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The dual space of L(Q)

A SPECIAL CLASS OF FUNCTIONALS ON L(()

Proposizione 1. Let Q C R? be a Lebesque measurable set. Fized a function g € L=(Q), consider the
linear functional
T,: L' Q) =R

defined as
Ty(f) :/Qf(x)g(x) dr  forall fe LY(9Q).

Then, Ty is a bounded operator and its norm

1Tyl = sup {Ty(f) = f e L), |Flme <1},

s given by
1Tl = llgll oo (-

Proof. The fact that Tj is bounded simply follows from the inequality

\Tg<f>r:\ [ 5@)9() 85| < Iflllallzmiey forall fe L),

which also proves that
1Tl < llgllzee (-

In order to prove that an equality holds, we consider a sequence

tn T ll9lloe) such that [{|g] > t,}| # 0.

Without loss of generality, we can suppose that

tn T llgllz(@) such that [{g >t,}| # 0.

Now, fix n > 1, choose any set of finite measure w C {g > ¢, }, and take as test function

f=—1,.
|w]

Then,

/wg(x) dx > t,.

1
w

T,(f) = /Q o)/ () d =

This implies that
1Tyl = sup {To() = £ € LX) oy <1} >t

Since, this holds for every n, we get that

ITgll = Nlgllzoe (),

which concludes the proof. O



A REPRESENTATION THEOREM FOR THE FUNCTIONALS IN L!(Q)
Theorem 2. Let Q C R? be a Lebesgue measurable set and let
T:L'Q) =R

be a bounded linear functional on L*(Q). Then, there is a unique g € L>(S2) such that

/f z)dz forall fe LY(Q).
Proof. In what follows we fix a constant C' > 0 such that
IT(F) < Clfllpi forall feL'(Q).

We proceed in two steps.

Step 1. We first consider the case |Q| < +o0.
Construction of g. Since we have the inclusion

L*(Q) ¢ L'(9),

and the inequality
1fllz1@) < 191Y2(1f |l forall f € L2(9),

we have that the functional
T:L%*Q) =R

is a bounded linear functional on L?(Q2) and it holds
TN < CI 2 flliagy forall f e L3(Q).

Thus, we can find a function g € L?*() such that

/f x)dr forall f e L*(Q).

Boundedness of g. We will show that g < C. Suppose that there exists a level ¢ > 0 such that
t>C and [{g>t}NQl>0,

and consider the function
=1 nno-
Observe that
Fer'®@ and |flpe = [ f@)de= g >0l

We also have that f € L?(Q), so by the definition of g, we get

/f dx—/ g(x)dx > t|{g >t} N Q.
{g>t}NQ

On the other hand, since T is bounded on L', we get
T(f) < Cllfllzr ) = CHg >t} N Q.

Thus, we have obtained
tg >t} NQ <T(f) < CC{g >t} NQY,



which is a contradiction. This implies that
g(z) < C for Lebesgue almost-every x € (.
Analogously, by taking as test function f = ly;3no With ¢ < —C, we get that
g(z) > —C for Lebesgue almost-every x € (.

This proves that
g€ L>®(Q) and |g|r- <C.

Uniqueness of g. Suppose that there are two distinct functions g1, g2 € L% (2) such that
| r@n@ae=1() = [ f@m@)ds foral fe i@,

Then, taking
g=91—g2 € L7(Q),
we have

/ f(z)g(z)dx = / flg1—go)dz =0 forall feLY(Q).
Q Q
Taking as a test function f = g we get that

[ 1otz =0,
Q

g1(x) = ga(z) for almost-every =z € Q.

which proves that

Step 2. Suppose now that |Q2] = +oo. Consider the sequence of sets
0, =B, N,
and of the corresponding extension maps

Tp : Ll(Qn) — Ll(Q) , T (f)(z) = {f(l‘) if xeQ,

0 otherwise.
For every n > 1, the operator
T, : L' () > R, To(f) = T(mn(f)),
is a bounded linear operator on L'(£2,) and it holds
TN < Cllfllpo,y forall fe LN(Q).
By Step 1, we can find a unique g,, € L*(£2,,) such that

Ignllzo,) < C and Tn(f) = X F(@)gn(x)dz forall fe LY.

Moreover, by the definition of T" we have that
gn+1=gn on .
Thus, we can define the function ¢ : 2 — R as follows
g(x) =gp(z) forall ze€, andal n>1.
By construction we have that

g€ L), |gllpe@ <1, and
T(mnf) :/(ﬂ'nf)(m)g(:z) dx forall fe LY(Q).
Q
Since 7, f — f in L'(Q) we get that

T(f):/Qf(x)g(x)d:c for all f € L'(Q),

which concludes the proof.



