About the dual space of $L^{\infty}(\Omega)$

A special class of bounded linear functionals on $L^{\infty}(\Omega)$

Proposizione 1. Let $\Omega \subset \mathbb{R}^d$ be a Lebesgue measurable set. Fixed a function $g \in L^1(\Omega)$, consider the linear functional

$$T_q: L^{\infty}(\Omega) \to \mathbb{R}$$

defined as

$$T_g(f) = \int_{\Omega} f(x)g(x) dx$$
 for all $f \in L^{\infty}(\Omega)$.

Then, T_g is a bounded operator and its norm

$$||T_g|| := \sup \{ T_g(f) : f \in L^{\infty}(\Omega), ||f||_{L^{\infty}(\Omega)} \le 1 \},$$

is given by

$$||T_g|| = ||g||_{L^1(\Omega)}.$$

Proof. The boundedness of T_g follows from the inequality

$$|T_g(f)| = \left| \int_{\Omega} f(x)g(x) \, dx \right| \le ||f||_{L^{\infty}(\Omega)} ||g||_{L^{1}(\Omega)} \quad \text{for all} \quad f \in L^{\infty}(\Omega),$$

which also gives that

$$||T_g|| \leq ||g||_{L^1(\Omega)}.$$

In order to prove that we have an equality, we consider an increasing sequence of sets

$$\omega_1 \subset \omega_2 \subset \cdots \subset \omega_n \subset \cdots \subset \Omega$$

such that

$$\omega_n \subset \Omega$$
 and $|\omega_n| < \infty$ for all $n \ge 1$.

Fix n > 1 and consider as a test function

$$f_n(x) := \operatorname{sign}(q(x)) \mathbb{1}_{\omega_n}(x),$$

where the sign function is defined as

$$\operatorname{sign}: \mathbb{R} \to \mathbb{R} , \qquad \operatorname{sign} g := \begin{cases} 1 & \text{if} \quad g > 0, \\ 0 & \text{if} \quad g = 0, \\ -1 & \text{if} \quad g < 0. \end{cases}$$

Then,

$$T_g(f_n) = \int_{\Omega} f_n(x)g(x) dx = \int_{\omega_n} \operatorname{sign}(g(x))g(x) dx = \int_{\omega_n} |g(x)| dx,$$

which implies that

$$\sup \left\{ T_g(f) : f \in L^{\infty}(\Omega), \|f\|_{L^{\infty}(\Omega)} \le 1 \right\} \ge T_g(f_n) \ge \int_{\mathbb{R}^n} |g(x)| \, dx.$$

Now, by, the dominated convergence theorem, we have that

$$\mathbb{1}_{\omega_n}|g| \to |g|$$
 in $L^1(\Omega)$.

Thus, taking the limit as $n \to +\infty$, we get

$$||T_g|| \ge \lim_{n \to +\infty} \int_{\omega_n} |g(x)| dx = ||g||_{L^1(\Omega)},$$

which concludes the proof.

The dual space of $L^\infty(\Omega)$ is not $L^1(\Omega)$

Let $\Omega = \mathbb{R}$. Consider the space

$$C_0(\mathbb{R}) = \Big\{ f \in C(\mathbb{R}) : \lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = 0 \Big\}.$$

Then $C_0(\mathbb{R})$ is a closed subspace of the Banach space $L^{\infty}(\mathbb{R})$. Moreover, the functional

$$\delta_0: C_0(\mathbb{R}) \to \mathbb{R}:, \qquad \delta_0(f) = f(0),$$

is a bounded linear functional on $C_0(\mathbb{R})$ with norm

$$\left\{\delta_0(f) : f \in C_0(\mathbb{R}), \|f\|_{L^{\infty}} \le 1\right\} = 1.$$

By the Hahn-Banach's theorem, δ_0 can be extended to a bounded linear functional

$$T:L^{\infty}(\mathbb{R})\to\mathbb{R}$$

with norm 1. On the other hand, it is immediate to check that there is no function $g \in L^1(\mathbb{R})$ such that

$$\int_{\mathbb{R}} g(x)\phi(x) dx = \phi(0) \text{ for all } \phi \in C_0(\mathbb{R}).$$