A harmonic function with Lipschitz boundary datum

For every
$$\ell > 0$$
 we define the rectangle

Consider the functions

 $\phi: \mathcal{R}_1 \to \mathbb{R} , \quad \phi(x, y) = |x|.$

 $\mathcal{R}_{\ell} := (-\ell, \ell) \times (0, \ell).$

and $h : \mathcal{R}_1 \to \mathbb{R}$, solution to

 $\Delta h = 0$ in \mathcal{R}_1 , $h = \phi$ on $\partial \mathcal{R}_1$.

Proposizione 1. The function $h : \mathcal{R}_1 \to \mathbb{R}$ is not Lipschitz continuous in (0,0).

Proof. We claim that:

(1)

$$h(x,y) - \phi(x,y) \ge \varepsilon y$$
 in $\mathcal{R}_{1/2}$

We next define the functions

$$h_n: \mathcal{R}_1 \to \mathbb{R}$$
, $h_n(x, y) = 2^n h\left(\frac{x}{2^n}, \frac{y}{2^n}\right)$,

and we notice that for every n,

 $\Delta h_n = 0 \quad \text{in} \quad \mathcal{R}_1.$

By the definition of h_1 and the estimate (1), we get that

$$h_1(x,y) = 2h\left(\frac{x}{2}, \frac{y}{2}\right) \ge 2\left(\phi\left(\frac{x}{2}, \frac{y}{2}\right) + \varepsilon\frac{y}{2}\right) = \phi(x,y) + \varepsilon y,$$

for every $(x, y) \in \mathcal{R}_1$. Thus, by the maximum principle,

$$h_1(x,y) \ge h(x,y) + \varepsilon y \ge \phi(x,y) + 2\varepsilon y$$
 in $\mathcal{R}_{1/2}$.

Then,

$$h_2(x,y) = 2h_1\left(\frac{x}{2}, \frac{y}{2}\right) \ge 2\left(\phi\left(\frac{x}{2}, \frac{y}{2}\right) + 2\varepsilon\frac{y}{2}\right) \ge \phi(x,y) + 2\varepsilon y \quad \text{in} \quad \mathcal{R}_1.$$

Arguing by induction, we have that

$$h_n(x,y) \ge \phi(x,y) + n\varepsilon y$$
 in $\partial \mathcal{R}_1$.

In particular,

$$h_n(0,1) \ge n\varepsilon$$

But then,

$$h\left(0,\frac{1}{2^n}\right) \geq \frac{n\varepsilon}{2^n}$$

which proves that h is not Lipschitz continuous in (0,0).