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The dual space of L1(Ω)

A special class of functionals on L1(Ω)

Proposizione 1. Let Ω ⊂ Rd be a Lebesgue measurable set. Fixed a function g ∈ L∞(Ω), consider the
linear functional

Tg : L1(Ω)→ R

defined as

Tg(f) =

∫
Ω
f(x)g(x) dx for all f ∈ L1(Ω).

Then, Tg is a bounded operator and its norm

‖Tg‖ := sup
{
Tg(f) : f ∈ L1(Ω) , ‖f‖L1(Ω) ≤ 1

}
,

is given by
‖Tg‖ = ‖g‖L∞(Ω).

Proof. The fact that Tg is bounded simply follows from the inequality

|Tg(f)| =
∣∣∣∣∫

Ω
f(x)g(x) dx

∣∣∣∣ ≤ ‖f‖L1(Ω)‖g‖L∞(Ω) for all f ∈ L1(Ω),

which also proves that
‖Tg‖ ≤ ‖g‖L∞(Ω).

In order to prove that an equality holds, we consider a sequence

tn ↑ ‖g‖L∞(Ω) such that |{|g| > tn}| 6= 0.

Without loss of generality, we can suppose that

tn ↑ ‖g‖L∞(Ω) such that |{g > tn}| 6= 0.

Now, fix n ≥ 1, choose any set of finite measure ω ⊂ {g > tn}, and take as test function

f :=
1

|ω|
1ω.

Then,

Tg(f) =

∫
Ω
g(x)f(x) dx =

1

ω

∫
ω
g(x) dx ≥ tn.

This implies that

‖Tg‖ := sup
{
Tg(f) : f ∈ L1(Ω) , ‖f‖L1(Ω) ≤ 1

}
≥ tn.

Since, this holds for every n, we get that

‖Tg‖ ≥ ‖g‖L∞(Ω),

which concludes the proof.
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A representation theorem for the functionals in L1(Ω)

Theorem 2. Let Ω ⊂ Rd be a Lebesgue measurable set and let

T : L1(Ω)→ R

be a bounded linear functional on L1(Ω). Then, there is a unique g ∈ L∞(Ω) such that

T (f) =

∫
Ω
f(x)g(x) dx for all f ∈ L1(Ω) .

Proof. In what follows we fix a constant C > 0 such that

|T (f)| ≤ C‖f‖L1(Ω) for all f ∈ L1(Ω).

We proceed in two steps.

Step 1. We first consider the case |Ω| < +∞.
Construction of g. Since we have the inclusion

L2(Ω) ⊂ L1(Ω),

and the inequality
‖f‖L1(Ω) ≤ |Ω|1/2‖f‖L2(Ω) for all f ∈ L2(Ω),

we have that the functional
T : L2(Ω)→ R

is a bounded linear functional on L2(Ω) and it holds

|T (f)| ≤ C|Ω|1/2‖f‖L2(Ω) for all f ∈ L2(Ω).

Thus, we can find a function g ∈ L2(Ω) such that

T (f) =

∫
Ω
f(x)g(x) dx for all f ∈ L2(Ω).

Boundedness of g. We will show that g ≤ C. Suppose that there exists a level t > 0 such that

t > C and |{g > t} ∩ Ω| > 0,

and consider the function
f := 1{g>t}∩Ω.

Observe that

f ∈ L1(Ω) and ‖f‖L1(Ω) =

∫
Ω
f(x) dx = |{g > t} ∩ Ω|.

We also have that f ∈ L2(Ω), so by the definition of g, we get

T (f) =

∫
Ω
f(x)g(x) dx =

∫
{g>t}∩Ω

g(x) dx ≥ t|{g > t} ∩ Ω|.

On the other hand, since T is bounded on L1, we get

T (f) ≤ C‖f‖L1(Ω) = C|{g > t} ∩ Ω|.

Thus, we have obtained
t|{g > t} ∩ Ω| ≤ T (f) ≤ CC|{g > t} ∩ Ω|,
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which is a contradiction. This implies that

g(x) ≤ C for Lebesgue almost-every x ∈ Ω.

Analogously, by taking as test function f = 1{g<t}∩Ω with t < −C, we get that

g(x) ≥ −C for Lebesgue almost-every x ∈ Ω.

This proves that
g ∈ L∞(Ω) and ‖g‖L∞ ≤ C.

Uniqueness of g. Suppose that there are two distinct functions g1, g2 ∈ L∞(Ω) such that∫
Ω
f(x)g1(x) dx = T (f) =

∫
Ω
f(x)g2(x) dx for all f ∈ L1(Ω).

Then, taking
g = g1 − g2 ∈ L∞(Ω),

we have ∫
Ω
f(x)g(x) dx =

∫
Ω
f(g1 − g2) dx = 0 for all f ∈ L1(Ω).

Taking as a test function f = g we get that∫
Ω
|g(x)|2 dx = 0,

which proves that
g1(x) = g2(x) for almost-every x ∈ Ω.

Step 2. Suppose now that |Ω| = +∞. Consider the sequence of sets

Ωn = Bn ∩ Ω,

and of the corresponding extension maps

πn : L1(Ωn)→ L1(Ω) , πn(f)(x) =

{
f(x) if x ∈ Ωn

0 otherwise.

For every n ≥ 1, the operator

Tn : L1(Ωn)→ R , Tn(f) = T (πn(f)),

is a bounded linear operator on L1(Ωn) and it holds

|Tn(f)| ≤ C‖f‖L1(Ωn) for all f ∈ L1(Ωn).

By Step 1, we can find a unique gn ∈ L∞(Ωn) such that

‖gn‖L∞(Ωn) ≤ C and Tn(f) =

∫
Ωn

f(x)gn(x) dx for all f ∈ L1(Ωn).

Moreover, by the definition of T we have that

gn+1 = gn on Ωn.

Thus, we can define the function g : Ω→ R as follows

g(x) = gn(x) for all x ∈ Ωn and all n ≥ 1.

By construction we have that

g ∈ L∞(Ω) , ‖g‖L∞(Ω) ≤ 1 , and

T (πnf) =

∫
Ω

(πnf)(x)g(x) dx for all f ∈ L1(Ω).

Since πnf → f in L1(Ω) we get that

T (f) =

∫
Ω
f(x)g(x) dx for all f ∈ L1(Ω),

which concludes the proof.
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