

Exercices

Exercice 1. Let u_n be a sequence in $L^2(\mathbb{R})$ converging weakly to some $u \in L^2(\mathbb{R})$. Prove that

$$\int_{\mathbb{R}} e^{-x^2} u^2(x) dx \leq \liminf_{n \rightarrow +\infty} \int_{\mathbb{R}} e^{-x^2} u_n^2(x) dx.$$

Exercice 2. Let \mathcal{B}_1 and \mathcal{B}_2 be two Banach spaces and let

$$T : \mathcal{B}_1 \rightarrow \mathcal{B}_2$$

be a bounded linear map in the sense that

$$\sup \left\{ \|Tx\|_{\mathcal{B}_2} : x \in \mathcal{B}_1, \|x\|_{\mathcal{B}_1} \leq 1 \right\} < +\infty.$$

Prove that, if $x_n \in \mathcal{B}_1$ converges weakly to x in \mathcal{B}_1 , then $T(x_n)$ converges weakly to $T(x)$ in \mathcal{B}_2

Exercice 3. Let \mathcal{B}_1 and \mathcal{B}_2 be two Banach spaces and let

$$T : \mathcal{B}_1 \rightarrow \mathcal{B}_2$$

be a bounded linear map in the sense that

$$\sup \left\{ \|Tx\|_{\mathcal{B}_2} : x \in \mathcal{B}_1, \|x\|_{\mathcal{B}_1} \leq 1 \right\} < +\infty.$$

Prove that the adjoint map

$$T_* : \mathcal{B}_2' \rightarrow \mathcal{B}_1'$$

defined as

$$\langle T_*(\xi), x \rangle_{\mathcal{B}_1', \mathcal{B}_1} = \langle \xi, T(x) \rangle_{\mathcal{B}_2', \mathcal{B}_2}$$

is bounded in the sense that

$$\sup \left\{ \|T\xi\|_{\mathcal{B}_1'} : \xi \in \mathcal{B}_2', \|\xi\|_{\mathcal{B}_2'} \leq 1 \right\} < +\infty.$$

Exercice 4. Let \mathcal{I} be a bounded interval in \mathbb{R} . Let $p \in (0, +\infty)$ and let $q := \frac{p}{p-1}$.

Consider the space \mathcal{W} of all $u \in L^p$ for which there exists $v \in L^q$ such that

$$\int_{\mathcal{I}} e^{-x^2} u(x) \varphi'(x) dx = - \int_{\mathcal{I}} v(x) \varphi(x) dx.$$

(1) Prove that \mathcal{W} is a Banach space with the norm $\|u\|_{L^p} + \|v\|_{L^q}$.

(2) For $p \leq 2$ prove that if $\mathcal{W} = W^{1,p}(\mathcal{I})$.

(3) Is it true that $\mathcal{W} = W^{1,p}(\mathcal{I})$ when $p > 2$?

Exercice 5. Consider the operator

$$T : C_c^\infty(0, 1) \rightarrow \mathbb{R}, \quad T(u) = \int_0^1 \frac{u(x)}{\sqrt{x}} dx.$$

(1) Prove that the operator T cannot be extended to a bounded linear operator on $L^2(0, 1)$.

(2) Prove that the operator T can be extended to a bounded linear operator on $W^{1,2}(0, 1)$.

(3) Prove that the operator T can be extended to a bounded linear operator on $W_0^{1,2}(0, 1)$ endowed with the norm

$$\|u\|_{W_0^{1,2}(0,1)}^2 = \int_0^1 (u')^2 dx,$$

and compute the norm

$$\sup \left\{ T(u) : u \in W^{1,2}(0, 1), \|u\|_{W_0^{1,2}(0,1)} \leq 1 \right\}.$$

Exercice 6. Let $\mathcal{I} = (0, 1)$. Consider the bilinear map

$$Q : W^{1,2}(\mathcal{I}) \times W^{1,2}(\mathcal{I}) \rightarrow \mathbb{R},$$

defined, for every $u, v \in W^{1,2}(\mathcal{I})$, as:

$$Q(u, v) = u(0)v(0) + \int_0^1 u'(x)v'(x) dx.$$

Prove that

$$Q(u, u) > 0 \quad \text{for all } u \in W^{1,2}(I) \setminus \{0\},$$

and that $W^{1,2}(I)$ endowed with the scalar product Q is complete.

Exercice 7. Let $I = (0, 1)$. Consider the space

$$W := \left\{ u \in W^{1,2}(I) : \int_0^1 u(x) dx = 0 \right\}.$$

(a) Consider the bilinear map

$$Q : W \times W \rightarrow \mathbb{R},$$

defined, for every $u, v \in W$, as:

$$Q(u, v) = \int_0^1 u'(x)v'(x) dx.$$

Prove that

$$Q(u, u) > 0 \quad \text{for all } u \in W \setminus \{0\},$$

(b) Prove that the space W endowed with the scalar product Q is complete.

(c) Prove that there exists a function $u \in W^{1,2}(I)$ such that

$$\int_0^1 u(x) dx = 0, \quad \int_0^1 u^2(x) dx = 1$$

and

$$\int_0^1 (u'(x))^2 dx = \inf \left\{ \int_0^1 (v'(x))^2 dx : v \in W^{1,2}(I), \int_0^1 v(x) dx = 0, \int_0^1 v^2(x) dx = 1 \right\}.$$

Exercice 8. Consider the interval $I = (0, 1)$ and the space $W_0^{1,2}(I)$ endowed with the norm

$$\|u\|_{W^{1,2}(I)} = \left(\int_0^1 (u'(x))^2 dx \right)^{1/2}.$$

For every $f, g \in L^2(I)$, we define the map

$$T_{f,g} : W^{1,2}(I) \rightarrow \mathbb{R}$$

$$T_{f,g}(u) = \int_0^1 f(x)u(x) dx + \int_0^1 g(x)v(x) dx.$$

(a) Prove that for every $(f, g) \in L^2(I) \times L^2(I)$, there is a function $h \in L^2(I)$ such that.

(b) For $f = 1$ and $g = 1$, find the function h and compute the norm of the operator $T_{f,g}$.

Exercice 9. Consider the interval $I = (0, 1)$ and the space $W^{1,2}(I)$ endowed with the norm

$$\|u\|_{W^{1,2}(I)} = \left(\int_0^1 u^2(x) dx + \int_0^1 (u'(x))^2 dx \right)^{1/2}.$$

For every $f, g \in L^2(I)$, we define the map

$$T_{f,g} : W^{1,2}(I) \rightarrow \mathbb{R}$$

$$T_{f,g}(u) = \int_0^1 f(x)u(x) dx + \int_0^1 g(x)v(x) dx.$$

(a) Prove that if $v \in H_0^1(I)$, then

$$T_{f,g} = T_{f+v', g+v}.$$

(b) Prove that if $(f_1, g_1) \in L^2(I) \times L^2(I)$ and $(f_2, g_2) \in L^2(I) \times L^2(I)$ are such that

$$T_{f_1, g_1} = T_{f_2, g_2},$$

then there is a function $v \in H_0^1(I)$ such that

$$f_2 = f_1 + v' \quad \text{and} \quad g_2 = g_1 + v.$$

(c) Prove that, for every $(f, g) \in L^2(I) \times L^2(I)$, there is a solution to the variational problem

$$\min \left\{ \int_0^1 |f + v'|^2 + \int_0^1 |g + v|^2 dx : v \in W_0^{1,2}(I) \right\}.$$