Teorema di Hahn-Banach

Teorema 1 (Hahn-Banach). Sia \mathcal{B} uno spazio di Banach. Siano V un sottospazio vettoriale di \mathcal{B} , C > 0 una costante e $T: V \to \mathbb{R}$ un'applicazione lineare tale che

$$|T(v)| \le C||v||_{\mathcal{B}}$$
 per ogni $v \in V$

Allora, esiste un'applicazione lineare continua $S: \mathcal{B} \to \mathbb{R}$ tale che:

- (1) S(v) = T(v) per ogni $v \in V$;
- (2) $|S(b)| \le C||b||_{\mathcal{B}} \quad per \ ogni \quad b \in \mathcal{B}.$

Corollario 2. Sia \mathcal{B} uno spazio di Banach. Per ogni elemento $b \in \mathcal{B} \setminus \{0\}$, esiste un'applicazione lineare continua $T : \mathcal{B} \to \mathbb{R}$ tale che T(b) = 1.

Teorema 3 (Hahn-Banach II). Sia \mathcal{B} uno spazio di Banach e sia V un sottospazio vettoriale chiuso di \mathcal{B} . Allora, esiste un funzionale lineare, continuo e non-nullo

$$T: \mathcal{B} \to \mathbb{R}$$

tale che

$$T(x) = 0$$
 per ogni $x \in V$.

IL LEMMA PRINCIPALE

Lemma 4. Sia \mathcal{B} uno spazio di Banach. Siano V un sottospazio vettoriale di \mathcal{B} , C > 0 una costante $e \ T : V \to \mathbb{R}$ un'applicazione lineare tale che

$$|T(v)| \le C||v||_{\mathcal{B}}$$
 per ogni $v \in V$.

Dato un elemento $z \in \mathcal{B} \setminus V$, consideriamo lo spazio vettoriale W generato da V e z:

$$W := \Big\{ u + \alpha z \ : \ u \in V, \ \alpha \in \mathbb{R} \Big\}.$$

Allora, esiste un'applicazione lineare continua $S: W \to \mathbb{R}$ tale che:

- (1) S(v) = T(v) per ogni $v \in V$;
- (2) $|S(w)| \le C||w||_{\mathcal{B}}$ per ogni $w \in W$.

Dimostrazione. Per ogni $w = v + \alpha z$, con $\alpha \in \mathbb{R}$, definiamo

$$S(w) = T(v) + \alpha S(z),$$

dove la costante S(z) sarà definità in seguito in modo tale d'avere

$$|S(w)| \le C||w||_{\mathcal{B}}$$
 per ogni $w \in W$.

Per ogni $u, v \in V$ ed ogni $\alpha, \beta > 0$, abbiamo:

$$T(\alpha u + \beta v) \leq C \|\alpha u + \beta v\|_{\mathcal{B}}$$

$$= C \|\alpha(u - \beta z) + \beta(v + \alpha z)\|_{\mathcal{B}}$$

$$\leq C \|\alpha(u - \beta z)\|_{\mathcal{B}} + C \|\beta(v + \alpha z)\|_{\mathcal{B}}$$

$$= C\alpha \|u - \beta z\|_{\mathcal{B}} + C\beta \|v + \alpha z\|_{\mathcal{B}},$$

che possiamo scrivere anche come

$$\alpha \Big(T(u) - C \|u - \beta z\|_{\mathcal{B}} \Big) \le -\beta \Big(T(v) - C \|v + \alpha z\|_{\mathcal{B}} \Big),$$

o ancora

$$\frac{1}{\beta} \Big(T(u) - C \|u - \beta z\|_{\mathcal{B}} \Big) \le -\frac{1}{\alpha} \Big(T(v) - C \|v + \alpha z\|_{\mathcal{B}} \Big).$$

Siccome $u, v \in V$, $\alpha > 0$ e $\beta > 0$ sono arbitrari, abbiamo che esiste $s \in \mathbb{R}$ tale che:

$$\sup_{u \in V, \, \beta > 0} \Big\{ \frac{1}{\beta} \Big(T(u) - C \|u - \beta z\|_{\mathcal{B}} \Big) \Big\} \le s \le \inf_{v \in V, \, \alpha > 0} \Big\{ - \frac{1}{\alpha} \Big(T(v) - C \|v + \alpha z\|_{\mathcal{B}} \Big) \Big\}.$$

Definiamo

$$S(z) = s$$
.

Per costruzione, abbiamo che:

$$S(u-\beta z) = T(u) - \beta s \le C \|u-\beta z\|_{\mathcal{B}} \qquad \text{per ogni} \qquad u \in V, \ \beta > 0 \ ;$$

$$S(v + \alpha z) = T(v) + \alpha s \le C \|v + \alpha z\|_{\mathcal{B}}$$
 per ogni $v \in V, \ \alpha > 0$.

il che conclude la dimostrazione.

Dimostrazione del Teorema 1 in uno spazio separabile

Supponiamo che \mathcal{B} è separabile, ovvero che esiste un sottoinsieme denso numerabile $\mathcal{C} = \{\phi_n\}_{n\geq 1}$ di \mathcal{B} . Consideriamo la successione di spazi:

$$V_0 := V$$
, $T_0 = T : V_0 \to V$;

$$V_n := \begin{cases} V_{n-1} & \text{se } \phi_n \in V_{n-1}; \\ \left\{ u + \alpha \phi_n : u \in V_{n-1}, \alpha \in \mathbb{R} \right\} & \text{se } \phi_n \notin V_{n-1}. \end{cases}$$

e mappe

$$T_n: V_n \to \mathbb{R}$$

costruite nel Lemma 4. Allora, per ogni $n \ge k$ si ha:

$$V_k \subset V_n$$
 e $T_k = T_n$ su V_k .

Sullo spazio vettoriale

$$V_{\infty} := \bigcup_{n>1} V_n \,,$$

definiamo la mappa

$$T_{\infty}:V_{\infty}\to\mathbb{R}$$

come

$$T_{\infty}(u) = T_k(u)$$
 per $u \in V_k$.

Per costruzione

$$|T_{\infty}(u)| \leq C||u||_{\mathcal{B}}$$
 per ogni $u \in V_{\infty}$.

Inoltre, V_{∞} è un sottospazio denso di \mathcal{B} . Per ogni $u \in \mathcal{B}$ definiamo T(u) come

$$T(u) = \lim_{n \to \infty} T_{\infty}(u_n)$$

per una qualsiasi successione

$$u_n \in V_{\infty}$$
 con $||u_n - u||_{\mathcal{B}} = 0$.

Allora, T è una mappa lineare e continua su \mathcal{B} e

$$|T(u)| \le C||u||_{\mathcal{B}}$$
 per ogni $u \in \mathcal{B}$,

il che conclude la dimostrazione.

Dimostrazione del Teorema 1 nel caso generale

Consideriamo la famiglia \mathcal{X} di coppie spazio-mappa (W, S) tali che:

- $V \subset W \subset \mathcal{B}$;
- $\bullet \ S:W\to \mathbb{R}$ è una mappa lineare limitata tale che

$$|S(w)| \leq C||w||_{\mathcal{B}}$$
 per ogni $w \in W$;

• $S \equiv T \text{ su } V$.

Su \mathcal{X} consideriamo la relazione d'ordine $(W_1, S_1) \leq (W_2, S_2)$, se:

$$W_1 \subset W_2 \subset \mathcal{B}$$
 e $S_2 \equiv S_1$ su W_1 .

Data una catena \mathcal{C} in \mathcal{X} , consideriamo la coppia $(W_{\infty}, S_{\infty}) \in \mathcal{X}$ definita come

$$W_{\infty} := \bigcup_{(W,S) \in \mathcal{C}} W \, ; \qquad S_{\infty}(w) := S(w) \quad \text{per ogni} \quad w \in W \quad \text{ed ogni} \quad (W,S) \in \mathcal{C}.$$

Per costruzione, (W_{∞}, S_{∞}) è un maggiorante di \mathcal{C} . Allora, per il Lemma di Zorn, esiste un elemento massimale

$$(W_{max}, S_{max}) \in \mathcal{X}$$
.

Infine, per il Lemma 4 si ha che necessariamente $W_{max} = \mathcal{B}$.

DIMOSTRAZIONE DEL TEOREMA 3

Sia z un qualsiasi elemento in $\mathcal{B} \setminus V$. Siccome V è chiuso esiste un raggio $\varepsilon > 0$ tale che

$$B_{\varepsilon}(z) \subset \mathcal{B} \setminus V$$
.

Sia W lo spazio generato da V e z:

$$W = \Big\{ v + \alpha z : v \in V, \ \alpha \in \mathbb{R} \Big\}.$$

Definiremo un funzionale lineare e limitato S su W tale che

$$S(z) \neq 0$$
 e $S(v) = 0$ per ogni $v \in V$.

D'ora in poi procederemo esattamente come nella dimostrazione del Lemma 4. Per ogni

$$w = v + \alpha z \in W$$
,

definiamo

$$S(w) = \alpha S(z)$$
.

Per scegliere il valore di S(z) osserviamo che, siccome $B_{\varepsilon}(z) \cap V = \emptyset$, abbiamo che

$$\inf_{v \in V} \|v - z\| \ge \varepsilon.$$

Quindi scegliendo

$$S(z) = \varepsilon > 0$$
,

otteniamo che per ogni $\alpha>0$ abbiamo

$$S(v + \alpha z) = \alpha S(z) = \alpha \varepsilon \le \alpha \|\frac{1}{\alpha}v + z\|_{\mathcal{B}} = \|v + \alpha z\|_{\mathcal{B}}$$

e analogamente

$$S(v - \alpha z) = -\alpha S(z) = -\alpha \varepsilon \ge -\alpha \|\frac{1}{\alpha}v - z\|_{\mathcal{B}} = -\|v - \alpha z\|_{\mathcal{B}}.$$

Di conseguenza, otteniamo la seguente stima per ogni α reale:

$$|S(v + \alpha z)| \le ||v + \alpha z||_{\mathcal{B}}$$
 per ogni $\alpha \in \mathbb{R}$.

Quindi,

$$|S(w)| \le ||w||_{\mathcal{B}}$$
 per ogni $w \in W$.

Ora, per il primo teorema di Hahn-Banach (Teorema 1), possiamo estendere S ad un funzionale lineare continuo $T: \mathcal{B} \to \mathbb{R}$.