
Teoremi ed esercizi di Analisi www.velichkov.it

Dual spaces

The space B′ of bounded linear operators

Theorem 1. Let B be a Banach space. Let B′ be the collection of all bounded linear operators on B.
Moreover, for every T ∈ B′, let

‖T‖B′ := sup
{
T (f) : f ∈ B , ‖f‖B ≤ 1

}
.

Then, (B′, ‖ · ‖B′) is a Banach space.

Proof.
Step 1. B′ is a linear space. Indeed, it is immediate to check that if

S, T : B → R

are linear and continuous operators on B, then for all α, β ∈ R, the map

αT + βS : B → R

is linear and continuous.

Step 2. ‖ · ‖B′ is a norm on B′. We first notice that

‖T‖B′ ⇒ T (f) = 0 for all f ∈ B ⇒ T = 0,

and that

‖αT‖B′ = sup
{
αT (f) : f ∈ B , ‖f‖B ≤ 1

}
= |α| sup

{
T (f) : f ∈ B , ‖f‖B ≤ 1

}
= |α|‖T‖B′ .

Finally, for the triangular inequality we notice that

|(T + S)(f)| ≤ |T (f)|+ |S(f)| ≤
(
‖T‖B′ + ‖S‖B′

)
‖f‖B for all f ∈ B.

Taking the supremum over all f ∈ B with ‖f‖B ≤ 1, we get

‖T + S‖B′ ≤ ‖T‖B′ + ‖S‖B′ .

Step 3. (B′, ‖ · ‖B′) is complete. Consider a sequence Tn in B′, which is Cauchy with respect to the
norm ‖ · ‖B′ , that is, for all ε > 0 there exists N ≥ 0 such that

‖Tn − Tm‖B′ ≤ ε for all n,m ≥ N .

In particular, for all f ∈ B, we have

|Tn(f)− Tm(f)| ≤ ‖Tn − Tm‖B′‖f‖B ≤ ε‖f‖B.

Thus, Tn(f) is a Cauchy sequence in R. Let

T : B → R

be the map defined as
T (f) := lim

n→+∞
Tn(f) for all f ∈ B.

It remains to prove that:
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(F) T is linear and bounded;

(FF) ‖Tn − T‖B′ → 0.

In order to prove (F), we first notice that, since ‖ · ‖B′ is a norm, we have∣∣∣‖Tn‖B′ − ‖Tm‖B′

∣∣∣ ≤ ‖Tn − Tm‖B′ .

Thus, the sequence of norms ‖Tn‖B′ is a Cauchy sequence in R. Then, the limit

L := lim
n→∞

‖Tn‖B′ ,

exists and is finite. Now, for all f ∈ B, we have

|T (f)| ≤ lim
n→∞

‖Tn‖B′‖f‖B = L‖f‖B,

which proves that T is bounded and ‖T‖B′ ≤ L.

We next prove (FF). Let ε > 0 be fixed. We can find N ≥ 1 such that

‖Tn − Tm‖B′ ≤ ε for all n,m ≥ N .

Then, for all f ∈ B and all m ≥ n ≥ N , we have

|Tn(f)− T (f)| ≤ |T (f)− Tm(f)|+ |Tn(f)− Tm(f)| ≤ |T (f)− Tm(f)|+ ε‖f‖L∞ .

Letting m→∞, we get that for all f ∈ B and all n ≥ N

|Tn(f)− T (f)| ≤ ε‖f‖B,

which implies that
‖Tn − T‖B′ ≤ ε for all n ≥ N.

The bidual B′′

Fix a vector f ∈ B and consider the map

δf : B′ → R,

defined through the identity
δf (T ) = T (f) for all T ∈ B′.

By construction, δf is linear. Moreover, since

|δf (T )| = |T (f)| ≤ ‖T‖B′‖f‖B for all T ∈ B′,

we get that δf is a bounded operator and for its operator norm

‖δf‖B′′ := sup
{
δf (T ) : T ∈ B′, ‖T‖B′ ≤ 1

}
,

we have
‖δf‖B′′ ≤ ‖f‖B.

Moreover, by the Hahn-Banach theorem, there is an operator Tf ∈ B′ such that

‖Tf‖B′ = 1 and |Tf (f)| = ‖f‖B.
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This gives the opposite inequality
‖δf‖B′′ ≥ |Tf (f)| = ‖f‖B,

which finally leads to
‖δf‖B′′ = ‖f‖B.

Thus, we have obtained by the inclusion operator

I : B → B′′ , I(f) = δf ,

has the following properties:

• I is linear;

• I is injective;

• I(B) is a closed linear subspace of B′′;

• I is an isometry between the Banach spaces (B, ‖ · ‖B) and (I(B), ‖ · ‖B′′).

Reflexive spaces

Definition 2. A Banach space B is reflexive, if the inclusion operator I is surjective, that is, if
I(B) = B′′. For a reflexive space B, we will simply write

B′′ = B.

Remark 3. For any measurable set Ω ⊂ Rd and any p ∈ (1,+∞), the space Lp(Ω) is reflexive.

Proposition 4. The spaces L1(Ω) and L∞(Ω) are NOT reflexive.

Proof. We first recall that
(L1(Ω))′ = L∞(Ω),

and that (L∞(Ω))′ contains L1(Ω), but also contains elements, which are not in L1(Ω). This immediately
gives that

(L1(Ω))′′ 6= L1(Ω),

so L1(Ω) is not reflexive.
Next, suppose by contradiction that L∞(Ω) is reflexive: (L∞(Ω))′′ = L∞(Ω). Since L1(Ω) is (can

be identified with) a proper closed subspace of (L∞(Ω))′ = (L1(Ω))′′, by the second version of the
Hahn-Banach’s theorem we can find a bounded linear operator

ξ : (L∞(Ω))′ → R

such that
ξ 6= 0 and ξ ≡ 0 on L1(Ω).

Now, since by assumption (L∞(Ω))′′ = L∞(Ω) the operator ξ should be of the form

ξ = δf : (L∞(Ω))′ → R , δf (T ) = T (f),

for some f ∈ L∞(Ω). We next notice that δf acts on the subspace L1(Ω) ⊂ (L∞(Ω))′ as follows: for
every Tg ∈ (L∞(Ω))′ of the form

Tg(φ) =

∫
Ω
g(x)φ(x) dx for all φ ∈ L∞(Ω),

where g ∈ L1(Ω) is fixed, we have

δf (Tg) = Tg(f) =

∫
Ω
f(x)g(x) dx.

Since the operator ξ = δf is vanishing on the space of all such operators Tg, we have that f ≡ 0. But
then ξ ≡ 0, which is a contradiction.
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