Dual spaces

The space \mathcal{B}' of bounded linear operators

Theorem 1. Let \mathcal{B} be a Banach space. Let \mathcal{B}' be the collection of all bounded linear operators on \mathcal{B} . Moreover, for every $T \in \mathcal{B}'$, let

$$||T||_{\mathcal{B}'} := \sup \{ T(f) : f \in \mathcal{B}, ||f||_{\mathcal{B}} \le 1 \}.$$

Then, $(\mathcal{B}', \|\cdot\|_{\mathcal{B}'})$ is a Banach space.

Proof.

Step 1. \mathcal{B}' is a linear space. Indeed, it is immediate to check that if

$$S, T: \mathcal{B} \to \mathbb{R}$$

are linear and continuous operators on \mathcal{B} , then for all $\alpha, \beta \in \mathbb{R}$, the map

$$\alpha T + \beta S : \mathcal{B} \to \mathbb{R}$$

is linear and continuous.

Step 2. $\|\cdot\|_{\mathcal{B}'}$ is a norm on \mathcal{B}' . We first notice that

$$||T||_{\mathcal{B}'} \Rightarrow T(f) = 0 \text{ for all } f \in \mathcal{B} \Rightarrow T = 0,$$

and that

$$\begin{aligned} \|\alpha T\|_{\mathcal{B}'} &= \sup \left\{ \alpha T(f) : f \in \mathcal{B}, \|f\|_{\mathcal{B}} \le 1 \right\} \\ &= |\alpha| \sup \left\{ T(f) : f \in \mathcal{B}, \|f\|_{\mathcal{B}} \le 1 \right\} = |\alpha| \|T\|_{\mathcal{B}'}. \end{aligned}$$

Finally, for the triangular inequality we notice that

$$|(T+S)(f)| \le |T(f)| + |S(f)| \le (||T||_{\mathcal{B}'} + ||S||_{\mathcal{B}'})||f||_{\mathcal{B}} \text{ for all } f \in \mathcal{B}.$$

Taking the supremum over all $f \in \mathcal{B}$ with $||f||_{\mathcal{B}} \leq 1$, we get

$$||T + S||_{\mathcal{B}'} \le ||T||_{\mathcal{B}'} + ||S||_{\mathcal{B}'}.$$

Step 3. $(\mathcal{B}', \|\cdot\|_{\mathcal{B}'})$ is complete. Consider a sequence T_n in \mathcal{B}' , which is Cauchy with respect to the norm $\|\cdot\|_{\mathcal{B}'}$, that is, for all $\varepsilon > 0$ there exists $N \ge 0$ such that

$$||T_n - T_m||_{\mathcal{B}'} \le \varepsilon$$
 for all $n, m \ge N$.

In particular, for all $f \in \mathcal{B}$, we have

$$|T_n(f) - T_m(f)| \le ||T_n - T_m||_{\mathcal{B}'} ||f||_{\mathcal{B}} \le \varepsilon ||f||_{\mathcal{B}}.$$

Thus, $T_n(f)$ is a Cauchy sequence in \mathbb{R} . Let

$$T:\mathcal{B}\to\mathbb{R}$$

be the map defined as

$$T(f) := \lim_{n \to +\infty} T_n(f)$$
 for all $f \in \mathcal{B}$.

It remains to prove that:

 (\bigstar) T is linear and bounded;

$$(\bigstar \bigstar) \|T_n - T\|_{\mathcal{B}'} \to 0.$$

In order to prove (\bigstar) , we first notice that, since $\|\cdot\|_{\mathcal{B}'}$ is a norm, we have

$$\left| \|T_n\|_{\mathcal{B}'} - \|T_m\|_{\mathcal{B}'} \right| \le \|T_n - T_m\|_{\mathcal{B}'}.$$

Thus, the sequence of norms $||T_n||_{\mathcal{B}'}$ is a Cauchy sequence in \mathbb{R} . Then, the limit

$$L:=\lim_{n\to\infty}\|T_n\|_{\mathcal{B}'},$$

exists and is finite. Now, for all $f \in \mathcal{B}$, we have

$$|T(f)| \le \lim_{n \to \infty} ||T_n||_{\mathcal{B}'} ||f||_{\mathcal{B}} = L||f||_{\mathcal{B}},$$

which proves that T is bounded and $||T||_{\mathcal{B}'} \leq L$.

We next prove $(\bigstar \bigstar)$. Let $\varepsilon > 0$ be fixed. We can find $N \geq 1$ such that

$$||T_n - T_m||_{\mathcal{B}'} \le \varepsilon$$
 for all $n, m \ge N$.

Then, for all $f \in \mathcal{B}$ and all $m \ge n \ge N$, we have

$$|T_n(f) - T(f)| \le |T(f) - T_m(f)| + |T_n(f) - T_m(f)| \le |T(f) - T_m(f)| + \varepsilon ||f||_{L^{\infty}}.$$

Letting $m \to \infty$, we get that for all $f \in \mathcal{B}$ and all $n \ge N$

$$|T_n(f) - T(f)| \le \varepsilon ||f||_{\mathcal{B}},$$

which implies that

$$||T_n - T||_{\mathcal{B}'} \le \varepsilon$$
 for all $n \ge N$.

The bidual \mathcal{B}''

Fix a vector $f \in \mathcal{B}$ and consider the map

$$\delta_f: \mathcal{B}' \to \mathbb{R},$$

defined through the identity

$$\delta_f(T) = T(f)$$
 for all $T \in \mathcal{B}'$.

By construction, δ_f is linear. Moreover, since

$$|\delta_f(T)| = |T(f)| \le ||T||_{\mathcal{B}'} ||f||_{\mathcal{B}} \text{ for all } T \in \mathcal{B}',$$

we get that δ_f is a bounded operator and for its operator norm

$$\|\delta_f\|_{\mathcal{B}''} := \sup \left\{ \delta_f(T) : T \in \mathcal{B}', \|T\|_{\mathcal{B}'} \le 1 \right\},$$

we have

$$\|\delta_f\|_{\mathcal{B}''} \leq \|f\|_{\mathcal{B}}.$$

Moreover, by the Hahn-Banach theorem, there is an operator $T_f \in \mathcal{B}'$ such that

$$||T_f||_{\mathcal{B}'} = 1$$
 and $|T_f(f)| = ||f||_{\mathcal{B}}$.

This gives the opposite inequality

$$\|\delta_f\|_{\mathcal{B}''} \ge |T_f(f)| = \|f\|_{\mathcal{B}},$$

which finally leads to

$$\|\delta_f\|_{\mathcal{B}''} = \|f\|_{\mathcal{B}}.$$

Thus, we have obtained by the inclusion operator

$$I: \mathcal{B} \to \mathcal{B}''$$
, $I(f) = \delta_f$,

has the following properties:

- I is linear;
- *I* is injective;
- $I(\mathcal{B})$ is a closed linear subspace of \mathcal{B}'' ;
- I is an isometry between the Banach spaces $(\mathcal{B}, \|\cdot\|_{\mathcal{B}})$ and $(I(\mathcal{B}), \|\cdot\|_{\mathcal{B}''})$.

Reflexive spaces

Definition 2. A Banach space \mathcal{B} is reflexive, if the inclusion operator I is surjective, that is, if $I(\mathcal{B}) = \mathcal{B}''$. For a reflexive space \mathcal{B} , we will simply write

$$\mathcal{B}'' = \mathcal{B}$$
.

Remark 3. For any measurable set $\Omega \subset \mathbb{R}^d$ and any $p \in (1, +\infty)$, the space $L^p(\Omega)$ is reflexive.

Proposition 4. The spaces $L^1(\Omega)$ and $L^{\infty}(\Omega)$ are NOT reflexive.

Proof. We first recall that

$$(L^1(\Omega))' = L^{\infty}(\Omega),$$

and that $(L^{\infty}(\Omega))'$ contains $L^{1}(\Omega)$, but also contains elements, which are not in $L^{1}(\Omega)$. This immediately gives that

$$(L^1(\Omega))'' \neq L^1(\Omega),$$

so $L^1(\Omega)$ is not reflexive.

Next, suppose by contradiction that $L^{\infty}(\Omega)$ is reflexive: $(L^{\infty}(\Omega))'' = L^{\infty}(\Omega)$. Since $L^{1}(\Omega)$ is (can be identified with) a proper closed subspace of $(L^{\infty}(\Omega))' = (L^{1}(\Omega))''$, by the second version of the Hahn-Banach's theorem we can find a bounded linear operator

$$\xi: (L^{\infty}(\Omega))' \to \mathbb{R}$$

such that

$$\xi \neq 0$$
 and $\xi \equiv 0$ on $L^1(\Omega)$.

Now, since by assumption $(L^{\infty}(\Omega))'' = L^{\infty}(\Omega)$ the operator ξ should be of the form

$$\xi = \delta_f : (L^{\infty}(\Omega))' \to \mathbb{R} , \quad \delta_f(T) = T(f),$$

for some $f \in L^{\infty}(\Omega)$. We next notice that δ_f acts on the subspace $L^1(\Omega) \subset (L^{\infty}(\Omega))'$ as follows: for every $T_g \in (L^{\infty}(\Omega))'$ of the form

$$T_g(\phi) = \int_{\Omega} g(x)\phi(x) dx$$
 for all $\phi \in L^{\infty}(\Omega)$,

where $q \in L^1(\Omega)$ is fixed, we have

$$\delta_f(T_g) = T_g(f) = \int_{\Omega} f(x)g(x) dx.$$

Since the operator $\xi = \delta_f$ is vanishing on the space of all such operators T_g , we have that $f \equiv 0$. But then $\xi \equiv 0$, which is a contradiction.