, xϵ (t) , uϵ (t)) dt ≤ ϵ2

Hence, since φ is di�erentiable near (s, y), for every ϵ < min {δ, ϵ̂}:

−ϵ ≤ 1

ϵ

ˆ s+ϵ

s

{
−φt (t, xϵ (t))− ⟨φx (t, xϵ (t)) , b (t, xϵ (t) , uϵ (t))⟩ − f (t, xϵ (t) , uϵ (t))

}
dt

≤ 1

ϵ

ˆ s+ϵ

s

{
−φt (t, xϵ (t)) + sup

u∈U
[⟨−φx (t, xϵ (t)) , b (t, xϵ (t) ,u)⟩ − f (t, xϵ (t) ,u)]

}
dt

≤ −φt (τϵ, xϵ (τϵ)) + sup
u∈U

[⟨−φx (τϵ, xϵ (τϵ)) , b (τϵ, xϵ (τϵ) ,u)⟩ − f (τϵ, xϵ (τϵ) ,u)]

where the second inequality is justi�ed by Remark (12), and where τϵ is the

maximum point over the interval [s, s+ ϵ].

By Remark (12) and Lemma (8) we also deduce that the right hand member
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of the last inequality tends to

−φt (s, y) + sup
u∈U

[⟨−φx (s, y) , b (s, y,u)⟩ − f (s, y,u)]

as ϵ → 0, which implies the thesis.

Corollary 20. The value function is a viscosity solution to (HJB) satisfying

v (T, x) = h(x) ∀x ∈ Rn

Proof. By de�nition (1), Theorems (3) and (5), and Lemma (19).

8 Uniqueness of the viscosity solution of HJB

Now we go through the core of this chapter, a very important result which

�compares� a viscosity subsolution to a viscosity supersolution. The result is

what one would expect, by the proof is by no means trivial.

Theorem 21 (Comparison principle for viscosity solutions of HJB).

Let v, v̂ : [0, T ]×Rn → R be a viscosity subsolution of (HJB) and a viscosity

supersolution of (HJB) respectively, satisfying:

v(T, x) = v̂ (T, x) ∀x ∈ Rn

Then v ≤ v̂ over [0, T ]× Rn.

Proof. Suppose by contradiction that the thesis is not true. Then by conti-

nuity of v and v̂ there exist a set N interior to [0, T ] × Rn and some γ̄ > 0

such that:

sup
N

{v − v̂} ≥ γ̄.
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We may assume that N is a triangle of the form:

N := {(t, x) ∈ (T − T0, T )× Rn/ ∥x∥ < L0 [t− (T − T0)]}

where 0 < T0 < T and L0 > 0 .

Then, by Theorem (11):

|H (t, x, p)−H (t, x, q)| ≤ L (1 + ∥x∥) ∥p− q∥

≤ L (1 + L0T0) ∥p− q∥ ≤ M0 ∥p− q∥ (26)

for p, q ∈ Rn, (t, x) ∈ N and M0 := max {L0, L (1 + L0T0)}.

Preliminary remark. We know that every function which is continuous over

[0, T ]×Rn is uniformly continuous over the compact subset N ⊂ [0, T ]×Rn.

Hence:

∀ϵ > 0 : ∃δ > 0 : sup

|t−s|+∥x−y∥≤δ

(t,x,s,y)∈N×N

{|v (t, x)− v (s, y)|+ |v̂ (t, x)− v̂ (s, y)|} ≤ ϵ.

Setting

∀r ≥ 0 : η (r) :=
1

2
sup

|t−s|+∥x−y∥≤r

(t,x,s,y)∈N×N

{|v (t, x)− v (s, y)|+ |v̂ (t, x)− v̂ (s, y)|},

we observe that η is positive de�ned and increasing, so that the above con-

dition implies lim
r→0+

η (r) = 0.

Moreover, since N is bounded, we can take R > 0 such that η (R) = η (R′)

for all R′ ≥ R and by monotonicity η0 := η (R) = max
[0,∞)

η.
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Now let δ, ϵ,K > 0 and ζδ ∈ C1 (R,R) such that:

K > max
(t,x,s,y)∈N×N

{v (t, x)− v̂ (s, y)}

ζδ (r) = 0 if r ≤ −δ

ζ ′δ (r) ≤ 0 if r ∈ (−δ, 0)

ζδ (r) = −K if r ≥ 0

With those elements (that is, for any �xed δ, ϵ > 0 as K depends on the prob-

lem's data) and for α, β, γ > 0 de�ne, over N ×N , the family of auxiliary

functions:

Φαβγδϵ (t, x, s, y) : = v (t, x)− v̂ (s, y)− ∥x− y∥2

α
− |t− s|2

β

+ζδ

[√
∥x∥2 + ϵ2 − L0 (t− T + T0)

]
+ζδ

[√
∥y∥2 + ϵ2 − L0 (s− T + T0)

]
+ γ (t+ s)− 2γT

each of which approximates from below the function Φ (t, x, s, y) := v (t, x)−
v̂ (s, y).

Now let (t∗, x∗, s∗, y∗) ∈ N ×N such that Φαβγδϵ attains its maximum value

overN ×N in (t∗, x∗, s∗, y∗). So this point depends on the constants α, β, γ, δ, ϵ.

We split the proof, which is quite technical, in various steps.

Step 1 . For every α, β, γ, δ, ϵ > 0, the following inequalities hold:
∥x∗ − y∗∥ ≤ √

αη0

|t∗ − s∗| ≤
√
βη0

∥x∗ − y∗∥2

α
+

|t∗ − s∗|2

β
≤ η

(√
αη0 +

√
βη0
)

In the �rst place observe that (t∗, x∗, t∗, x∗) , (s∗, y∗, s∗, y∗) ∈ N ×N because
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N ×N = N ×N ; then by maximality

Φαβγδϵ (t
∗, x∗, t∗, x∗) + Φαβγδϵ (s

∗, y∗, s∗, y∗) ≤ 2Φαβγδϵ (t
∗, x∗, s∗, y∗) ,

that is to say:

v (t∗, x∗)− v̂ (t∗, x∗) + 2ζδ

[√
∥x∗∥2 + ϵ2 − L0 (t

∗ − T + T0)

]
+ 2γt∗ − 2γT +

v (s∗, y∗)− v̂ (s∗, y∗) + 2ζδ

[√
∥y∗∥2 + ϵ2 − L0 (s

∗ − T + T0)

]
+ 2γs∗ − 2γT ≤

2v (t∗, x∗)− 2v̂ (s∗, y∗)− 2 ∥x∗ − y∗∥2

α
− 2 |t∗ − s∗|2

β
+

2ζδ

[√
∥x∗∥2 + ϵ2 − L0 (t

∗ − T + T0)

]
+

2ζδ

[√
∥y∗∥2 + ϵ2 − L0 (s

∗ − T + T0)

]
+ 2γ (t∗ + s∗)− 4γT.

This gives, by de�nition of η:

2 ∥x∗ − y∗∥2

α
+

2 |t∗ − s∗|2

β
≤ v (t∗, x∗)− v (s∗, y∗) + v̂ (t∗, x∗)− v̂ (s∗, y∗)

≤ 2η (|t∗ − s∗|+ ∥x∗ − y∗∥) ≤ 2η0

and the assertions follow easily, using the monotonicity of η for the third one.

Step 2. There exist c, d, e > 0 such that, for every α, β > 0,

Φαβcde (t
∗, x∗, s∗, y∗) ≥ γ̄

2
> 0.

Let us choose (t, x) ∈ N and c > 0 such that:
sup
N

{v − v̂} − γ̄

4
≤ v (t, x)− v̂ (t, x)

2cT0 ≤
γ̄

4
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Hence, remembering that γ̄ ≤ supN {v − v̂}:

γ̄

2
= γ̄ − γ̄

4
− γ̄

4
≤ v (t, x)− v̂ (t, x)− γ̄

4
≤ v (t, x)− v̂ (t, x)− 2cT0

< v (t, x)− v̂ (t, x) + 2c (t− T )

where the last inequality holds by de�nition of N . Observe that, since

|x| < L0 (t− T + T0), there exist e > 0 and 0 < d < L0 (t− T + T0) such

that: √
|x|2 + e2 − L0 (t− T + T0) ≤ −d

which implies

ζd

[√
|x|2 + e2 − L0 (t− T + T0)

]
= 0.

Hence for every α, β, γ > 0:

Φαβγde (t, x, t, x) = v (t, x)− v̂ (t, x) + 2γ (t− T )

which clearly proves the claim taking γ = c. Observe that the point (t, x) ∈
N depends only on the initial data and γ̄, and so does c. Moreover, the

numbers d and e depend only on (t, x). Hence the sub-family of auxiliary

functions {Φαβcde/α, β > 0} is uniquely determined by the initial data and γ̄.

Step 3. There exist r0 > 0 such that for every 0 < α, β ≤ r0, the maximum

point (t∗, x∗, s∗, y∗) of Φαβcde over N ×N belongs to N ×N .

Suppose that the assertion is false. Then there would exist two positive

and in�nitesimal sequences (αm)m∈N , (βm)m∈N such that, the corresponding

maximum points of the corresponding auxiliary functions lie in the boundary

of N ×N .
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That is to say, there is a sequence (t∗m, x
∗
m, s

∗
m, y

∗
m)n∈N ⊂ ∂ (N ×N ) such that

Φαmβmcde (t
∗
m, x

∗
m, s

∗
m, y

∗
m) ≥

γ̄

2
∀m ∈ N

But this condition implies that:|x∗
m| < L0 (t

∗
m − T + T0)

|y∗m| < L0 (s
∗
m − T + T0)

∀m ∈ N (27)

because on the contrary we would have for instance:√
∥x∗

m̄∥
2 + e2 − L0 (t

∗
m̄ − T + T0) > |x∗

m̄| − L0 (t
∗
m̄ − T + T0) ≥ 0

and so ζd

[√
∥x∗

m̄∥
2 + e2 − L0 (t

∗
m̄ − T + T0)

]
= −K by de�nition. Hence we

would obtain:

0 <
γ̄

2
≤ Φαm̄βm̄cde (t

∗
m̄, x

∗
m̄, s

∗
m̄, y

∗
m̄) ≤ v (t∗m̄, x

∗
m̄)− v̂ (s∗m̄, y

∗
m̄)−K +

+c (t∗m̄ + s∗m̄)− 2cT

< K −K + c (t∗m̄ + s∗m̄)− 2cT ≤ 0,

a contradiction. So (27) holds. As the sequence lies in ∂ (N ×N ), this

implies

∀m ∈ N : t∗m = T ∨ s∗m = T.

Observe that we can assume that (t∗m, x
∗
m, s

∗
m, y

∗
m)m∈N converges (as it lies in

a compact set), so that the last assertion, combined with Step 1, becomes: lim
m→N

t∗m = lim
m→N

s∗m = T

lim
m→N

x∗
m = lim

m→N
y∗m = z
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for some z ∈ Rn such that (T, z, T, z) ∈ ∂ (N ×N ). Hence for every m ∈ N:

0 <
γ̄

2
≤ Φαmβmcde (t

∗
m, x

∗
m, s

∗
m, y

∗
m) ≤ v (t∗m, x

∗
m)− v̂ (s∗m, y

∗
m) + c (t∗m + s∗m)− 2cT

→ v (T, z)− v̂ (T, z) + 2cT − 2cT = 0

as m → ∞, which is a contradiction. So there cannot exist positive in�nites-

imal sequences (αm)m∈N , (βm)m∈N with (t∗m, x
∗
m, s

∗
m, y

∗
m)n∈N ⊂ ∂ (N ×N ),

and the claim is proved.

As a consequence we have:

Step 4 . Call for every α, β > 0 :
(
t∗αβ, x

∗
αβ, s

∗
αβ, y

∗
αβ

)
the maximum point of

Φαβcde over N ×N . Then for every 0 < α, β ≤ r0:

2c ≤ L0 {ζ ′d (Xαβe) + ζ ′d (Yαβe)} −H

(
t∗αβ, x

∗
αβ,

2

α

(
y∗αβ − x∗

αβ

)
+ ζ ′d (Xαβe)

x∗
αβ(

x∗
αβ

)
e

)

+H

(
s∗αβ, y

∗
αβ,

2

α

(
y∗αβ − x∗

αβ

)
− ζ ′d (Yαβe)

y∗αβ(
y∗αβ
)
e

)
,

where we have set (z)e :=
√

∥z∥2 + e2, Xαβe :=
(
x∗
αβ

)
e
− L0

(
t∗αβ − T + T0

)
and Yαβe :=

(
y∗αβ
)
e
− L0

(
s∗αβ − T + T0

)
.

Set 0 < α, β ≤ r0; by Step 3
(
t∗αβ, x

∗
αβ, s

∗
αβ, y

∗
αβ

)
∈ N ×N and so

(
t∗αβ, x

∗
αβ

)
∈

N is a local maximum point for the (t, x) function:

Φαβcde

(
t, x, s∗αβ, y

∗
αβ

)
: = v (t, x)−

{
v̂
(
s∗αβ, y

∗
αβ

)
+

∥∥x− y∗αβ
∥∥2

α
+

∣∣t− s∗αβ
∣∣2

β

−ζd [(x)e − L0 (t− T + T0)]

−ζd (Yαβe)− c
(
t+ s∗αβ

)
+ 2cT

}
.
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Then being v a viscosity subsolution of (HJB), we have:

2
(
s∗αβ − t∗αβ

)
β

− L0ζ
′
d (Xαβe) + c

+H

(
t∗αβ, x

∗
αβ,

2
(
y∗αβ − x∗

αβ

)
α

+ ζ ′d (Xαβe)
x∗
αβ(

x∗
αβ

)
e

)
≤ 0 (28)

At the same time,
(
s∗αβ, y

∗
αβ

)
∈ N is a local minimum point for the (s, y)

function:

−Φαβcde

(
t∗αβ, x

∗
αβ, s, y

)
: = v̂ (s, y)−

{
v
(
t∗αβ, x

∗
αβ

)
−
∥∥y − x∗

αβ

∥∥2
α

−
∣∣s− t∗αβ

∣∣2
β

+ζd [(y)e − L0 (s− T + T0)]

+ζd (Xαβe) + c
(
t∗αβ + s

)
− 2cT

}
.

Because v̂ is a viscosity supersolution of (HJB) we get:

2
(
s∗αβ − t∗αβ

)
β

+ L0ζ
′
d (Yαβe)− c

+H

(
s∗αβ, y

∗
αβ,

2
(
y∗αβ − x∗

αβ

)
α

− ζ ′d (Yαβe)
y∗αβ(
y∗αβ
)
e

)
≥ 0 (29)

Combining (28) e (29) together, the claim is proved.

Step 5. Now let 0 < α ≤ r0, βm ↓ 0 . We can assume that the sequence(
t∗αβm

, x∗
αβm

, s∗αβm
, y∗αβm

)
m∈N ⊂ N ×N converges - else, we take a subse-

quence. Although the point
(
t∗αβm

, x∗
αβm

, s∗αβm
, y∗αβm

)
is de�ned as the maxi-

mum point of the function Φαβmcde over N ×N and by Step 3 it belongs to

N ×N , we can forget those two informations and rely only on the fact that

Step 4 holds for our α and for β = βm (for m su�ciently big).

Let (tα, xα, sα, yα) := lim
m→∞

(
t∗αβm

, x∗
αβm

, s∗αβm
, y∗αβm

)
.
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By Step 1 we have
∣∣t∗αβm

− s∗αβm

∣∣ ≤ √
βmη0 for every m ∈ N, and so

tα = sα.

Now set observe that both (Xαβme)m∈N and (Yαβme)m∈N converge to a real

number, which we call respectively Xαe, Yαe. Set, for simplicity of notation:

∀m ∈ N :
(
t∗αβm

, x∗
αβm

, s∗αβm
, y∗αβm

)
=: (t∗m, x

∗
m, s

∗
m, y

∗
m).

Now observing that (tα, xα) ∈ N , by (26), Step 4, Theorem (11) and the

continuity of ζ ′d, we have:

2c ≤ L0 {ζ ′d (Xαβme) + ζ ′d (Yαβme)} −H

(
t∗m, x

∗
m,

2

α
(y∗m − x∗

m) + ζ ′d (Xαβme)
x∗
m

(x∗
m)e

)
+H

(
s∗m, y

∗
m,

2

α
(y∗m − x∗

m)− ζ ′d (Yαβme)
y∗m

(y∗m)e

)
→ L0 {ζ ′d (Xαe) + ζ ′d (Yαe)} −H

(
tα, xα,

2

α
(yα − xα) + ζ ′d (Xαe)

xα

(xα)e

)
+H

(
tα, yα,

2

α
(yα − xα)− ζ ′d (Yαe)

yα
(yα)e

)
= L0 {ζ ′d (Xαe) + ζ ′d (Yαe)} −H

(
tα, xα,

2

α
(yα − xα) + ζ ′d (Xαe)

xα

(xα)e

)
+H

(
tα, yα,

2

α
(yα − xα)− ζ ′d (Yαe)

yα
(yα)e

)
±

H

(
tα, xα,

2

α
(yα − xα)− ζ ′d (Yαe)

yα
(yα)e

)
≤ M0 {ζ ′d (Xαe) + ζ ′d (Yαe)}+M0

∥∥∥∥ζ ′d (Xαe)
xα

(xα)e
+ ζ ′d (Yαe)

yα
(yα)e

∥∥∥∥
+L

{
1 +

∥∥∥∥ 2α (yα − xα)− ζ ′d (Yαe)
yα

(yα)e

∥∥∥∥} ∥xα − yα∥
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≤ M0 {ζ ′d (Xαe) + ζ ′d (Yαe)}+M0 {|ζ ′d (Xαe)|+ |ζ ′d (Yαe)|}

+L {1 + |ζ ′d (Yαe)|} ∥xα − yα∥+
2L

α
∥xα − yα∥2

= L {1 + |ζ ′d (Yαe)|} ∥xα − yα∥+
2L

α
∥xα − yα∥2

where the last equality hold because ζ ′d ≤ 0 over R. Because this inequality
holds for every α su�ciently small, we can take the limit for α → 0. Observe

that we can suppose that the sequence (sα, yα)α∈R ⊆ N converges, so that

Yαe = (yα)e − L0 (sα − T + T0) tends to a certain number Y as α → 0.

By Step 1 we have ∥xα − yα∥ ≤ √
αη0. Moreover, for every m ∈ N,

∥x∗
m − y∗m∥

2

α
≤ ∥x∗

m − y∗m∥
2

α
+

|t∗m − s∗m|
2

βm

≤ η
(√

αη0 +
√

βmη0

)
which gives for m → ∞, and by the continuity of η:

∥xα − yα∥2

α
≤ η (

√
αη0)

Hence:

2c ≤ L {1 + |ζ ′d (Yαe)|} ∥xα − yα∥+
2L

α
∥xα − yα∥2 → 0

as α → 0, which is a contraddiction because c has been choosen a strictly

positive number independent of α.

Corollary 22. The value function is the only viscosity solution to (HJB)

satisfying

v (T, x) = h(x) ∀x ∈ Rn

Proof. By Corollary 20 and Theorem 21.
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Part III. An in�nite-horizon

economic-growth model with

non-concave technology and static

state constraint

9 The model

9.1 Qualitative description

We assume the existence of a representative dynasty in which all members

share the same endowments and consume the same amount of a certain good.

Our goal is to describe the dynamics of the capital accumulated by each

member of the dynasty in an in�nite-horizon period and to maximize, if

possible, its intertemporal utility (considered as a function of the quantity of

good c that has been consumed). Clearly, consuming is seen as the agent's

control strategy, and the set of consumption functions (over time) will be a

superset of the set of the admissible control strategies.

First, we need a notion of instantaneous utility, depending on the consump-

tions, in order to de�ne the inter-temporal utility functional. We will assume

that instantaneous utility, which we denote by u, is a strictly increasing and

strictly concave function of the consumption path, and that it is twice contin-

uously di�erentiable. Moreover, we will assume the usual Inada's conditions,

that is to say:

lim
c→0+

u′ (c) = +∞, lim
c→+∞

u′ (c) = 0.

We will also use the following assumptions over u:

u (0) = 0, lim
c→+∞

u (c) = +∞.



9 The model 50

With this material, we can de�ne the inter-temporal utility functional, which,

as usual, must include a (exponential) discount factor expressing time pref-

erence for consumption:

U (c (·)) :=
ˆ +∞

0

e−ρ̂tentu (c (t)) dt (30)

where ρ̂ ∈ R is the rate of time preference and n ∈ R is the growth rate of

population. The number of members of the dynasty at time zero is normal-

ized to 1.

9.2 Production function and constraints

We consider the production or output, denoted by F , as a function of the

average capital of the representative dynasty, which we denote by k. First, we

assume the usual hypothesis of monotonicity, regularity and unboundedness

about the production, that is to say: F is strictly increasing and continuously

di�erentiable from R to R, and

F (0) = 0, lim
k→+∞

F (k) = +∞

where we may assume F (x) < 0 for every x ∈ (−∞, 0), as the assumption

that F is de�ned over (−∞, 0) is merely technical, as we will see in the �rst

paragraph; this way we distinguish the �admissible� values of the production

function from the ones which are not.

Next, we make some speci�c requirements. As we want to deal with a non-

monotonic marginal product of capital, we assume that, in [0,+∞), F is

�rst strictly concave, then strictly convex and then again strictly concave

up to +∞. This means that in the �rst phase of capital accumulation, the

production shows decreasing returns to scale, which become increasing from a

certain level of pro capite capital k. Then, when pro capite endowment exceed
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a threshold k > k, decreasing returns to scale characterize the production

anew.

Moreover, we ask that the marginal product in +∞ is strictly positive, so

that we can deal with endogenous growth. Observe that this limit surely

exists, as F ′ is (strictly) decreasing in a neighbourhood of +∞. Of course

the assumption is equivalent to the fact that the average product of capital

tends to a strictly positive quantity for large values of the average stock of

capital. Moreover, requiring that the marginal product has a strictly positive

lower bound is necessary to ensure a positive long-run growth rate.

As far as the agent's behaviour is concerned, the following constraints must

be satis�ed, for every time t ≥ 0:

k (t) ≥ 0

c (t) ≥ 0

i (t) + c (t) ≤ F (k (t))

k̇ (t) = i (t)

where i (t) is the per capita investment at time t. Observe that the �rst

assumption is needed in order to make the agent's optimal strategy possibly

di�erent from the case of monotonic marginal product. In fact if condition

∀t ≥ 0 : k (t) ≥ 0 was not present, then heuristically the convex range of

production function would be not relevant to establish the long-run behaviour

of economy, since every agent would have the possibility to get an amount of

resources such that he can fully exploit the increasing return; therefore only

the form of production function for large k would be relevant.

Another heuristic remark turns out to be crucial: the monotonicity of u

respect to c implies that, if c is an optimal consumption path, then the

production is completely allocated between investment and consumption,

that is to say i (t) + c (t) = F (k (t)) for every t ≥ 0. This remark, combined

with the last of the above conditions implies that the dynamics of capital
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allocation, for an initial endowment k0 ≥ 0, is described by the following

Cauchy's problem: k̇ (t) = F (k (t))− c (t) for t ≥ 0

k (0) = k0
(31)

Considering the �rst two constraints, the agent's target can be expressed the

following way: given an initial endowment of capital k0 ≥ 0, maximize the

functional in (30), when c (·) varies among measurable functions which are

everywhere positive in [0,+∞) and such that the unique solution to problem

(31) is also everywhere positive in [0,+∞); this is what is usually called a

state constraint.

A few re�ections are still necessary in order to begin the analytic work.

First, we will consider only the case when the time discount rate ρ̂ and the

population growth rate n satisfy

ρ̂− n > 0,

which is the most interesting from the economic point of view. Second, we

weaken the requirement that c is measurable and positive in [0,+∞) (in

order that c is admissible) to the requirement that c is locally integrable and

almost everywhere positive in [0,+∞).

Finally, we need another assumption about instantaneous utility u so that the

functional in (30) is �nite. To identify the best hypothesis, we temporarily

restrict our attention to the particular but signi�cant case in which u is a

concave power function and F is linear; namely:

u (c) = c1−σ, c ≥ 0

F (k) = Lk, k ≥ 0

for some σ ∈ (0, 1) and L > 0 (of course in this case F does not satisfy all
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of the previous assumptions). Using Gronwall's Lemma, it is easy to verify

that for any admissible control c (starting from an initial state k0) and for

every time t ≥ 0,
´ t

0
c (s) ds ≤ k0e

Lt. Hence, setting ρ = ρ̂− n:

U (c (·)) = lim
T→+∞

ˆ T

0

e−ρtu (c (t)) dt

= lim
T→+∞

e−ρT

ˆ T

0

u (c (s)) ds+ lim
T→+∞

ρ

ˆ T

0

e−ρt

ˆ t

0

u (c (s)) dsdt.

Hence using Jensen inequality, we reduce the problem of the convergence of

U (c (·)) to the problem of the convergence of

ˆ +∞

1

te−ρteL(1−σ)tdt

which is equivalent to the condition L (1− σ) < ρ. Perturbing this clause by

the addition of a positive quantity ϵ0 we get (L+ ϵ0) (1− σ) < ρ−ϵ0 which is

in its turn equivalent to the requirement that the function eϵ0te−ρt
(
e(L+ϵ0)t

)1−σ
=

eϵ0te−ρtu
(
e(L+ϵ0)t

)
tends to 0 as t → +∞.

Turning back to the general case, we are suggested to assume precisely the

same condition, taking care of de�ning the constant L as limk→+∞ F ′ (k)

(which has already been assumed to be strictly positive).

9.3 Quantitative description

Hence the mathematical frame of the economic problem can be de�ned pre-

cisely as follows:

De�nition 23. For every k0 ≥ 0 and for every c ∈ L1
loc ([0,+∞) ,R):

k (·; k0, c) is the only solution to the Cauchy's problemk (0) = k0

k̇ (t) = F (k (t))− c (t) t ≥ 0
(32)
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in the unknown k, where F : R → R has the following properties:

F ∈ C1 (R,R)

F ′ > 0 in R

F (0) = 0

lim
x→+∞

F (x) = +∞

F is concave over [0, k] ∪
[
k,+∞

)
for some 0 < k < k

F is convex over
[
k, k
]

lim
x→+∞

F ′ (x) > 0

Moreover, we set L := lim
x→+∞

F ′ (x).

De�nition 24. Let k0 ≥ 0 .

The set of admissible consumption strategies with initial capital k0 is

Λ (k0) :=
{
c ∈ L1

loc ([0,+∞) ,R) /c ≥ 0 almost everywhere, k (·; k0, c) ≥ 0
}

The intertemporal utility functional U (·; k0):Λ (k0) → R is

U (c; k0) :=

ˆ +∞

0

e−ρtu (c (t)) dt ∀c ∈ Λ (k0)

where ρ > 0, and the function u : [0,+∞) → R, representing instantaneous
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utlity, satis�es:

u ∈ C2 ((0,+∞) ,R) ∩ C0 ([0,+∞) ,R)

u (0) = 0, lim
x→+∞

u (x) = +∞

u is strictly increasing and strictly concave

lim
x→0+

u′ (x) = +∞, lim
x→+∞

u′ (x) = 0

∃ϵ0 > 0 : lim
t→+∞

eϵ0te−ρtu
(
e(L+ϵ0)t

)
= 0

(33)

The value function V : [0,+∞) → R is

V (k0) := sup
c∈Λ(k0)

U (c; k0) ∀k0 ≥ 0

Remark 25. The last condition in (33) implies:

ˆ +∞

0

e−ρtu
(
e(L+ϵ0)t

)
dt < +∞

ˆ +∞

0

te−ρtu
(
e(L+ϵ0)t

)
dt < +∞

as

te−ρtu
(
e(L+ϵ0)t

)
= e−

ϵ0
2
t · ω (t)

where ω (t) = te−
ϵ0
2
t · eϵ0te−ρtu

(
e(L+ϵ0)t

)
→ 0 for t → +∞.
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10 Preliminary results

Remark 26. Set

M := max
[0,+∞)

F ′ = max
{
F ′ (0) , F ′ (k̄)} .

Recalling that F is strictly increasing with F (0) = 0, we see that, for any

x, y ∈ [0,+∞):

|F (x)− F (y)| ≤ M |x− y|

F (x) ≤ Mx

In particular F is Lipschitz-continuous, and so is the dynamics

(x, c) → F (x)− c ∀ (x, c) ∈ [0,+∞)× R

uniformly respect to c.

This implies that the Cauchy's problem (32) admits a unique global solution

(that is to say, de�ned on [0,+∞)).

Indeed the mapping

F (k) (t) := k0 +

ˆ t

0

F (k (s)) ds−
ˆ t

0

c (s) ds

is a contraction on the space X :=
(
C0
([

0, 1
1+M

])
, ∥·∥∞

)
, and so admits a

unique �xed point k (·; k0, c). Considering the mapping

F (k) (t) := k

(
1

1 +M
; k0, c

)
+

ˆ t

1
1+M

F (k (s)) ds−
ˆ t

1
1+M

c (s) ds

on the space X ′ :=
(
C0
([

1
1+M

, 2
1+M

])
, ∥·∥∞

)
, one can extend k (·; k0, c) to

the interval
[

1
1+M

, 2
1+M

]
, and so on.



10 Preliminary results 57

Lemma 27. Let k1, k2 two solutions of (32), both de�ned in J ⊆ R. Then

the function

h (t) :=


F (k1 (t))− F (k2 (t))

k1 (t)− k2 (t)
if k1 (t) ̸= k2 (t)

F ′ (k1 (t)) if k1 (t) = k2 (t)

is continuous over J .

Proof. The continuity of h in the points where k1 ̸= k2 is obvious, because

k1, k2 and F ′ are continuous in J .

Suppose that k1 (t0) = k2 (t0) for some t0 ∈ J. If k1 = k2 in a neighbourhood

of t0, then

lim
t→t0

h (t) = lim
t→t0

F ′ (k1 (t)) = F ′ (k1 (t0)) = h (t0)

by the continuity of F ′ and k1.

If there not exists any neighbourhood of t0 in which k1 = k2, take (tn)n≥0 ⊆ J

such that tn → t0 and k1 (tn) ̸= k2 (tn) for every n ∈ N. Then by Lagrange's

theorem

lim
t→t0

h (t) = lim
n→+∞

h (tn) = lim
n→+∞

F (k1 (tn))− F (k2 (tn))

k1 (tn)− k2 (tn)
= lim

n→+∞
F ′ (ξn)

and this limit is equal to F ′ (k1 (t0)) = h (t0), because ξn is intermediate

between k1 (tn) and k2 (tn) for any n ∈ N, and by the continuity of the orbits

k1 and k2:

lim
n→+∞

k1 (tn) = lim
n→+∞

k2 (tn) = k1 (t0) .
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Corollary 28 (Comparison principle for the orbits). Let k1, k2 ≥ 0,

c1, c2 ∈ L1
loc ([0,+∞) ,R), T0 ≥ 0 and T1 ∈ (T0,+∞]. Assume

c1 ≤ c2 almost everywhere in [T0, T1]

k (T0; k1, c1) ≥ k (T0; k2, c2) .

Then k (t; k1, c1) ≥ k (t; k2, c2) for every t ∈ [T0, T1].

Proof. Set κ1 := k (·; k1, c1), κ2 := k (·; k2, c2) and h : [T0, T1] → R as de�ned

in Lemma 27. Hence by de�nition of h and by (32) , we have for every

t ∈ [T0, T1]:

F (κ1 (t))− F (κ2 (t)) = h (t) [κ1 (t)− κ2 (t)] ,

κ̇1 (t)− κ̇2 (t) = F (κ1 (t))− F (κ2 (t)) + c2 (t)− c1 (t)

which implies

κ̇1 (t)− κ̇2 (t) = h (t) [κ1 (t)− κ2 (t)] + c2 (t)− c1 (t) ∀t ∈ [T0, T1] .

Since h is measurable by Lemma 27, we can multiply both sides by the

continuous function t → exp
(
−
´ t
T0
h (s) ds

)
:

d

dt

{
[κ1 (t)− κ2 (t)] e

−
´ t
T0

h(s)ds
}
= [c2 (t)− c1 (t)] e

−
´ t
T0

h(s)ds ∀t ∈ [T0, T1]

which implies, integrating between T0 and any t ∈ [T0, T1]:

[κ1 (t)− κ2 (t)] e
−
´ t
T0

h
= κ1 (T0)− κ2 (T0) +

ˆ t

T0

[c2 (s)− c1 (s)] e
−
´ s
T0

h ≥ 0

where the last inequality holds by the assumptions over c1, c2, κ1 and κ2,

and obviously implies the thesis.
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Remark 29. The above argument also proves that the implication

k (T0; k1, c1) > k (T0; k2, c2) =⇒ ∀t ∈ [T0, T1] : k (t; k1, c1) > k (t; k2, c2)

holds when c1 ≤ c2 almost everywhere in [T0, T1].

Lemma 30. There exists a function g : (0,+∞) → (0,+∞) which is convex,

decreasing and such that

g (x) ≤ u′ (x) ∀x > 0.

Proof. Let

Σu′ :=
{
(x, y) ∈ (0,+∞)2 /y ≥ u′ (x)

}
Ku′ :=

∩{
K ∈ P

(
R2
)
/K = K, K is convex, K ⊇ Σu′

}
.

In particular Ku′ is a closed-convex superset of Σu′ . Observe that, for any

x > 0, the function Hx (y) := (x, y) belongs to C0 (R,R2), so any set of the

form

{y ≥ 0/ (x, y) ∈ Ku′} = H−1
x (Ku′)

∩
[0,+∞)

is closed in R, and consequently it has a minimum element. Now de�ne

∀x > 0 : g (x) := min {y ≥ 0/ (x, y) ∈ Ku′} .

i) This de�nition implies that for every (x, y) ∈ Ku′ , g (x) ≤ y; hence

g (x) ≤ u′ (x) ∀x > 0

because for any x > 0, (x, u′ (x)) ∈ Σu′ ⊆ Ku′ .

ii) In the second place, g is convex in (0,+∞). Let x0, x1 > 0 and λ ∈ (0, 1).
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By de�nition of g, (x0, g (x0)) , (x1, g (x1)) ∈ Ku′ , which is a convex set. Hence

(1− λ) (x0, g (x0)) + λ (x1, g (x1)) ∈ Ku′ .

By the �rst property in i), this implies

g ((1− λ)x0 + λx1) ≤ (1− λ) g (x0) + λg (x1) .

iii) g is decreasing. Indeed, take 0 < x0 < x1. By ii) and by de�nition of

convexity, for every n ∈ N:

g (n (x1 − x0) + x0) ≥ n [g (x1)− g (x0)] + g (x0) .

Hence by the assumptions over u and by i):

0 = lim
n→+∞

u′ (n (x1 − x0) + x0) ≥ lim sup
n→+∞

g (n (x1 − x0) + x0)

≥ lim
n→+∞

n [g (x1)− g (x0)] + g (x0)

which implies g (x1) ≤ g (x0).

iv) Observe that the de�nition of g does not exclude that g (x) = 0 for some

x > 0. Indeed we show that g > 0 in (0,+∞).

Fix x > 0, and consider the closed-convex aproximation of Σu′

Kx :=

{
(t, y) ∈ [0, x]× [0,+∞) /y ≥

min[0,x] u
′

x
(x− t)

}∪
[x,+∞)×[0,+∞) .

By construction Ku′ ⊆ Kx which implies (t, g (t)) ∈ Kx for any t > 0. In

particular, for every t ∈ (0, x):

g (t) ≥
min[0,x] u

′

x
(x− t) > 0

because u′ > 0. This is precisely the fact that allows us to repeat this
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construction for every x > 0, which ensures that g > 0 in (0,+∞).

Remark 31. The function h de�ned in Lemma 27 satis�es

|h| ≤ M.

where M is de�ned as in Remark 26.

Remark 32. Let k0 ≥ 0 and c ∈ Λ (k0). Then, for every t ≥ 0:

k (t; k0, c) ≤ k0e
Mt

ˆ t

0

c (s) ds ≤ k0e
Mt

Indeed, by Remark 26 and remembering that c ≥ 0, we have, for every t ≥ 0,

k̇ (t; k0, c) ≤ Mk (t; k0, c) - which implies by Corollary 28:

k (t; k0, c) ≤ k0e
Mt ∀t ≥ 0.

Now integrating both sides of the state equation, again by Remark 26 and

by the fact that k (·; k0, c) ≥ 0 we see that, for every t ≥ 0:

ˆ t

0

c (s) ds = k0 − k (t; k0, c) +

ˆ t

0

F (k (s; k0, c)) ds

≤ k0 +M

ˆ t

0

k (s; k0, c) ds

≤ k0 +Mk0

ˆ t

0

eMsds = k0e
Mt.
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Lemma 33. There exists a function N : (0,+∞)2 → (0,+∞), increasing in

both variables, such that:

for every (k0, T ) ∈ (0,+∞)2 and every c ∈ Λ (k0), there exists a control

function cT ∈ Λ (k0) satisfying

U
(
cT ; k0

)
≥ U (c; k0)

cT = c ∧N (k0, T ) almost everywhere in [0, T ]

In particular, cT is bounded above, in [0, T ], by a quantity which does not

depend on the original control c, but only on T and on the initial status k0.

Proof. Let g be the function de�ned in Lemma 30 and β :=
log(1+M)

M
. De�ne,

for every (k0, T ) ∈ (0,+∞)2 :

α (k0, T ) := βe−ρ(T+β)g

[
k0

(
eM(T+β)

β
+ eMT

)]
N (k0, T ) := inf

{
Ñ > 0/∀N ≥ Ñ : u′ (N) < α (k0, T )

}
.

In the �rst place, N (k0, T ) ̸= +∞, because α (k0, T ) > 0 for every k0 > 0,

T > 0 and limN→+∞ u′ (N) = 0.

In the second place, u′ ((0,+∞)) = (0,+∞), which implies N (k0, T ) > 0:

otherwise, since (u′)−1(α (k0, T )) > 0, there wolud exist N > 0 such that

N < (u′)
−1

(α (k0, T ))

u′ (N) < α (k0, T )

which is absurd because u′ is decreasing; hence the quantity u′ (N (k0, T )) is

well de�ned. Moreover by the continuity of u′,

u′ (N (k0, T )) ≤ α (k0, T ) . (34)
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The function N (·, ·) is also increasing in both variables, because α (·, ·) is

decreasing in both variables and u′ is decreasing.

Indeed, for k0 ≤ k1 and for a �xed T > 0, suppose that N (k1, T ) < N (k0, T ).

Then by de�nition of in�mum we could choose Ñ ∈ [N (k1, T ) , N (k0, T ))

such that u′
(
Ñ
)
< α (k1, T ), which implies

u′
(
Ñ
)
< α (k0, T )

by the monotonicity of α. But since Ñ > 0, Ñ < N (k0, T ) there also exists

N ≥ Ñ such that u′ (N) ≥ α (k0, T ) which implies, by the monotonicity of

u′,

u′
(
Ñ
)
≥ α (k0, T ) ,

a contradiction. With an analogous argument we prove that N (·, ·) is in-

creasing in the second variable.

Now let k0, T > 0 and c ∈ Λ (k0) as in the hypothesis. If c ≤ N (k0, T ) almost

everywhere in [0, T ], then de�ne cT := c. If, on the contrary, c > N (k0, T )

in a non-negligible subset of [0, T ], then de�ne:

cT (t) :=


c (t) ∧N (k0, T ) if t ∈ [0, T ]

c (t) + IT if t ∈ (T, T + β]

c (t) if t > T + β

where IT :=
´ T

0
e−ρt (c (t)− c (t) ∧N (k0, T )) dt. Observe that by Remark

32:

0 < IT ≤
ˆ T

0

(c (t)− c (t) ∧N (k0, T )) dt

≤
ˆ T

0

c (t) dt

≤ k0e
MT (35)
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In order to prove the admissibility of such control function, we compare the

orbit k := k (·; k0, c) to the orbit kT := k
(
·; k0, cT

)
. In the �rst place, observe

that by Corollary 28 and by de�nition of cT :

kT (t) ≥ k (t) ∀t ∈ [0, T ] (36)

Now by the state equation, we have:

k̇T − k̇ = F
(
kT
)
− F (k) + c− cT . (37)

Set for every t ≥ 0:

h (t) :=


F(kT (t))−F (k(t))

kT (t)−k(t)
if kT (t) ̸= k (t)

F ′ (k (t)) if kT (t) = k (t)

Hence by (37)

k̇T (t)− k̇ (t) = h (t)
[
kT (t)− k (t)

]
+ c (t)− cT (t) ∀t ≥ 0.

By Lemma 27, the function h is continuous over its de�nition domain, so

this is a typical linear equation with measurable coe�cient of degree one,

satis�ed by kT −k. Hence, multiplying both sides by the continuous function

t → exp
(
−
´ t

0
h (s) ds

)
, we obtain:

d

dt

{[
kT (t)− k (t)

]
e−
´ t
0 h(s)ds

}
=
[
c (t)− cT (t)

]
e−
´ t
0 h(s)ds ∀t ≥ 0

which implies, integrating between 0 and any t ≥ 0:

kT (t)− k (t) =

ˆ t

0

[
c (s)− cT (s)

]
e
´ t
s hds (38)
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Now observe that

h ≤ M over [0,+∞)

h ≥ 0 over [0, T ] ,

by (36) and the monotonicity of F . Set t ∈ (T, T + β]; then by (38):

kT (t)− k (t) =

ˆ T

0

[c (s)− c (s) ∧N (k0, T )] e
´ t
s hds− IT ·

ˆ t

T

e
´ t
s hds

≥
ˆ T

0

[c (s)− c (s) ∧N (k0, T )] ds− IT ·
ˆ t

T

eM(t−s)ds

≥
ˆ T

0

e−ρs [c (s)− c (s) ∧N (k0, T )] ds− IT ·
ˆ T+β

T

eM(T+β−s)ds

= IT

(
1− eMβ − 1

M

)
= 0 (39)

This also implies, by Corollary 28 and by de�nition of cT ,

kT (t) ≥ k (t) ∀t ≥ T + β

Such inequality, together with (36) and (39), gives us the general inequality

kT (t) ≥ k (t) ≥ 0 ∀t ≥ 0.

This implies, associated with the obvious fact that cT ≥ 0 almost everywhere

in [0,+∞), that cT ∈ Λ (k0).

Now we prove the �optimality� property of cT respect to c. By the concavity
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of u, and setting N := N (k0, T ) for simplicity of notation, we have:

U (c; k0)− U
(
cT ; k0

)
=

ˆ +∞

0

e−ρt
[
u (c (t))− u

(
cT (t)

)]
dt

=

ˆ
[0,T ]∩{c≥N}

e−ρt [u (c (t))− u (c (t) ∧N)] dt

+

ˆ T+β

T

e−ρt [u (c (t))− u (c (t) + IT )] dt

≤
ˆ
[0,T ]∩{c≥N}

e−ρtu′ (c (t) ∧N) [c (t)− c (t) ∧N ] dt

−IT

ˆ T+β

T

e−ρtu′ (c (t) + IT ) dt

= u′ (N)

ˆ T

0

e−ρt [c (t)− c (t) ∧N ] dt

−IT

ˆ T+β

T

e−ρtu′ (c (t) + IT ) dt

= IT

[
u′ (N)−

ˆ T+β

T

e−ρtu′ (c (t) + IT ) dt

]
(40)

Now we exhibit a certain lower bound wich is independent on the particular

control function c. By Jensen inequality, by Lemma 30 and by (35), we have:

ˆ T+β

T

e−ρtu′ (c (t) + IT ) dt ≥
ˆ T+β

T

e−ρtg (c (t) + IT ) dt

≥ e−ρ(T+β)

ˆ T+β

T

g (c (t) + IT ) dt

≥ βe−ρ(T+β)g

(
1

β

ˆ T+β

T

[c (t) + IT ] dt

)
≥ βe−ρ(T+β)g

(
1

β

ˆ T+β

0

c (t) dt+ IT

)
≥ βe−ρ(T+β)g

[
k0

(
eM(T+β)

β
+ eMT

)]
= α (k0, T ) .
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Hence by (34) and (40):

U (c; k0)− U
(
cT ; k0

)
≤ IT

[
u′ (N (k0, T ))−

ˆ T+β

T

e−ρtu′ (c (t) + IT ) dt

]
≤ IT [u′ (N (k0, T ))− α (k0, T )] ≤ 0.

Lemma 34. Let 0 < k0 < k1 and c ∈ Λ (k0). Then there exists a control

function ck1−k0 ∈ Λ (k1) such that

U
(
ck1−k0 ; k1

)
− U (c; k0) ≥ u′ (N (k0, k1 − k0) + 1)

ˆ k1−k0

0

e−ρtdt

where N is the function de�ned in Lemma 33.

Proof. Fix k0, k1 and c as in the hypothesis and take ck1−k0 as in Lemma 33

(where it is understood that T = k1 − k0).Then de�ne:

ck1−k0 (t) :=

ck1−k0 (t) + 1 if t ∈ [0, k1 − k0)

ck1−k0 (t) if t ≥ k1 − k0

In the �rst place we prove that ck1−k0 ∈ Λ (k1), showing that

k := k
(
·; k1; ck1−k0

)
> k

(
·; k0, ck1−k0

)
=: k (41)

over (0,+∞). Suppose by contradiction that this is not true, and take τ :=

inf {t > 0/k (t) ≤ k (t)}. Then by the continuity of the orbits, k (τ) ≤ k (τ),

which implies τ > 0. Considering the orbits as solutions to an integral

equation we have:

k (τ) = k0 +

ˆ τ

0

F (k (t)) dt−
ˆ τ

0

ck1−k0 (t) dt
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k (τ) = k1 +

ˆ τ

0

F (k (t)) dt−
ˆ τ

0

ck1−k0 (t) dt−min {τ, k1 − k0} .

Hence

0 ≥ k (τ)− k (τ) = k1 − k0 +

ˆ τ

0

[F (k (t))− F (k (t))] dt−min {τ, k1 − k0}

≥
ˆ τ

0

[F (k (t))− F (k (t))] dt

By the de�nition of τ and the strict monotonicity of F , this quantity must

be strictly positive, which is absurd. Hence

k
(
·; k1; ck1−k0

)
> k

(
·; k0, ck1−k0

)
≥ 0 in [0,+∞)

ck1−k0 ≥ ck1−k0 ≥ 0 a.e. in [0,+∞)

which implies ck1−k0 ∈ Λ (k0).

In the second place, remembering the properties of ck1−k0 given by Lemma

33, we have

U
(
ck1−k0 ; k1

)
− U (c; k0) ≥ U

(
ck1−k0 ; k1

)
− U

(
ck1−k0 ; k0

)
=

ˆ +∞

0

e−ρt
[
u
(
ck1−k0 (t)

)
− u

(
ck1−k0 (t)

)]
dt

ˆ k1−k0

0

e−ρt
[
u
(
ck1−k0 (t) + 1

)
− u

(
ck1−k0 (t)

)]
dt

≥
ˆ k1−k0

0

e−ρtu′ (ck1−k0 (t) + 1
)
dt

≥ u′ (N (k0, k1 − k0) + 1)

ˆ k1−k0

0

e−ρtdt

which concludes the proof.

Remark 35. In the previous Lemma, the property (41) can also be proved

with the �comparison technique�, like we did for the admissibility of cT in

Lemma 33.
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More generally, it can be proved that

k (·; k1, cH) > k (·; k0, c)

where k1 > k0 ≥ 0, c ∈ L1
loc ([0,+∞) ,R) and

cH (t) :=

c (t) +H if t ∈ [0, δH)

c (t) if t ≥ δH

and δH > 0 satisfying δH ·H ≤ k1 − k0.

Indeed, set kH := k (·; k1, cH) and k := k (·; k0, c) and suppose by contradic-

tion that −∞ < inf {t > 0/kH (t) ≤ k (t)} =: τ . Then for a suitable, positive

continuous function h : [0,+∞) → R, the following equality holds:

kH (τ)− k (τ) = e
´ τ
0 h

[
k1 − k0 +

ˆ τ

0

(c (s)− cH (s)) e−
´ s
0 hds

]
.

Moreover τ ≤ δH , because on the contrary by de�nition of in�mum we would

have kH > k in [0, δH ]; then remembering Remark 29 and the de�nition of

cH we would conclude that kH > k everywhere in [0,+∞), which contradicts

τ > −∞. Then the above equality implies

kH (τ)−k (τ) > k1−k0−H

ˆ τ

0

e−
´ s
0 hds > k1−k0−τH ≥ k1−k0−δHH ≥ 0.

At the same time kH (τ) ≤ k (τ) by the continuity of kh and k and by

de�nition of in�mum (in fact the equality holds, again by continuity); hence

we have reached the desired contradiction.

Now we state a simple characterisation of the admissible constant controls.

Proposition 36. Let k0, c ≥ 0. Then

i) k (·; k0, F (k0)) ≡ k0

ii) the function constantly equal to c is admissible at k0 (which we write
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c ∈ Λ (k0)) if, and only if

c ∈ [0, F (k0)] .

In particular the null function is admissible at any initial state k0 ≥ 0.

Proof. i) By the uniqueness of the orbit.

ii)(⇐=) In the �rst place, observe that F (k0) ∈ Λ (k0), by i). In the second

place, assume c ∈ [0, F (k0)) and set k := k (·; k0, c). Hence

k̇ (0) = F (k0)− c > 0

which means, by the continuity of k̇, that we can �nd δ > 0 such that k is

strictly increasing in [0, δ]. In particular k̇ (δ) = F (k (δ)) − c > F (k0) − c

because F is strictly increasing too. By the fact that k̇ (δ) > 0 we see that

there exists δ̂ > δ such that k is strictly increasing in
[
0, δ̂
]
- and so on.

Hence k is strictly increasing over [0,+∞) and in particular k ≥ 0. This

shows that c ∈ Λ (k0).

(=⇒) Suppose that c > F (k0) and set again k := k (·; k0, c). Then

k̇ (0) = F (k0)− c < 0

so that we can �nd δ > 0 such that k is strictly decreasing over [0, δ], and

k̇ (δ) = F (k (δ)) − c < F (k0) − c < 0. Hence one can arbitrarily extend

the neighbourhood of 0 in which k̇ is strictly less than the strictly negative

constant F (k0)− c, which implies that

lim
t→+∞

k (t) = −∞.

Hence k cannot be everywhere-positive and c /∈ Λ (k0).
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Corollary 37. The set sequence (Λ (k))k≥0 is strictly increasing, that is:

Λ (k0) ( Λ (k1)

for every 0 ≤ k0 < k1.

Proof. For every c ∈ Λ (k0), k (·; k0, c) ≤ k (·; k1, c) for Corollary 28, which

implies the second orbit being positive, and so c ∈ Λ (k1).

On the other hand, by Proposition 36 and by the strict monotonicity of F , the

constant control ĉ ≡ F
(
k̂
)
belongs to Λ (k1)\Λ (k0) for any k̂ ∈ (k0, k1].

11 Basic properties of the value function

Now we deal with the �rst problem one has to solve in order to develop the

theory: the good de�nition of the value function. We start setting a result

which is analogous to the one we cleared up in Remark 31, and which also

follows from a certain sublinearity property of the production function F .

Remark 38. Set M0, M̂ ≥ 0 such that:

∀x ≥ M0 : F (x) ≤ (L+ ϵ0) x

M̂ := max
[0,M0]

F.

(which is possible because limx→+∞
F (x)
x

= L). Hence, for every x ≥ 0:

F (x) ≤ (L+ ϵ0) x+ M̂

Remark 39. Since u is a concave function satisfying u (0) = 0, u is sub-

additive over [0,+∞) and satis�es:

∀x > 0 : ∀K > 1 : u (Kx) ≤ Ku (x)
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Lemma 40. Let k0 ≥ 0, and c ∈ Λ (k0). Hence, setting M (k0) := 1 +

max
{
(L+ ϵ0) k0, M̂

}
:

i) ∀t ≥ 0 :

ˆ t

0

c (s) ds ≤ tM (k0)
[
1 + e(L+ϵ0)t

]
+

M (k0)

L+ ϵ0

ii) lim
t→+∞

e−ρt

ˆ t

0

u (c (s)) ds = 0

iii) U (c; k0) = ρ

ˆ +∞

0

e−ρt

ˆ t

0

u (c (s)) dsdt ≤ γ (k0)

where γ (k0) is a �nite quantity depending on k0 and on the problem's data.

Proof. i) Set κ := k (·; k0, c) and M (k0) as in the hypothesis. Observe that,

by Remark 38, for every x ≥ 0:

F (x) ≤ (L+ ϵ0) x+M (k0) .

Fix t ≥ 0; by the state equation, we have for any s ∈ [0, t]

κ (s) ≤ k0 + sM (k0) + (L+ ϵ0)

ˆ s

0

κ (τ) dτ

which implies by Lemma 2:

κ (s) ≤ [k0 + sM (k0)] e
(L+ϵ0)s ∀s ∈ [0, t]
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So

ˆ t

0

(L+ ϵ0)κ (s) ds ≤ k0 (L+ ϵ0)

ˆ t

0

e(L+ϵ0)sds+M (k0) (L+ ϵ0)

ˆ t

0

s · e(L+ϵ0)sds

= k0e
(L+ϵ0)t − k0 + tM (k0) e

(L+ϵ0)t − M (k0)

(L+ ϵ0)
e(L+ϵ0)t +

M (k0)

(L+ ϵ0)

= tM (k0) e
(L+ϵ0)t +

[
k0 −

M (k0)

(L+ ϵ0)

]
e(L+ϵ0)t +

M (k0)

(L+ ϵ0)
− k0

≤ tM (k0) e
(L+ϵ0)t +

M (k0)

(L+ ϵ0)
− k0

Hence, again by the state equation, for every t ≥ 0:

ˆ t

0

c (s) ds = k0 − κ (t) +

ˆ t

0

F (κ (s)) ds

≤ k0 + tM (k0) +

ˆ t

0

(L+ ϵ0)κ (s) ds

≤ tM (k0)
[
1 + e(L+ϵ0)t

]
+

M (k0)

(L+ ϵ0)
.

which proves the �rst assertion.

ii) In the second place, it follows by Jensen inequality, the monotonicity of u

and Remark 39, that for every t ≥ 0:

0 ≤ e−ρt

ˆ t

0

u (c (s)) ds ≤ te−ρtu

(´ t
0
c (s) ds

t

)

≤ te−ρtu

(
M (k0)

[
1 + e(L+ϵ0)t

]
+

M (k0)

t (L+ ϵ0)

)
≤ te−ρt

{
u (M (k0)) +M (k0)u

(
e(L+ϵ0)t

)
+

u

(
M (k0)

t (L+ ϵ0)

)}
;

observe that this quantity tends to 0 as t → +∞, particulary by the last
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condition assumed in (33) about u; so also the second claim is proven.

Finally, integrating by parts, and using ii)

U (c; k0) =

ˆ +∞

0

e−ρtu (c (t)) dt

= lim
T→+∞

{
e−ρT

ˆ T

0

u (c (s)) ds+ ρ

ˆ T

0

e−ρt

ˆ t

0

u (c (s)) dsdt

}

= ρ

ˆ +∞

0

e−ρt

ˆ t

0

u (c (s)) dsdt

≤ ρ

ˆ +∞

0

te−ρt

{
u (M (k0)) +M (k0)u

(
e(L+ϵ0)t

)
+

u

(
M (k0)

t (L+ ϵ0)

)}
dt

≤ ρu (M (k0))

ˆ +∞

0

te−ρtdt+ ρM (k0)

ˆ +∞

0

te−ρtu
(
e(L+ϵ0)t

)
dt

+ρu

(
M (k0)

L+ ϵ0

){ˆ 1

0

e−ρtdt+

ˆ +∞

1

te−ρtdt

}
Now it is su�cient to observe that by Remark 25 this upper bound is �nite

and set it equal to γ (k0).

Corollary 41. The value function V : [0,+∞) → R is well-de�nite; that is,

for every k0 ≥ 0, V (k0) < +∞.

Proof. Take k0 ≥ 0 and set γ (k0) as in Lemma 40. Hence:

V (k0) = sup
c∈Λ(k0)

U (c; k0) ≤ γ (k0) < +∞.
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Theorem 42 (Asimptotic properties of the value function ). The value

function V : [0,+∞) → R satis�es:

i) lim
k→+∞

V (k) = +∞

ii) lim
k→+∞

V (k)

k
= 0

iii) lim
k→0

V (k) = V (0) = 0

Proof. i) For every k0 ≥ 0 the constant control F (k0) is admissible at k0 by

Proposition 36; hence

V (k0) ≥ U (F (k0) ; k0) =
u (F (k0))

ρ
→ +∞

as k0 → +∞, by the assumptions over u and F .

ii) Set M̂ > 0 as in Remark 38 and k0 > 0 such that:

k0 >
1

L+ ϵ0
M̂ (42)

Hence, for every x > 0:

F (x) ≤ (L+ ϵ0) (x+ k0) (43)

By reasons that will be clear later, suppose also that:

k0 >
1

L+ ϵ0

Observe that the proof of Lemma 40, i) does not require M (k0) ≥ 1, but

only M (k0) ≥ M̂ ; hence (42) and (43) imply that the property in Lemma
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40, i) holds for M (k0) = k0 (L+ ϵ0) - which means that:

∀t ≥ 0 :

ˆ t

0

c (s) ds ≤ k0 + tk0 (L+ ϵ0)
[
1 + e(L+ϵ0)t

]
. (44)

In particular

∀t ≥ 1 :

´ t

0
c (s) ds

t
≤ k0 + k0 (L+ ϵ0) + k0 (L+ ϵ0) e

(L+ϵ0)t. (45)

Now set

Jc (α, β) :=

ˆ β

α

te−ρtu

(´ t

0
c (s) ds

t

)
dt (46)

and �x N > 0 .

We provide three di�erent estimates, over Jc (0, 1), Jc (1, N) and Jc (N,+∞),

using Remark 39.

In the �rst place, we have by (44):

Jc (0, 1) ≤
ˆ 1

0

te−ρt1

t
u

(ˆ 1

0

c (s) ds

)
dt

≤ u
[
k0
(
1 + (L+ ϵ0)

(
1 + e(L+ϵ0)

))] 1− e−ρ

ρ

≤ u (k0)
1− e−ρ

ρ

[
1 + (L+ ϵ0)

(
1 + e(L+ϵ0)

)]
.
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Moreover, by (45):

Jc (1, N) ≤
ˆ N

1

te−ρtu
(
k0 + k0 (L+ ϵ0) + k0 (L+ ϵ0) e

(L+ϵ0)t
)
dt

≤ u (k0 + k0 (L+ ϵ0))

ˆ N

1

te−ρtdt+ u (k0 (L+ ϵ0))

ˆ N

1

te−ρte(L+ϵ0)tdt

≤ u [k0 (1 + L+ ϵ0)]
(
1 + e(L+ϵ0)N

)ˆ N

1

te−ρtdt

= u [k0 (1 + L+ ϵ0)]
(
1 + e(L+ϵ0)N

)(e−ρ −Ne−ρN

ρ
− e−ρN − e−ρ

ρ2

)
≤ u (k0) (1 + L+ ϵ0)

(
1 + e(L+ϵ0)N

)(e−ρ

ρ
+

e−ρ

ρ2

)
.

Finally, remembering that k0 (L+ ϵ0) > 1,

Jc (N,+∞) ≤
ˆ +∞

N

te−ρtu
(
k0 + k0 (L+ ϵ0) + k0 (L+ ϵ0) e

(L+ϵ0)t
)
dt

≤ u (k0 + k0 (L+ ϵ0))

ˆ +∞

N

te−ρtdt+ k0 (L+ ϵ0)

ˆ +∞

N

te−ρtu
(
e(L+ϵ0)t

)
dt

= u [k0 (1 + L+ ϵ0)]
e−ρN (ρN + 1)

ρ2
+

+k0 (L+ ϵ0)

ˆ +∞

N

e−
ϵ0
2
tω (t) dt,

where ω is the in�nitesimal function we de�ned in Remark 25. Hence, if N

is choosen such that ω (t) ≤ 1 for t ≥ N (so that the choice of N depends

only on L, ϵ0, ρ), then we obtain:

Jc (N,+∞) ≤ u [k0 (1 + L+ ϵ0)]
e−ρN (ρN + 1)

ρ2
+ k0 (L+ ϵ0)

ˆ +∞

N

e−
ϵ0
2
tdt

≤ u (k0) (1 + L+ ϵ0)
e−ρN (ρN + 1)

ρ2
+

2 (L+ ϵ0)

ϵ0
k0e

− ϵ0
2
N .
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Now we show that

lim
k→+∞

V (k)

k
= 0

Fix η > 0, and take Nη > 0 such that

ρ
2 (L+ ϵ0)

ϵ0
e−

ϵ0
2
Nη < η.

We can assume that ω (t) ≤ 1 for t ≥ Nη because the function

X → ρ
2 (L+ ϵ0)

ϵ0
e−

ϵ0
2
X

is decreasing; observe that this Nη still depends only on L, ϵ0, ρ.

Hence for k0 satisfying:

k0 > max

{
1

L+ ϵ0
M̂,

1

L+ ϵ0

}
and for every c ∈ Λ (k0) , we have by (46) and Lemma 40, iii):

U (c; k0) = ρ

ˆ +∞

0

e−ρt

ˆ t

0

u (c (t)) dt

≤ ρJc (0, 1) + ρJc (1, Nη) + ρJc (Nη,+∞)

≤ u (k0)
(
1− e−ρ

) [
1 + (L+ ϵ0)

(
e(L+ϵ0) + 1

)]
+

u (k0) (1 + L+ ϵ0)
(
1 + e(L+ϵ0)Nη

)(
e−ρ +

e−ρ

ρ

)
+

u (k0) (1 + L+ ϵ0)
e−ρNη (ρNη + 1)

ρ
+ k0η

Now observe that:

lim
k0→+∞

u (k0)

k0
= lim

k0→+∞
u′ (k0) = 0.
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Hence for k0 su�ciently large (say k0 > k∗):

u (k0)

k0
< η

{(
1− e−ρ

) [
1 + (L+ ϵ0)

(
e(L+ϵ0) + 1

)]
+

(1 + L+ ϵ0)
(
1 + e(L+ϵ0)Nη

)(
e−ρ +

e−ρ

ρ

)
+

(1 + L+ ϵ0)
e−ρNη (ρNη + 1)

ρ

}−1

Observe that this is possible because the expression into the brackets does

not depend on k0. In fact, it depends on η and on the problem's data L, ϵ0,

ρ - and so does k∗.

This implies, for every c ∈ Λ (k0):

U (c; k0) ≤ 2k0η

which gives, taking the sup over Λ (k0):

V (k0) ≤ 2k0η.

Hence the assertion is proven, because the previous inequality holds for every

k0 > max

{
1

L+ ϵ0
M̂,

1

L+ ϵ0
, k∗
}

which is a threshold depending only on η and on the problem's data.

iii) In the �rst place, we prove that

V (0) = 0.
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Let c ∈ Λ (0) ; by de�nition, c ≥ 0 so that

∀t ≥ 0 : k̇ (t; 0, c) ≤ F (k (t; 0, c))

Observe that F is precisely the function which de�nes the dynamics of

k (·; 0, 0), hence by Corollary 28:

∀t ≥ 0 : k (t; 0, c) ≤ k (t; 0, 0) = 0

where the last equality holds by Lemma 36, i).

Hence k (·; 0, c) ≡ 0 which together with F (0) = 0 implies c ≡ 0. So Λ (0) =

{0}, which implies

V (0) = U (0; 0) =

ˆ +∞

0

e−ρtu (0) dt = 0

Now we show that

lim
k→0

V (k) = 0.

In this case we have to study the behaviour of V (k0) when k0 → 0, so we

use the sublinearity of F (x) for x → +∞ and the concavity of F near 0.

As a �rst step, we construct a linear function which is always above F with

these two tools. Indeed we show that there is m > 0 such that the function

G (x) :=

mx if x ∈
[
0, k̄
]

(L+ ϵ0)
(
x− k̄

)
+mk̄ if x ≥ k̄

satis�es

∀x ≥ 0 : F (x) ≤ G (x) . (47)
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If F ′ (k̄) ≤ L+ ϵ0 then it is enough to take

m > max

{
F ′ (0) , F ′ (k̄) , F (k̄)

k̄

}

If F ′ (k̄) > L+ ϵ0 then observe that for every x ≥ k̄:

F (x)− F
(
k̄
)

x− k̄
≤ F ′ (x) → L, for x → +∞.

Hence there exists M ≥ k̄ such that, for every x ≥ M ,

F (x) ≤ F
(
k̄
)
+ (L+ ϵ0)

(
x− k̄

)
which implies that for every x ≥ k̄:

F (x) ≤ (L+ ϵ0)
(
x− k̄

)
+ F

(
k̄
)
+ max
[k̄,M]

F.

Hence we replace the third condition over m with

mk̄ > F
(
k̄
)
+ max
[k̄,M]

F.

Observe that condition m > F ′ (k̄) is necessary to ensure that mx > F (x)

for x ∈
[
k, k̄
]
(Lagrange's thorem proves that it is su�cient).

Suppose also, for reasons that will be clear later, that

m > 1. (48)

Now take k0 > 0, c ∈ Λ (k0) and consider the function h : [0,+∞) → R



11 Basic properties of the value function 82

which is the unique solution to the Cauchy's problemh (0) = k0

ḣ (t) = G (h (t)) t ≥ 0

Hence, by (47) and Corollary 28:

k := k (·; k0, c) ≤ h.

So, setting

t̄ :=
1

m
log

(
k̄

k0

)
k̂ := k̄ (m− L− ϵ0)

we get that, for every t ∈ [0, t̄]:

h (t) = k0e
mt

and, for every t ≥ t̄:

h (t) = e(L+ϵ0)t

ˆ t

t̄

e−(L+ϵ0)sk̂ds+ k̄e−(L+ϵ0)t̄

=
k̂e−(L+ϵ0)t̄

L+ ϵ0
e(L+ϵ0)t + k̄e−(L+ϵ0)t̄ − k̂

L+ ϵ0

=: ω0 (k0) e
(L+ϵ0)t + ω1 (k0)−

k̂

L+ ϵ0
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where

ω0 (k0) =
k̂

L+ ϵ0
e−(L+ϵ0)t̄ =

k̂

L+ ϵ0

(
k0
k̄

) (L+ϵ0)
m

ω1 (k0) = k̄e−(L+ϵ0)t̄ = k̄

(
k0
k̄

) (L+ϵ0)
m

Hence, by

∀t ≥ 0 : k (t)− k0 =

ˆ t

0

F (k (s)) ds−
ˆ t

0

c (s) ds

it follows that, for every t ∈ [0, t̄], remembering that h is increasing so that

∀s ≤ t : h (s) ≤ k̄:

ˆ t

0

c (s) ds ≤ k0 +

ˆ t

0

F (k (s)) ds ≤ k0 +

ˆ t

0

G (h (s)) ds (49)

= k0 +

ˆ t

0

mk0e
msds = k0e

mt

For every t > t̄:

ˆ t

0

c (s) ds ≤ k0 +

ˆ t̄

0

G (h (s)) ds+

ˆ t

t̄

G (h (s)) ds

≤ k0e
mt̄ +

ˆ t

t̄

{
(L+ ϵ0)h (s) + k̂

}
ds

≤ k̄ + (t− t̄) k̂ + (L+ ϵ0)

ˆ t

t̄

{
ω0 (k0) e

(L+ϵ0)s + ω1 (k0)−
k̂

L+ ϵ0

}
ds

≤ k̄ + ω0 (k0)
[
e(L+ϵ0)t − e(L+ϵ0)t̄

]
+ (L+ ϵ0) (t− t̄)ω1 (k0)

≤ k̄ + ω0 (k0) e
(L+ϵ0)t − k̂

L+ ϵ0
+ (L+ ϵ0) (t− t̄)ω1 (k0) (50)

where we have used h (s) ≥ k̄ for s ∈ (t̄, t) and the fact that k0e
mt̄ = k̄.
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Now observe that

lim
k0→0

t̄ = lim
k0→0

1

m
log

(
k̄

k0

)
= +∞

lim
k0→0

ω0 (k0) = lim
k0→0

ω1 (k0) = 0. (51)

Hence if k0 is small enough (say k0 < k∗), we may assume

t̄ > 1

ω0 (k0) ≤ 1

so that (50) implies, for every t > t̄:

´ t

0
c (s) ds

t
≤ k̄ + ω0 (k0) e

(L+ϵ0)t + (L+ ϵ0)
(t− t̄)

t
ω1 (k0)

≤ k̄ + ω0 (k0) e
(L+ϵ0)t + (L+ ϵ0)ω1 (k0) (52)

Hence, by Lemma 40, iii) , by Remark 39, and by (49), (52), the following

inequality holds for every k0 < k∗ and every c ∈ Λ (k0):

U (c; k0) = ρ

ˆ +∞

0

e−ρt

ˆ t

0

u (c (s)) dsdt ≤ ρ

ˆ +∞

0

te−ρtu

(´ t

0
c (s) ds

t

)
dt

≤ ρ

ˆ 1

0

e−ρtu

(ˆ t

0

c (s) ds

)
dt+ ρ

ˆ t̄

1

te−ρtu

(
k0e

mt

t

)
dt+

+ρ

ˆ +∞

t̄

te−ρtu
(
k̄ + ω0 (k0) e

(L+ϵ0)t + (L+ ϵ0)ω1 (k0)
)
dt
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≤ ρ

ˆ 1

0

e−ρtu
(
k0e

mt
)
dt+ ρu

(
k0e

mt̄

t̄

) ˆ t̄

1

te−ρtdt+

+ρu
(
k̄
) ˆ +∞

t̄

te−ρtdt+ ρ

ˆ +∞

t̄

te−ρtu
(
e(L+ϵ0)t

)
dt+

+ρu ((L+ ϵ0)ω1 (k0))

ˆ +∞

t̄

te−ρtdt

≤ ρu (k0e
m)

ˆ 1

0

e−ρtdt+ ρu

(
k̄

t̄

)
e−ρ (1 + ρ)

ρ2
+

+ρ
{
u
(
k̄
)
+ u ((L+ ϵ0)ω1 (k0))

} ˆ +∞

t̄

te−ρtdt+

+ρ

ˆ +∞

t̄

te−ρtu
(
e(L+ϵ0)t

)
dt

where we used also the fact that the function

t → emt

t

is increasing for t > 1, by condition (48). By Remark 25, conditions (51) and

the fact that limx→0 u (x) = 0, we obtain:

ω1 (k0) , u

(
k̄

t̄

)
,

ˆ +∞

t̄

te−ρtdt,

ˆ +∞

t̄

te−ρtu
(
e(L+ϵ0)t

)
dt → 0

as k0 → 0; moreover, these quantities do not depend on c. Hence for any

ϵ > 0, there exists δ ∈ (0, k∗] such that for every k0 ∈ (0, δ) and for every

c ∈ Λ (k0):

U (c; k0) ≤ ϵ,

which implies, taking the sup over Λ (k0),

V (k0) ≤ ϵ
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12 Existence of the optimal control

In this section we deal with the central topic of any problem consiting of

a controlled di�erential system: the existence of an optimal control, which

means in our case that, for any k0 ≥ 0, we can �nd c∗ ∈ Λ (k0) such that

U (c∗; k0) = sup
c∈Λ(k0)

U (c; k0) = V (k0) .

We preliminary observe that the peculiar features of our problem, particularly

the absence of any boundedness conditions over the admissible controls, force

us to make use of this tool in proving certain properties of the value functions

which usually do not require such a settlement - and which we posticipate

for this reason.

First observe that by Theorem 42, iii) if we set c0 :≡ 0, then U (c0, 0) = 0 =

V (0) (because u (0) = 0); hence c0 is optimal at 0.

Let k0 > 0; this will be the initial state which we will refer to during the

whole section - hence the meaning of this symbol will not change in this

context. We split the construction in various steps; but �rst it is necessary

to settle an important notion.

De�nition 43. Let T > 0, (fn)n∈N , f functions in L1 ([0, T ] ,R). We say

that (fn)n∈N weakly converges to f in L1 ([0, T ] ,R), and we write

fn ⇀ f in L1 ([0, T ] ,R)

if, and only if, for every g ∈ L∞ ([0, T ] ,R):

lim
n→∞

ˆ T

0

g (s) fn (s) ds =

ˆ T

0

g (s) f (s) ds

Remark 44. Suppose that (fn)n∈N , f are functions in L1
loc ([0,+∞) ,R) such

that for every N ∈ N fn ⇀ f in L1 ([0, N ] ,R). If T > 0, T ∈ R, then by the
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latter de�nition we have, for g ∈ L∞ ([0, T ] ,R):

ˆ T

0

g (s) fn (s) ds =

ˆ [T ]+1

0

χ[0,T ]g (s) fn (s) ds

→
ˆ [T ]+1

0

χ[0,T ]g (s) f (s) ds

=

ˆ T

0

g (s) f (s) ds.

Hence fn ⇀ f in L1 ([0, T ] ,R), for every T > 0, T ∈ R.

Step 1. The �rst step is to �nd a maximizing sequence of controls which are

admissible at k0 and a function γ ∈ L1
loc ([0,+∞) ,R), such that the sequence

weakly converges to γ in L1 ([0, T ] ,R), for every T > 0.

By de�nition of supremum, we can �nd a maximizing sequence; that is to

say, there exist a sequence (cn)n∈N ⊆ Λ (k0) of admissible controls satisfying:

lim
n→+∞

U (cn; k0) = V (k0) .

In order to apply the tools we set up at the beginning of the chapter, we

need the following result.

Lemma 45. Let T ∈ N and (fn)n∈N ⊆ L1
loc ([0,+∞) ,R), M (T ) > 0 such

that

∀n ∈ N : ∥fn∥∞,[0,T ] ≤ M (T ) .

Then there exist a subsequence
(
fn

)
n∈N of (fn)n∈N and a function f ∈

L1 ([0, T ] ,R) such that

fn ⇀ f in L1 ([0, T ] ,R) .
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Proof. For every 0 ≤ t0 < t1 ≤ T :

ˆ t1

t0

|fn (s)| ds ≤ ∥fn∥∞,[0,T ] · (t1 − t0) ≤ M (T ) · (t1 − t0) .

Hence, by the fact that the family {(t0, t1) ∈ P ([0, T ]) /t0, t1 ∈ [0, T ]} gener-

ates the Borel σ- algebra in [0, T ], we deduce that the latter relation holds

for every measurable set E ⊆ [0, T ]; that is to say

ˆ
E

|fn (s)| ds ≤ M (T ) · µ (E) .

This implies that the densities {dn/n ∈ N} given by:

dn : B (R) → R

E 7→
ˆ
E

fn (s) ds

are absolutely equicontinuous. Indeed take ϵ > 0; then for any measurable

set E ⊆ [0, T ] such that µ (E) ≤ ϵ/M (T ) we have:

∀n ∈ N :

∣∣∣∣ˆ
E

fn (s) ds

∣∣∣∣ ≤ ˆ
E

|fn (s)| ds ≤ ϵ.

So the thesis follows from the Dunford-Pettis criterion (see [7]). Observe that

the third condition required by such theorem, that is to say, for any ϵ > 0

there exists a compact set Kϵ ⊆ [0, T ] such that

∀n ∈ N :

ˆ
[0,T ]\Kϵ

fn (s) ds ≤ ϵ

is obviously satis�ed.
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Now we apply Lemma 33 to (cn)n∈N in order to �nd a new sequence (c1n)n∈N ⊆
Λ (k0) such that, for every n ∈ N:

U
(
c1n; k0

)
≥ U (cn; k0)

c1n = cn ∧N (k0, 1) a.e. in [0, 1] .

In particular (c1n)n∈N ⊆ L1
loc ([0,+∞) ,R) and ∥c1n∥∞,[0,1] ≤ N (k0, 1) for every

n ∈ N. Hence by Lemma 45, there exists a sequence (c1n)n∈N extracted from

(c1n)n∈N and a function c1 ∈ L1 ([0, 1] ,R) such that

c1n ⇀ c1 in L1 ([0, 1] ,R) .

Now de�ne, for every n ∈ N:

c2n :=
(
c1n
)2

where (c1n)
2
is understood with the notation of Lemma 33.

Hence for every n ∈ N:

U
(
c2n; k0

)
≥ U

(
c1n; k0

)
c2n = c1n ∧N (k0, 2) a.e. in [0, 2] .

Again by Lemma 45, we can exhibit a subsequence (c2n)n∈N of (c2n)n∈N and a

function c2 ∈ L1 ([0, 2] ,R) such that

c2n ⇀ c2 in L1 ([0, 2] ,R) .

Following this pattern we are able to give a recursive de�nition of a family{((
cTn
)
n∈N ,

(
cTn
)
n∈N , c

T
)
/T ∈ N

}
and {i (T, n) ∈ [0,+∞) /T, n ∈ N} satis-



12 Existence of the optimal control 90

fying, for every T, n ∈ N:

cTn ∈ Λ (k0) , c
T
n = cTn+i(T,n)

U
(
cT+1
n ; k0

)
≥ U

(
cTn ; k0

)
cT+1
n = cTn ∧N (k0, T + 1) a.e. in [0, T + 1]

cTn ⇀ cT in L1 ([0, T ] ,R) (53)

Now we show that, for every T ∈ N,

cT+1 = cT almost everywhere in [0, T ] . (54)

Assume the notation �∀̃s ∈ A : P (s)� with the meaning � for almost every

s ∈ A, P (s) holds� . Hence:

∀̃s ∈ [0, T ] : cT+1
n (s) = cT+1

n+i(T,n) (s)

= cTn+i(T,n) (s) ∧N (k0, T + 1)

= cTn+i(T,n) (s)

where the last equality holds because, by the penultimate condition in (53)

and by the monotonicity of the function N (k0, ·), for any p ∈ N:

∥∥cTp ∥∥∞,[0,T ]
=
∥∥cTp+i(T,p)

∥∥
∞,[0,T ]

≤ N (k0, T ) ≤ N (k0, T + 1) .

Hence the assertion in (54) follows from the essential uniqueness of the weak

limit in L1 ([0, T ] ,R).

Now we want to set up a diagonal procedure in order to exhibit a sequence

(γn)n∈N ⊆ Λ (k0) and a function γ ∈ L1
loc ([0,+∞) ,R) such that

γn ⇀ γ in L1 ([0, T ] ,R) ∀T > 0.
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De�nition 46. i) γ : [0,+∞) → R is the function

γ (t) := c[t]+1 (t) ∀t ≥ 0

ii) The sequence (γn)n∈N is de�ned as follows:
γ1 := c11

∀n ≥ 2 : if γn = cnj(n) then γn+1 = cn+1
m ,

where m := min
{
k ∈ N/k > j (n) and cn+1

k ∈
(
cn+1
p

)
p∈N

}
This diagonal procedure is resumed by the following scheme, in which the

elements of the (weakly) convergent subsequences (cmn )n∈N, m ≥ 1 are em-

phasized by the square brackets.

c11 c12 . . . c1h . . .
[
c1j(1)

]
. . . c1i . . . c2k . . . c1j(2) . . . c1j(3)

c21 c22 . . . [c2h] . . . c2j(1) . . . c2i . . . c2k . . .
[
c2j(2)

]
. . . c2j(3)

c31 c32 . . . c3h . . . c3j(1) . . . [c3i ] . . . [c3k] . . . c3j(2) . . .
[
c3j(3)

]
c41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Remark 47. Let T ∈ N. Condition (54) implies that γ = cT almost every-

where in [0, T ]. Hence it follows from (53) that:

cTn ⇀ γ in L1 ([0, T ] ,R) .

We have shown that
(
cT+1
n

)
n∈N, restricted to [0, T ], almost coincides with a

subsequence of
(
cTn
)
n∈N ; we want to prove an analogous result in relation to

(γn)n∈N.

We have γ1 := c11 = c1j(1) (with j (1) = 1+ i (1, 1)) , so by De�nition 46, there

exists m2 > j (1) such that γ2 = c2m2
= c2j(m2)

, where j (m2) := m2+ i (2,m2).
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Hence

∀̃s ∈ [0, 1] : γ2 (s) = c2m2
(s) = c2j(m2)

(s)

= c1j(m2)
(s) ∧N (k0, 2) = c1j(m2)

(s)

where the last equality again holds because by construction
∥∥c1p∥∥∞.[0,1]

≤
N (k0, 1) ≤ N (k0, 2) for any p ∈ N.

Moreover for some m3 > j (m2), γ3 = c3m3
; setting j (m3) := m3 + i (3,m3)

and j (j (m3)) := j (m3) + i (2, j (m3)), we have:

∀̃s ∈ [0, 1] : γ3 (s) = c3m3
(s) = c3m3+i(3,m3)

(s)

= c3j(m3)
(s) = c2j(m3)

(s) ∧N (k0, 3)

= c2j(j(m3))
(s) ∧N (k0, 3)

= c1j(j(m3))
(s) ∧N (k0, 2) ∧N (k0, 3)

= c1j(j(m3))
(s)

as N (k0, 1) ≤ N (k0, 2) ≤ N (k0, 3), and

∀̃s ∈ [0, 2] : γ3 (s) = c3j(m3)
(s) = c2j(m3)

(s) ∧N (k0, 3)

= c2j(m3)

Hence, by the fact that 1 < j (m2) < j (j (m3)), we see that (γ1, γ2, γ3)

coincides with a subsequence of (c1n)n∈Nalmost everywhere in [0, 1]; it follws

from j (m3) > m2 that (γ2, γ3) coincides with a subsequence of (c
2
n)n∈N almost

everywhere in [0, 2]. Obviously this reasoning can be repeated to prove by

induction the following

Proposition 48. Let (γn)n∈N, γ as in De�nition 46. Then (γn)n∈N ⊆
Λ (k0),γ ∈ L1

loc ([0,+∞) ,R) and

lim
n→+∞

U (γn; k0) = V (k0) .
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Moreover, for every T ∈ N, (γn)n≥T coincides almost everywhere in [0, T ]

with a subsequence of
(
cTn
)
n∈N. Consequently

γn ⇀ γ in L1 ([0, T ] ,R) ∀T > 0, T ∈ R,

∥γn∥∞,[0,T ] ≤ N (k0, T ) ∀T, n ∈ N.

Proof. By Remark 47, for every T ∈ N, γ = cT almost everywhere in [0, T ];

hence γ ∈ L1 ([0, T ] ,R), which implies γ ∈ L1
loc ([0,+∞) ,R) because T is

generic.

By De�nition 46, γ1 = c1j(1) for some j (1) ≥ 1; hence by induction we

have, for every n ∈ N, γn = cnj(n) for some j (n) ≥ n; in particular, by the

�rst condition in (53), γn ∈ Λ (k0). With n → j (n) de�ned this way, set

p (n) := j (n) + i (n, j (n)); so remembering the other conditions in (53):

|U (γn; k0)− V (k0)| = V (k0)− U (γn; k0) = V (k0)− U
(
cnj(n); k0

)
= V (k0)− U

(
cnp(n); k0

)
≤ V (k0)− U

(
cn−1
p(n); k0

)
= V (k0)− U

(
cn−1
p(n)+i(n−1,p(n)); k0

)
≤ . . . ≤ V (k0)− U

(
c1q(n); k0

)
≤ V (k0)− U

(
cq(n); k0

)
=
∣∣U (cq(n); k0)− V (k0)

∣∣ ,
for some q (n) ≥ p (n) ≥ n. Hence the �rst assertion follows from the fact

that limk→+∞ U (ck; k0)= V (k0).

Now �x T ∈ N. The argument developed after Remark 47 inductively shows

that there exists a sequence of natural numbers n → kT (n) such that

∀n ≥ T : ∀̃s ∈ [0, T ] : γn (s) = cTn+kT (n) (s) .

This implies by Remark 47 that γn ⇀ γ in L1 ([0, T ] ,R).

As this holds for every T ∈ N, it is a consequence of Remark 44 that it must

hold for every real number T > 0. The last condition obviously holds by
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construction and by (53).

The �rst step is then accomplished.

Step 2. The next step is to show that γ is admissible at k0. For this purpose,

it is enough to prove the following

Proposition 49. Let T > 0. Hence γ ≥ 0 almost everywhere in [0, T ], and,

for every t ∈ [0, T ], k (t; k0, γ) ≥ 0.

Proof. It is well known that the weak convergence of (γn)n∈N to γ in L1 ([0, T ] ,R),
ensured by Proposition 48, implies that there exists a set A ⊆ [0, T ] such that

µ ([0, T ] \ A) = 0 and for every t ∈ A:

lim inf
n→+∞

γn (t) ≤ γ (t)

Moreover, (γn)n∈N ⊆ Λ (k0), hence any γn is almost everywhere non-negative

in [0, T ]; that is to say, for every n ∈ N there exists a set In ⊆ [0, T ] such

that µ ([0, T ] \ In) = 0 and γn (t) ≥ 0 for t ∈ In. Hence γ (t) ≥ 0 for every

t ∈
∩
n∈N

In
∩

A, that is to say γ ≥ 0 almost everywhere in [0, T ], because

µ

(
[0, T ] \

(∩
n∈N

In
∩

A

))
= µ

(∪
n∈N

([0, T ] \ In)
∪

([0, T ] \ A)

)
= 0.

Set κ := k (·; k0, γ) and κn := k (·; k0, γn); we show that, for every t ∈ [0, T ]:

lim sup
n→+∞

κn (t) ≤ κ (t) .

Then the second assertion will follow from the fact that κn ≥ 0 in [0, T ] for

any n ∈ N, by the admissibility of the γn's.

Fix n ∈ N. Subtracting the state equation for κ from the state equation for



12 Existence of the optimal control 95

κn, we obtain, for every t ∈ [0, T ]:

κ̇n (t)− κ̇ (t) = F (κn (t))− F (κ (t))− [γn (t)− γ (t)]

≤ M [κn (t)− κ (t)]− [γn (t)− γ (t)]

which implies

[κ̇n (t)− κ̇ (t)] e−Mt − e−MtM [κn (t)− κ (t)] ≤ e−Mt [γ (t)− γn (t)]

that is to say:

d

dt

[
[κn (t)− κ (t)] e−Mt

]
≤ e−Mt [γ (t)− γn (t)] .

Hence, for every �xed t ∈ [0, T ]:

κn (t)− κ (t) ≤
ˆ t

0

eM(t−s) [γ (s)− γn (s)] ds

=

ˆ T

0

χ[0,t] (s) e
M(t−s) [γ (s)− γn (s)] ds.

The function

s → χ[0,t] (s) e
M(t−s)

is bounded in [0, T ] (by 1 and eMt), hence we can apply the weak convergence

γn ⇀ γ in L1 ([0, T ] ,R) to deduce that the quantity at the right-hand member

of the above inequality tends to 0 as n → +∞. Hence

lim sup
n→+∞

κn (t) ≤ κ (t) .

As a consequence, γ is almost everywhere non-negative in [0,+∞) and k (·; k0, γ)
is everywhere non-negative in [0,+∞) - which precisely means that γ ∈
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Λ (k0). Hence the second step is also ended.

Step 3. Now it is time to de�ne the control which is optimal at k0. In

order to do this, we need to extract a subsequence from (γn)n∈N because the

weak convergence to γ over the intervals could not be enough to ensure that

limn→+∞ U (γn; k0) = U (γ; k0); we will also need the admissibility of γ. By

the last assertion stated in Proposition 48, and by the monotonicity of u, we

have:

∥u (γn)∥∞,[0,1] ≤ u (N (k0, 1)) ∀n ∈ N.

Hence by Lemma 45, there exists a function f 1 ∈ L1 ([0, 1] ,R) and a sequence
(u (γ1,n))n∈N extracted from (u (γn))n∈N, such that

u (γ1,n) ⇀ f 1 in L1 ([0, 1] ,R) .

Again by Proposition 48 and the monotonicity of u,

∥u (γ1,n)∥∞,[0,2] ≤ u (N (k0, 2)) ∀n ∈ N

which implies by Lemma 45 the existence of f 2 ∈ L1 ([0, 2] ,R) and of a

sequence (u (γ2,n))n∈N extracted from (u (γ1,n))n∈N such that

u (γ2,n) ⇀ f 2 in L1 ([0, 2] ,R) ;

in particular f 2 = f 1 almost everywhere in [0, 1] by the essential uniqueness

of the weak limit.

Going on this way we see that there exists a family
{(

u (γT,n)n∈N , f
T
)
/T ∈ N

}
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satisfying, for every T ∈ N:

∥u (γT,n)∥∞,[0,T ] ≤ u (N (k0, T )) ∀n ∈ N

(u (γT+1,n))n∈N is extracted from (u (γT,n))n∈N

fT+1 = fT almost everywhere in [0, T ]

u (γT,n) ⇀ fT in L1 ([0, T ] ,R) .

Hence, for every T ∈ N, the sequence (u (γn,n))n≥T is extracted from (u (γT,n))n∈N
. If we de�ne f (t) := f [t]+1 (t), then f = fT almost everywhere in [0, T ]. So

u (γn,n) ⇀ f in L1 ([0, T ] ,R) ∀T > 0. (55)

by construction and by Remark 44. This implies that

0 ≤ lim inf
n→+∞

u (γn,n (t)) ≤ f (t)

for almost every t ∈ R; hence the function c∗ : [0,+∞) → R de�ned by

c∗ (t) :=

u−1 (f (t)) if f (t) ≥ 0

0 if f (t) < 0

is almost everywhere non-negative. Moreover, again by the properties of the

weak convergence, for any T ∈ N and for almost every t ∈ [0, T ]:

f (t) ≤ lim sup
n→+∞

u (γn,n (t)) ≤ u (N (k0, T )) .

This implies, together with the fact that u−1 is increasing, that c∗ is bounded

above byN (k0, T ) almost everywhere in [0, T ]. In particular, c∗ ∈ L1 ([0, T ] ,R);
as this is true for every T ∈ N,

c∗ ∈ L1
loc ([0,+∞) ,R) . (56)
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To complete the proof of the admissibility of c∗, we show that c∗ ≤ γ almost

everywhere in [0,+∞).

Fix T > 0 and let t0 ∈ [0, T ] be a Lebesgue point for both f and γ in [0, T ];

then take t1 ∈ (t0, T ). By the concavity of u and by Jensen inequality:

´ t1
t0

u (γn,n (s)) ds

t1 − t0
≤ u

(´ t1
t0

γn,n (s) ds

t1 − t0

)
(57)

Observe that (γn,n)n≥1 is a subsequence of (γ1,n)n∈N, which is in its turn

extracted from (γn)n∈N. Hence γn,n ⇀ γ in L1 ([0, T ] ,R), which implies

limn→+∞
´ t1
t0

γn,n (s) ds =
´ t1
t0

γ (s) ds. So taking the limit for n → +∞ in

(57), by the continuity of u and by (55), we have:

´ t1
t0

f (s) ds

t1 − t0
≤ u

(´ t1
t0

γ (s) ds

t1 − t0

)
.

As t0 is a Lebesgue point for both f and γ in [0, T ], we can take the limit

for t1 → t0 in the previous inequality and get f (t0) ≤ u (γ (t0)). Set

Lf , Lγ ⊆ [0, T ] the sets of the Lebesgue points of f and γ, respectively. By

the Lebesgue Point Theorem (see [5]), µ ([0, T ] \ (Lf ∩ Lγ ∩ {f ≥ 0})) = 0,

so by the monotonicity of u−1 we deduce

c∗ ≤ γ almost everywhere in [0, T ] .

Because T is generic, by Corollary 28 k (t; k0, c
∗) ≥ k (t; k0, γ) for every t ∈ R.

Hence by the admissibility of γ at k0, k (·; k0, c∗) ≥ 0. This implies, together

with (56) and c∗ ≥ 0 almost everywhere in [0,+∞),

c∗ ∈ Λ (k0) .

Then by Proposition 48, by the fact that (γn,n)n∈N is extracted from (γn)n∈N,
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by Lemma 40, iii) , by (55) and by Fatou's Lemma:

V (k0) = lim
n→+∞

U (γn; k0) = lim
n→+∞

U (γn,n; k0)

= lim
n→+∞

ρ

ˆ +∞

0

e−ρt

ˆ t

0

u (γn,n (s)) dsdt

≤ ρ

ˆ +∞

0

e−ρt lim sup
n→+∞

ˆ t

0

u (γn,n (s)) dsdt

= ρ

ˆ +∞

0

e−ρt

ˆ t

0

f (s) dsdt

= ρ

ˆ +∞

0

e−ρt

ˆ t

0

u (c∗ (s)) dsdt = U (c∗; k0)

which concludes the proof.

13 Further properties of the value function

Now it is possible to set some regularity properties of the value function,

with the help of optimal controls. The next theorem uses the monotonicity

with respect to the �rst variable of the function de�ned in Lemma 33.

Theorem 50. The value function V : [0,+∞) → R satis�es:

i) V is strictly increasing

ii) For every k0 > 0, there exists C (k0) , δ > 0 such that for every h ∈ (−δ, δ):

V (k0 + h)− V (k0)

h
≥ C (k0)

iii) V is Lipschitz-continuous over every closed sub-interval of (0,+∞).

Proof. i) Let 0 < k0 < k1. Set c ∈ (0, F (k0)] and c0 ≡ c in [0,+∞); hence

by Lemma 36 and by Theorem 42,

V (0) = 0 <
u (c)

ρ
= U (c0; k0) ≤ V (k0) .



13 Further properties of the value function 100

In order to establish that V (k0) < V (k1), take c ∈ Λ (k0) optimal at k0 and

de�ne ck1−k0 as in Lemma 34. As

u′ (N (k0, k1 − k0) + 1)

ˆ k1−k0

0

e−ρtdt > 0

we have

V (k0) = U (c; k0) < U
(
ck1−k0 ; k1

)
≤ V (k1)

ii) We split the proof in two parts.

First, take k0, h > 0, c optimal at k0 and set k1 := k0 + h. Because k1 > k0

we can choose ck1−k0 = ch ∈ Λ (k0 + h) as in Lemma 34. Hence

V (k0 + h)− V (k0) ≥ U
(
ch; k0 + h

)
− U (c; k0)

≥ u′ (N (k0, h) + 1)

ˆ h

0

e−ρtdt

Now, by the fact that limh→0
1
h

´ h

0
e−ρtdt = 1 and that N (k0, ·) is increasing,

there exists δ > 0 such that, for any h ∈ (0, δ):

V (k0 + h)− V (k0)

h
≥ u′ (N (k0, h) + 1)

´ h

0
e−ρtdt

h

≥ u′ (N (k0, 1) + 1)

2
=: C (k0)

In the second place, �x k0 > 0, h < 0 and c optimal at k0 + h. Then again

take ck0−(k0+h) = c−h ∈ Λ (k0) as in Lemma 34. Hence

V (k0 + h)− V (k0) ≤ U (c; k0 + h)− U
(
c−h; k0

)
≤ −u′ (N (k0 + h,−h) + 1)

ˆ −h

0

e−ρtdt.

We can assume that − 1
h

´ −h

0
e−ρtdt ≥ 1

2
for −δ < h < 0. Hence, by the
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monotonicity of N (·, ·) in both variables, for every h ∈ (−δ, 0):

V (k0 + h)− V (k0)

h
≥ u′ (N (k0 + h,−h) + 1)

2
≥ u′ (N (k0, 1) + 1)

2
= C (k0) .

iii) Let 0 < k0 < k1. We want a reverse inequality for V (k1)−V (k0), so take

c1 ∈ Λ (k1) optimal at k1. In order to de�ne the proper c0 ∈ Λ (k0), observe

that the orbit k = k (·; k0, 0) (with control constantly equal to 0) satis�es

k̇ = F (k) .

With an argument similar to the one used in Proposition 37 we can see that

k̇ (t) > F (k0) > 0 for every t > 0, and so limt→+∞ k (t) = +∞.

Then by Darboux's property there exists t̄ > 0 such that k (t̄) = k1. Observe

that, since k and F are strictly increasing functions, k̇ must also be strictly

increasing.

Hence appling Lagrange's thorem to k gives for some ξ ∈ (0, t̄):

k1 − k0 = k (t̄)− k (0) = t̄ · k̇ (ξ) > t̄k̇ (0) = t̄F (k0) (58)

Now de�ne

c0 (t) :=

0 if t ∈ [0, t̄]

c1 (t− t̄) if t > t̄

It is easy to check that c0 ∈ Λ (k0), because

k (t; k0, c0) = k (t; k0, 0) > 0 ∀t ∈ [0, t̄]

k (t+ t̄; k0, c0) = k (t; k1, c1) ≥ 0 ∀t ≥ 0

by the uniqueness of the orbit; as far as the second equality is concerned,

observe that both orbits pass through (0, k1) and satisfy the di�erential equa-

tion controlled with c1 for t > 0.
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Hence, remembering that u (0) = 0:

V (k1)− V (k0) ≤ U (c1; k1)− U (c0; k0) =

ˆ +∞

0

e−ρt [u (c1 (t))− u (c0 (t))] dt

=

ˆ +∞

0

e−ρtu (c1 (t)) dt−
ˆ +∞

t̄

e−ρtu (c1 (t− t̄)) dt

=

ˆ +∞

0

e−ρtu (c1 (t)) dt−
ˆ +∞

0

e−ρ(s+t̄)u (c1 (s)) ds

=
(
1− e−ρt̄

)
U (c1; k1) =

(
1− e−ρt̄

)
V (k1)

≤ ρt̄V (k1) < ρV (k1)
k1 − k0
F (k0)

(in the last inequality we used (58)). By the monotonicity of V and F we

have, for a ≤ k0 < k1 ≤ b:

V (k1)− V (k0) ≤ ρ
V (b)

F (a)
(k1 − k0)

The construction of Theorem 50.iii)
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14 Dynamic Programming

In this section we study the properties of the value function as a solution

to certain equations which arise naturally. Observe that we can translate an

orbit by translating the control, according to the next remark.

Remark 51 (Translation of the orbit). For every k0 ≥ 0 and every c ∈
L1

loc((0,+∞) ,R):

k (·; k (τ ; k0, c) , c (·+ τ)) = k (·+ τ ; k0, c)

by the uniqueness of the orbit. In particular, if c ∈ Λ (k0) then c (·+ τ) ∈
Λ (k (τ ; k0, c)).

Translation of the orbit

The �rst step clearly consists in proving that the value function solves the

Bellman Functional Equation; that is to say, we prove a suitable version of

Dynamic Programming Principle.
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Theorem 52 (Bellman's Dynamic Programming Principle). For every

τ > 0, the value function V : [0,+∞) → R satis�es the following functional

equation:

∀k0 ≥ 0 : v (k0) = sup
c∈Λ(k0)

{ˆ τ

0

e−ρtu (c (t)) dt+ e−ρτv (k (τ ; k0, c))

}
(59)

in the unknown v : [0,+∞) → R.

Proof. Fix τ > 0 and k0 ≥ 0, and set

σ (τ, k0) := sup
c∈Λ(k0)

{ˆ τ

0

e−ρtu (c (t)) dt+ e−ρτV (k (τ ; k0, c))

}
.

We prove that

σ (τ, k0) = sup
c∈Λ(k0)

U (c; k0) .

In the �rst place, we show that σ (τ, k0) is an upper bound of {U (c; k0) / c ∈ Λ (k0)}.

Fix c ∈ Λ (k0); then by Remark 51 c (·+ τ) ∈ Λ (k (τ ; k0, c)); hence

σ (τ, k0) ≥
ˆ τ

0

e−ρtu (c (t)) dt+ e−ρτV (k (τ ; k0, c))

≥
ˆ τ

0

e−ρtu (c (t)) dt+ e−ρτU (c (·+ τ) ; k (τ ; k0, c))

=

ˆ τ

0

e−ρtu (c (t)) dt+

ˆ +∞

0

e−ρ(t+τ)u (c (t+ τ)) dt

=

ˆ τ

0

e−ρtu (c (t)) dt+

ˆ +∞

τ

e−ρsu (c (s)) dt = U (c; k0)

In the second place, �x ϵ > 0, and take

0 < ϵ′ ≤ 2ϵ

(1 + e−ρτ )
.
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Hence there exists c̃ϵ ∈ Λ (k0) and ˜̃cϵ ∈ Λ (k (τ ; k0, c̃ϵ)) such that

σ (τ, k0)− ϵ ≤ σ (τ, k0)−
ϵ′

2

(
1 + e−ρτ

)
≤
ˆ τ

0

e−ρtu (c̃ϵ (t)) dt+ e−ρτV (k (τ ; k0, c̃ϵ))− e−ρτ ϵ
′

2

≤
ˆ τ

0

e−ρtu (c̃ϵ (t)) dt+ e−ρτU
(
˜̃cϵ; k (τ ; k0, c̃ϵ)

)
=

ˆ τ

0

e−ρtu (c̃ϵ (t)) dt+

ˆ +∞

0

e−ρ(t+τ)u
(
˜̃cϵ (t)

)
dt

Now set

cϵ (t) :=

c̃ϵ (t) if t ∈ [0, τ ]

˜̃cϵ (t− τ) if t > τ

Hence cϵ ∈ L1
loc ((0,+∞) ,R) and ∀t > 0 : cϵ (t+ τ) = ˜̃cϵ (t). So:

σ (τ, k0)− ϵ ≤
ˆ τ

0

e−ρtu (c̃ϵ (t)) dt+

ˆ +∞

0

e−ρ(t+τ)u
(
˜̃cϵ (t)

)
dt

=

ˆ τ

0

e−ρtu (cϵ (t)) dt+

ˆ +∞

0

e−ρ(t+τ)u (cϵ (t+ τ)) dt

=

ˆ +∞

0

e−ρtu (cϵ (t)) dt (60)

Finally, it is easy to show that cϵ ∈ Λ (k0). Observe that

∀t ∈ [0, τ ] : k (t; k0, cϵ) = k (t; k0, c̃ϵ)

because both the orbits satisfy the problem:h (0) = k0

ḣ (t) = F (h (t))− c̃ϵ (t) for t ∈ [0, τ ]

in the unknown h. In particular k (τ ; k0, cϵ) = k (τ ; k0, c̃ϵ), so that k (·+ τ ; k0, cϵ)
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and k
(
·; k (τ ; k0, c̃ϵ) , ˜̃cϵ

)
have the same initial value. Moreover, these two or-

bits satisfy:

∀t > 0 : ḣ (t) = F (h (t))− ˜̃cϵ (t)

in the unknown h, which implies

∀t ≥ 0 : k (t+ τ ; k0, cϵ) = k
(
t; k (τ ; k0, c̃ϵ) , ˜̃cϵ

)
Now it is enough to recall that by construction c̃ϵ ∈ Λ (k0) and ˜̃cϵ ∈ Λ (k (τ ; k0, c̃ϵ)),

so that k (t; k0, cϵ) ≥ 0 for all t ≥ 0. By (60) we can write

σ (τ, k0)− ϵ ≤ U (cϵ; k0)

and the assertion is proven.

Equation (59) is called Bellman Functional Equation.

As in the �nite-horizon case of Chapter 2, we have, in consequence of the

previous theorem, that every control which is optimal respect to a state, is

also optimal respect to every succesive optimal state.

Corollary 53. Let k0 ≥ 0, c∗ ∈ Λ (k0) . Hence the follwing are equivalent:

i) c∗ is optimal at k0

ii) For every τ > 0:

V (k0) =

ˆ τ

0

e−ρtu (c∗ (t)) dt+ e−ρτV (k (τ ; k0, c
∗))

Moreover, i) or ii) imply that for every τ > 0, c∗ (·+ τ) is admissible and

optimal at k (τ ; k0, c
∗).

Proof. i) ⇒ ii) Let us assume that c∗ is admissible and optimal at k0 ≥ 0

and �x τ > 0. Observe that c∗ (·+ τ) is admissible at k (τ ; k0, c
∗) by Remark
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51. Hence, by Theorem 52:

V (k0) ≥
ˆ τ

0

e−ρtu (c∗ (t)) dt+ e−ρτV (k (τ ; k0, c
∗))

≥
ˆ τ

0

e−ρtu (c∗ (t)) dt+ e−ρτU (c∗ (·+ τ) ; k (τ ; k0, c
∗))

=

ˆ +∞

0

e−ρtu (c∗ (t)) dt

= U (c∗; k0) = V (k0) (61)

where the last equality holds because of the optimality of c∗. In particular

V (k0) =

ˆ τ

0

e−ρtu (c∗ (t)) dt+ e−ρτV (k (τ ; k0, c
∗)) . (62)

ii) ⇒ i) Suppose that c∗ ∈ Λ (k0) and (62) holds for every τ > 0. For every

ϵ > 0 pick ĉϵ ∈ Λ
(
k
(
1
ϵ
; k0, c

∗)) such that:

V

(
k

(
1

ϵ
; k0, c

∗
))

− ϵ ≤ U

(
ĉϵ; k

(
1

ϵ
; k0, c

∗
))

.

Then de�ne

cϵ (t) :=

c∗ (t) if t ∈
[
0, 1

ϵ

]
ĉϵ
(
t− 1

ϵ

)
if t > 1

ϵ

By the same arguments we used in the proof of Theorem 52 , cϵ ∈ Λ (k0) and

cϵ
(
t+ 1

ϵ

)
= ĉϵ (t) for every t > 0.
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Hence, taking τ = 1/ϵ in (62):

V (k0)− ϵe−ρ/ϵ =

ˆ 1/ϵ

0

e−ρtu (c∗ (t)) dt+ e−ρ/ϵ

[
V

(
k

(
1

ϵ
; k0, c

∗
))

− ϵ

]
≤
ˆ 1/ϵ

0

e−ρtu (c∗ (t)) dt+ e−ρ/ϵU

(
ĉϵ; k

(
1

ϵ
; k0, c

∗
))

=

ˆ 1/ϵ

0

e−ρtu (c∗ (t)) dt+

ˆ +∞

0

e−ρ(t+ 1
ϵ )u

(
cϵ

(
t+

1

ϵ

))
dt

=

ˆ 1/ϵ

0

e−ρtu (c∗ (t)) dt+

ˆ +∞

1/ϵ

e−ρsu (cϵ (s)) ds (63)

Observe that by Jensen inequality, for every T ≥ 1/ϵ:

ˆ T

1/ϵ

e−ρsu (cϵ (s)) ds =

[
e−ρs

ˆ s

1/ϵ

u (cϵ (τ)) dτ

]s=T

s=1/ϵ

+ ρ

ˆ T

1/ϵ

e−ρs

ˆ s

1/ϵ

u (cϵ (τ)) dτds

≤ e−ρT

ˆ T

0

u (cϵ (τ)) dτ + ρ

ˆ T

1/ϵ

e−ρs

ˆ s

0

u (cϵ (τ)) dτds

≤ e−ρT

ˆ T

0

u (cϵ (τ)) dτ + ρ

ˆ T

1/ϵ

se−ρsu

(´ s

0
cϵ (τ) dτ

s

)
ds

→ ρ

ˆ +∞

1/ϵ

se−ρsu

(´ s

0
cϵ (τ) dτ

s

)
ds as T → +∞, (64)

by Lemma 40, ii) and by the admissibility of cϵ. By point i) of the same

Lemma, for every ϵ < 1 and every s ≥ 1/ϵ:

se−ρsu

(´ s

0
cϵ (τ) dτ

s

)
≤ se−ρsu

(
M (k0)

[
1 + e(L+ϵ0)s

]
+

M (k0)

s (L+ ϵ0)

)
≤ se−ρs

{
u (M (k0)) +M (k0)u

(
e(L+ϵ0)s

)
+ u

(
M (k0)

L+ ϵ0

)}
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which implies, together with (64), for every ϵ < 1:

0 ≤
ˆ +∞

1/ϵ

e−ρsu (cϵ (s)) ds ≤ ρ

ˆ +∞

1/ϵ

se−ρsu

(´ s

0
cϵ (τ) dτ

s

)
ds

≤ ρ

[
u (M (k0)) + u

(
M (k0)

L+ ϵ0

)]ˆ +∞

1/ϵ

se−ρsds+

ρM (k0)

ˆ +∞

1/ϵ

se−ρsu
(
e(L+ϵ0)s

)
ds.

By Remark 25 this quantity tends to 0 as ϵ → 0.

Hence, by (63):

V (k0)− ϵe−ρ/ϵ ≤
ˆ 1/ϵ

0

e−ρtu (c∗ (t)) dt+ oϵ→0 (1)

Passing to the limit for ϵ → 0 we �nd:

V (k0) ≤
ˆ +∞

0

e−ρtu (c∗ (t)) dt = U (c∗; k0)

which implies that c∗ is optimal at k0.

Finally, if i) holds, then by (61):

V (k (τ ; k0, c
∗)) = U (c∗ (·+ τ) ; k (τ ; k0, c

∗))

Following the path traced in Chapter 2, a careful study of the behaviour of

the di�erence quotients of the functions

t → e−ρtV (k (t))

(for an orbit k) leads to the following de�nitions and theorems.
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De�nition 54. Let f ∈ C0 ((0,+∞) ,R); we say that f ∈ C+ ((0,+∞) ,R)
if, and only if, for every k0 > 0 there exist δ, C+, C− > 0 such that

f (k0 + h)− f (k0)

h
≥ C+ ∀h ∈ (0, δ)

f (k0 + h)− f (k0)

h
≥ C− ∀h ∈ (−δ, 0)

Remark 55. The value function V satis�es

V ∈ C+ ((0,+∞) ,R)

by Theorem 50,(ii).

Moreover

C+ ((0,+∞) ,R) ∩ C1 ((0,+∞) ,R) =
{
f ∈ C1 ((0,+∞) ,R) /f ′ > 0

}
De�nition 56. The function H : [0,+∞)× (0,+∞) → R de�ned by

H (k, p) := − sup {[F (k)− c] · p+ u (c) / c ∈ [0,+∞)}

is called Hamiltonian.

The equation

ρv (k) +H (k, v′ (k)) = 0 ∀k > 0 (65)

in the unknown v ∈ C+ ((0,+∞) ,R) ∩ C1 ((0,+∞) ,R) is called Hamilton-

Jacobi-Bellman equation (HJB).

Remark 57. De�nition 56 is well-posed. Indeed

− sup
c∈[0,+∞)

{[F (k)− c] · p+ u (c)} > −∞ ⇐⇒ p > 0.
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If p > 0, by the fact that limc→+∞ u′ (c) = 0, we can choose cp ≥ 0 such that

u′ (cp) ≤ p

which implies, by the concavity of u:

∀c ≥ 0 : u (c)− cp ≤ u (c)− u′ (cp) c ≤ u (cp)− u′ (cp) cp

which implies

H (k, p) = −F (k) p− sup
c∈[0,+∞)

{u (c)− cp} ≥ −F (k) p−u (cp)+u′ (cp) cp > −∞

If p ≤ 0 then

H (k, p) = −F (k) p− sup
c∈[0,+∞)

{u (c)− cp} ≤ −F (k) p− sup
c∈[0,+∞)

u (c) = −∞

because limc→+∞ u (c) = +∞.

Moreover by Remark 55, v′ (k) > 0 for every k > 0 in the previous de�nition.

De�nition 58. A function v ∈ C+ ((0,+∞) ,R) is called a viscosity subso-

lution [supersolution] of (HJB) if, and only if:

for every φ ∈ C1 ((0,+∞) ,R) and for every local maximum [minimum] point

k0 > 0 of v − φ:

ρv (k0)− sup {[F (k0)− c] · φ′ (k0) + u (c) / c ∈ [0,+∞)} =

ρv (k0) +H (k0, φ
′ (k0)) ≤ 0

[≥ 0]

If v is both a viscosity subsolution of (HJB) and a viscosity supersolution of

(HJB), then we say that v is a viscosity solution of (HJB).

Remark 59. The latter de�nition is well posed. Indeed, let v ∈ C+ ((0,+∞) ,R)
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and φ ∈ C1 ((0,+∞) ,R). If k0 is a local maximum for v − φ in (0,+∞),

then for h < 0 big enough we have:

v (k0)− v (k0 + h) ≥ φ (k0)− φ (k0 + h) =⇒

0 < C− ≤ v (k0)− v (k0 + h)

h
≤ φ (k0)− φ (k0 + h)

h
.

If k0 is a local minimum for v − φ in (0,+∞), then for h > 0 small enough

we have:

v (k0)− v (k0 + h) ≤ φ (k0)− φ (k0 + h) =⇒

0 < C+ ≤ v (k0)− v (k0 + h)

h
≤ φ (k0)− φ (k0 + h)

h
.

In both cases, we have φ′ (k0) > 0.

Lemma 60. Let k0 > 0 and (cT )T>0 ⊆ Λ (k0) satifying:

∥cT∥∞,[0,T ] ≤ N (k0, T ) ∀T > 0.

where N is the function de�ned in Lemma 33. Hence

∀T ∈ [0, 1] : ∀t ∈ [0, T ] : |k (t; k0, cT )− k0| ≤ TeM̄t [F (k0) +N (k0, 1)] .

In paricular k (T ; k0, cT ) → k0 as T → 0.

Proof. Set k0 and (cT )T>0 as in the hypothesis and �x 0 ≤ T ≤ 1. Hence

integrating both sides of the state equation we get, for every t ∈ [0, T ]:

k (t; k0, cT )− k0 =

ˆ t

0

[F (k0)− cT (s)] ds+

ˆ t

0

[F (k (s; k0, cT ))− F (k0)] ds
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which implies by Remark 31:

|k (t; k0, cT )− k0| ≤
ˆ t

0

|F (k0)− cT (s)| ds+
ˆ t

0

|F (k (s; k0, cT ))− F (k0)| ds

≤
ˆ T

0

|F (k0)− cT (s)| ds+ M̄

ˆ t

0

|k (s; k0, cT )− k0| ds

Hence by Gronwall's inequality and by the monotonicity of N (k0, ·), for every
T ∈ [0, 1] and every t ∈ [0, T ]:

|k (t; k0, cT )− k0| ≤ eM̄t

ˆ T

0

|F (k0)− cT (s)| ds.

≤ TeM̄t [F (k0) +N (k0, T )]

≤ TeM̄t [F (k0) +N (k0, 1)] .

Proposition 61. The value function V : [0,+∞) → R is a viscosity solution

of (HJB).

Consequently, if V ∈ C1 ([0,+∞) ,R), then V is strictly increasing and is a

solution of (HJB) - (65) in the classical sense.

Proof. In the �rst place, we show that V is a viscosity supersolution of (HJB).

Let φ ∈ C1 ((0,+∞) ,R) and k0 > 0 be a local minumum point of V − φ, so

that

V (k0)− V ≤ φ (k0)− φ

in a proper neighbourhood of k0. Now �x c ∈ [0,+∞) and set k := k (·; k0, c).
As k0 > 0, there exists Tc > 0 such that k > 0 in [0, Tc]. Hence the control

c̃ (t) :=

c if t ∈ [0, Tc]

0 if t > Tc
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is admissible at k0. Then by Theorem 52, for every τ ∈ [0, Tc]:

V (k0)− V (k (τ)) ≥
ˆ τ

0

e−ρtu (c̃ (t)) dt+ V (k (τ))
[
e−ρτ − 1

]
= u (c)

ˆ τ

0

e−ρtdt+ V (k (τ))
[
e−ρτ − 1

]
which implies, by the continuity of k and for every τ > 0 su�ciently small:

φ (k (0))− φ (k (τ))

τ
≥ u (c)

´ τ

0
e−ρtdt

τ
+ V (k (τ))

[e−ρτ − 1]

τ
.

Hence, letting τ → 0, using the continuity of V and k:

−φ′ (k0) [F (k0)− c] ≥ u (c)− ρV (k0)

which implies, taking the sup for c ≥ 0:

ρV (k0) +H (k0, φ
′ (k0)) ≥ 0

In the second place, we show that V is a viscosity subsolution of (HJB). Let

φ ∈ C1 ((0,+∞) ,R) and k0 > 0 be a local maximum point of V −φ, so that

V (k0)− V ≥ φ (k0)− φ (66)

in a proper neighbourhood N (k0) of k0.

Set ϵ > 0 and de�ne a familty of admissible controls (cT,ϵ)T>0 ⊆ Λ (k0) such

that, for every T > 0:

V (k0)− Tϵ ≤
ˆ T

0

e−ρtu (cT,ϵ (t)) dt+ e−ρTV (k (T ; k0, cT,ϵ)) . (67)
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Now set c∗T,ϵ ∈ Λ (k (T ; k0, cT,ϵ)) optimal at k (T ; k0, cT,ϵ), and de�ne

ĉT,ϵ (t) :=

cT,ϵ (t) if t ∈ [0, T ]

c∗T,ϵ (t− T ) if t > T

First observe that ĉT,ϵ ∈ Λ (k0) because ĉT,ϵ ≥ 0 and

k (t; k0, ĉT,ϵ) = k (t; k0cT,ϵ) ≥ 0 ∀t ∈ [0, T ]

k (t+ T ; k0, ĉT,ϵ) = k
(
t; k (T ; k0, cT,ϵ) , c

∗
T,ϵ

)
≥ 0 ∀t > T

Moreover,

ˆ +∞

T

e−ρsu (ĉT,ϵ (s)) ds = e−ρT

ˆ +∞

T

e−ρ(s−T )u
(
c∗T,ϵ (s− T )

)
ds

= e−ρTU
(
c∗T,ϵ; k (T ; k0, cT,ϵ)

)
Hence by (67) and the optimality of c∗T,ϵ:

V (k0)− Tϵ ≤
ˆ T

0

e−ρtu (cT,ϵ (t)) dt+ e−ρTV (k (T ; k0, cT,ϵ))

=

ˆ T

0

e−ρtu (cT,ϵ (t)) dt+ e−ρTU
(
c∗T,ϵ; k (T ; k0, cT,ϵ)

)
=

ˆ T

0

e−ρtu (ĉT,ϵ (t)) dt+

ˆ +∞

T

e−ρsu (ĉT,ϵ (s)) ds = U (ĉT,ϵ; k0)

Now take (ĉT,ϵ)
T as in Lemma 33 and set c̄T,ϵ := (ĉT,ϵ)

T for simplicity of
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notation (hence c̄T,ϵ ∈ Λ (k0)). We have:

V (k0)− Tϵ ≤ U (ĉT,ϵ; k0) ≤ U (c̄T,ϵ; k0)

=

ˆ T

0

e−ρtu (c̄T,ϵ (t)) dt+ e−ρT

ˆ +∞

T

e−ρ(s−T )U (c̄T,ϵ (s− T + T )) ds

=

ˆ T

0

e−ρtu (c̄T,ϵ (t)) dt+ e−ρTU (c̄T,ϵ (·+ T ) ; k (T ; k0, c̄T,ϵ))

≤
ˆ T

0

e−ρtu (c̄T,ϵ (t)) dt+ e−ρTV (k (T ; k0, c̄T,ϵ))

where we have used Remark 51.

By Lemma 60 we have for T > 0 su�ciently small (say T < T̂ ),

k (T ; k0, c̄T,ϵ) ∈ N (k0) .

Hence, setting k̄T,ϵ := k (·; k0, c̄T,ϵ), for every T < T̂ , we have by (66):

φ (k0)− φ
(
k̄T,ϵ (T )

)
− e−ρTV

(
k̄T,ϵ (T )

)
≤ V (k0)− V

(
k̄T,ϵ (T )

)
− e−ρTV

(
k̄T,ϵ (T )

)
≤
ˆ T

0

e−ρtu (c̄T,ϵ (t)) dt− V
(
k̄T,ϵ (T )

)
+ Tϵ

which implies

ˆ T

0

−
{
φ′ (k̄T,ϵ (t)) [F (k̄T,ϵ (t))− c̄T,ϵ (t)

]
+ e−ρtu (c̄T,ϵ (t))

}
dt

≤ V
(
k̄T,ϵ (T )

) [
e−ρT − 1

]
+ Tϵ. (68)
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Observe that the integral at the left hand member bigger than:

ˆ T

0

−{[φ′ (k0) + ω1 (t)] [F (k0)− c̄T,ϵ (t) + ω2 (t)] + u (c̄T,ϵ (t))} dt =
ˆ T

0

−{φ′ (k0) [F (k0)− c̄T,ϵ (t)] + u (c̄T,ϵ (t))} dt+

+

ˆ T

0

−{φ′ (k0)ω2 (t) dt+ ω1 (t) [ω2 (t) + F (k0)− c̄T,ϵ (t)] dt} (69)

where ω1, ω2 are functions which are continuous in a neighbourhood of 0 and

satisfy:

ω1 (0) = ω2 (0) = 0.

This implies, for T < 1:∣∣∣∣ˆ T

0

φ′ (k0)ω2 (t) dt+

ˆ T

0

ω1 (t) [ω2 (t) + F (k0)− c̄T,ϵ (t)] dt

∣∣∣∣
≤ |φ′ (k0)| o1 (T ) + o2 (T ) +

ˆ T

0

|ω1 (t)| [F (k0) + c̄T,ϵ (t)] dt

≤ |φ′ (k0)| o1 (T ) + o2 (T ) + [F (k0) +N (k0, T )] o3 (T )

≤ |φ′ (k0)| o1 (T ) + o2 (T ) + [F (k0) +N (k0, 1)] o3 (T )

where

lim
T→0

oi (T )

T
= 0

for i = 1, 2, 3. Observe that this is true even if the ois depend on T , by

Lemma 60. For instance,

|o1 (T )| =

∣∣∣∣ˆ T

0

ω2 (t) dt

∣∣∣∣ = T max
[0,T ]

|ω2| = T |ω2 (τT )|

= T
∣∣F (k̄T,ϵ (τT ))− F (k0)

∣∣
≤ MT

∣∣k̄T,ϵ (τT )− k0
∣∣ ≤ MT 2eM̄τT [F (k0) +N (k0, 1)]
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Moreover, by the fact that V ∈ C+ ([0,+∞) ,R), we have for any t ∈ [0, T ]:

−{φ′ (k0) [F (k0)− c̄T,ϵ (t)] + u (c̄T,ϵ (t))} ≥ − sup
c≥0

{φ′ (k0) [F (k0)− c] + u (c)}

= H (k0, φ
′ (k0)) > −∞,

by which we can write:

ˆ T

0

−{φ′ (k0) [F (k0)− c̄T,ϵ (t)] + u (c̄T,ϵ (t))} dt ≥ T ·H (k0, φ
′ (k0)) .

Hence, by (68) and (69):

V
(
k̄T,ϵ (T )

) [
e−ρT − 1

]
+ Tϵ

≥ −
ˆ T

0

{φ′ (k0) [F (k0)− c̄T,ϵ (t)] + u (c̄T,ϵ (t))} dt+

+

ˆ T

0

−{φ′ (k0)ω2 (t) dt+ ω1 (t) [ω2 (t) + F (k0)− c̄T,ϵ (t)] dt}

≥ T ·H (k0, φ
′ (k0)) + oT→0 (T )

for any 0 < T < 1, T̂ . Hence dividing by T , and then letting T → 0, again

by Lemma 60 and the continuity of V we obtain:

−ρV (k0) + ϵ ≥ H (k0, φ
′ (k0))

which proves the assertion since ϵ is arbitrary.
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