Corso di E.D.P.- Corso di Laurea in Matematica (A.A. 2018/2019)

Prova scritta del 10 Settembre 2019

Cognome:	 _
Nome:	
Matricola:_	

Esercizio 1 Sia $\Omega \subset \mathbb{R}^n$ aperto e limitato, e sia

$$Lu(x) = \Delta u + \sum_{j=1}^{n} a_j(x) \frac{\partial u}{\partial x_j}$$

con $a_i(x) \in C^0(\bar{\Omega})$.

Provare che il seguente problema ammette al piu' una soluzione per ogni fissata $\varphi \in C^0(\partial\Omega)$

$$\begin{cases} Lu = 0, & u \in C^2(\Omega) \cap C^0(\bar{\Omega}) \\ u = \varphi \text{ su } \partial\Omega. \end{cases}$$

Sugg.: potrebbe essere utile usare le funzioni test e^{Mx_1}

Esercizio 2

Sia dato il seguente problema di Cauchy

(1)
$$\begin{cases} \partial_t u - \partial_x^2 u = 0, & (t, x) \in (0, \infty) \times \mathbb{R}, \\ u \in C^{\infty}((0, \infty) \times \mathbb{R}) \cap C^0([0, \infty) \times \mathbb{R}), \\ u(0, x) = e^{-x^2} \end{cases}$$

provare che:

- vale la seguente alternativa: il problema (1) non ammette soluzioni oppure ne ammette infinite;
- il problema (1) ammette una unica soluzione se si aggiunge la condizione $u(t,x) \ge 0$. In tal caso esibire esplicitamente l' unica soluzione u(t,x).

1. Soluzioni

Esercizio 1

Basta provare il principio del massimo, ossia $\min_{\partial\Omega}\varphi \leq u(x) \leq \max_{\partial\Omega}\varphi$, per ogni $x \in \Omega$. Proviamo la disuguaglianza a destra (quella a sinistra e' simile). A tal fine osserviamo che tale disuguaglianza vale se si assume Lu(x)>0 per ogni $x\in\Omega$. Infatti in tal caso, se per assurdo avessimo un massimo interno nel punto $x_0\in\Omega$ allora $Lu(x_0)\leq 0$ poiche' nel punto di massimo interno avremmo gradiente nullo e il laplaciano sarebbe non positivo. Cio' sarebbe in contraddizione con Lu(x)>0 per ogni $x\in\Omega$. Per rimuovere l'ipotesi Lu(x)<0 per ogni $x\in\Omega$ (che non e'soddisfatta per ipotesi) introduciamo $u_{\epsilon,M}(x)=u(x)+\epsilon e^{Mx_1}$. E' facile vedere che se scegliamo $M=\bar{M}$ abbastanza grande allora $L(u_{\epsilon,\bar{M}})(x)>0$ e quindi per quanto visto $u_{\epsilon,\bar{M}}(x)\leq\sup_{\partial\Omega}u_{\epsilon,\bar{M}}$ e quindi basta passare al limite per $\epsilon\to0$.

Esercizio 2

Se u(t,x) e' una soluzione del problema (1) allora anche $u(t,x)+\lambda T(t,x)$ e' soluzione dello stesso problema per ogni $\lambda \in \mathbb{R}$, dove T(t,x) e' la soluzione di Tychonoff dell'equazione del calore con dato iniziale nullo.

L'unicita' delle soluzioni non-negative dell'equazione del calore e' stata provata a lezione mentre per provarne l'esistenza basta considerare $e^{t\Delta}(e^{-x^2})$.

Per trovare la soluzione esplicitamente possiamo procedere per integrazione sfruttando la forma esplicita del nucleo di convoluzione associato all'equazione del calore, oppure osserviamo quanto segue. Ri-

cordiamo che la soluzione fondamentale $\frac{e^{-\frac{x^2}{4t}}}{\sqrt{4\pi t}}$ risolve l'equazione del calore per t>0. Traslando la soluzione indietro nel tempo otteniamo un'altra soluzione

$$\frac{e^{-\frac{x^2}{4(t+\frac{1}{4})}}}{\sqrt{4\pi(t+\frac{1}{4})}}$$

che risolve ancora l'equazione del calore con dato di Cauchy $\frac{e^{-x^2}}{\sqrt{\pi}}$.

Pertanto la soluzione cercata e' $\frac{e^{-\frac{x^2}{4(t+\frac{1}{4})}}}{2\sqrt{t+\frac{1}{4}}}$.