Linear operators on Banach spaces

Definition 1. Let \mathcal{B} be a Banach space with norm $\|\cdot\|_{\mathcal{B}}$. We say that $T:\mathcal{B}\to\mathbb{R}$ is a continuous linear functional if:

• T is linear:

$$T(\alpha x + \beta y) = \alpha T(x) + \beta T(y),$$

for all $x, y \in \mathcal{B}$ and all $\alpha, \beta \in \mathbb{R}$;

• T is continuous:

$$x_n \to x$$
 in \mathcal{B} \Rightarrow $T(x_n) \to T(x)$ in \mathbb{R} .

Theorem 2. Let $T: \mathcal{B} \to \mathbb{R}$ be a linear functional on the Banach space \mathcal{B} . Then,the following are equivalent:

- (1) T is continuous;
- (2) T is bounded:

$$\|T\|:=\sup\left\{T(x)\ :\ x\in\mathcal{B}\,,\ \|x\|_{\mathcal{B}}\leq 1\right\}<+\infty\,.$$

Exercice 3. Let \mathcal{B} be a Banach space and let $T: \mathcal{B} \to \mathbb{R}$ be a linear bounded operator on \mathcal{B} . Is it true that there is $x \in \mathcal{B}$ such that

$$||x||_{\mathcal{B}} = 1$$
 and $T(x) = \sup \left\{ T(y) : y \in \mathcal{B}, ||y||_{\mathcal{B}} \le 1 \right\}$?

Exercice 4. Let \mathcal{B} be a Banach space and let $T: \mathcal{B} \to \mathbb{R}$ be a linear bounded operator on \mathcal{B} . Suppose that there is $x \in \mathcal{B}$ such that

$$||x||_{\mathcal{B}} = 1$$
 and $T(x) = \sup \{T(y) : y \in \mathcal{B}, ||y||_{\mathcal{B}} \le 1\}.$

Is it true that an element x with this property has to be unique?

For hints about Ex.3 and Ex.4, check the next page.

Exercice 5. Let $p \in (1, +\infty)$, $q := \frac{p}{p-1} \in (1, +\infty)$, and let Ω be a measurable set in \mathbb{R}^d . Fixed a function $g \in L^p(\Omega)$ consider the operator

$$T_g: L^p(\Omega) \to \mathbb{R}$$
, $T_g(f) = \int_{\Omega} f(x)g(x) dx$.

(1) Prove that T_g is bounded and compute the operator norm

$$||T_g|| := \sup \left\{ T_g(f) : f \in L^p(\Omega), ||f||_{L^p} \le 1 \right\}.$$

(2) Find a function $f \in L^p(\Omega)$ such that

$$||f||_{L^p} = 1$$
 and $T_a(f) = ||T_a||$.

Exercice 6. Let \mathcal{H} be an Hilbert space with scalar product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|_{\mathcal{H}}$. Fixed a vector $v \in \mathcal{H}$ consider the operator

$$T_v: \mathcal{H} \to \mathbb{R}$$
, $T_v(x) = \langle v, x \rangle$.

(1) Prove that T_v is bounded and compute the operator norm

$$||T_v|| := \sup \{ T_v(x) : v \in \mathcal{H}, ||x||_{\mathcal{H}} \le 1 \}.$$

(2) Find a vector $x \in \mathcal{H}$ such that

$$||x||_{\mathcal{H}} = 1$$
 and $T_v(x) = ||T_v||$.

Exercice 7. Consider the Banach space

$$C_0(\mathbb{R}) = \Big\{ f : \mathbb{R} \to \mathbb{R} , f - continuous and bounded, \lim_{|x| \to +\infty} f(x) = 0 \Big\},$$

equipped with the norm

$$||f||_{\infty} = \sup_{x \in \mathbb{R}} |f(x)|.$$

Let $g: \mathbb{R} \to \mathbb{R}$ be such that

$$g > 0$$
 and $\int_{-\infty}^{+\infty} g(x) dx = 1$.

Consider the operator

$$T_g: C_0(\mathbb{R}) \to \mathbb{R}$$
, $T_g(f) = \int_{\Omega} f(x)g(x) dx$.

(1) Prove that T_g is bounded and compute the operator norm

$$||T_g|| := \sup \left\{ T_g(f) : f \in C_0(\mathbb{R}), ||f||_{\infty} \le 1 \right\}.$$

(2) Prove that there is no function $f \in C_0(\mathbb{R})$ such that

$$||f||_{\infty} = 1$$
 and $T_q(f) = ||T_q||$.

Exercice 8. Consider the Banach space

$$C_0(\mathbb{R}) = \Big\{ f : \mathbb{R} \to \mathbb{R} , f - continuous and bounded, \lim_{|x| \to +\infty} f(x) = 0 \Big\},$$

equipped with the norm

$$||f||_{\infty} = \sup_{x \in \mathbb{R}} |f(x)|.$$

Given $x_0 \in \mathbb{R}$, consider the evaluation operator

$$\delta_{x_0}: C_0(\mathbb{R}) \to \mathbb{R}$$
, $\delta_{x_0}(f) = f(x_0)$.

(1) Prove that δ_{x_0} is bounded and compute the operator norm

$$\|\delta_{x_0}\| := \sup \left\{ \delta_{x_0}(f) : f \in C_0(\mathbb{R}), \|f\|_{\infty} \le 1 \right\}.$$

(2) Is there a function $f \in C_0(\mathbb{R})$ such that

$$||f||_{\infty} = 1$$
 and $\delta_{x_0}(f) = ||\delta_{x_0}||$?

Exercice 9 (Written exam 2002, Paolo Acquistapace). For every $n \in \mathbb{N}$ define the functional T_n on the Banach space $L^{\infty}(0,+\infty)$ as follows:

$$T_n(f) = n \left[\int_0^1 x^n f(x) \, dx + \int_1^{+\infty} e^{-nx} f(x) \, dx \right].$$

Compute the operator norm

$$||T_n|| := \sup \{ T_n(f) : f \in L^{\infty}(0, +\infty), ||f||_{\infty} \le 1 \}.$$

LINEAR OPERATORS FROM A BANACH SPACE TO ANOTHER BANACH SPACE

Definition 10. Let V and W be Banach spaces with norms $\|\cdot\|_V$ and $\|\cdot\|_W$. We say that $T:V\to W$ is a continuous linear functional if:

• T is linear:

$$T(\alpha x + \beta y) = \alpha T(x) + \beta T(y),$$

for all $x, y \in V$ and all $\alpha, \beta \in \mathbb{R}$;

• T is continuous:

$$x_n \to x$$
 in $V \Rightarrow T(x_n) \to T(x)$ in W .

Theorem 11. Let V and W be Banach spaces with norms $\|\cdot\|_V$ and $\|\cdot\|_W$, and let $T:V\to W$ be a linear map. Then, the following are equivalent:

- (1) T is continuous;
- (2) T is bounded:

$$||T||_{\mathcal{L}(V,W)} := \sup \{||T(x)||_W : x \in V, ||x||_V \le 1\} < +\infty.$$

Exercice 12. Prove Theorem 11.

Exercice 13. Fix a function $g \in L^{\infty}(\mathbb{R})$. Consider the operator $T: L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R})$ defined as

$$T: L^2(\mathbb{R}) \to L^2(\mathbb{R}) , \qquad T(f) = fg.$$

Prove that T is bounded and compute its norm

$$||T|| := \sup \left\{ ||Tf||_{L^2} : f \in L^2, ||f||_{L^2} \le 1 \right\}.$$

Exercice 14. Fix an element $a \in \ell^{\infty}$. For every $x \in \ell^2$, define $Tx \in \ell^2$ as follows:

$$(Tx)_n = a_n x_n$$
 for all $n \ge 1$.

Prove that T is a bounded linear operator from ℓ^2 to ℓ^2 and compute its norm

$$||T|| := \sup \left\{ ||Tx||_2 : x \in \ell^2, ||x||_2 \le 1 \right\}.$$

Exercice 15. Consider the Hilbert space ℓ^2 and the shift operator

$$T: \ell^2 \to \ell^2 \ , \quad (Tx)_n = x_{n+1}.$$

Prove that T is a bounded linear operator from ℓ^2 to ℓ^2 and compute its norm

$$||T|| := \sup \left\{ ||Tx||_2 : x \in \ell^2, ||x||_2 \le 1 \right\}.$$

Exercice 16. Consider the Hilbert space ℓ^2 and the operator

$$T:\ell^2\to\ell^2$$
, $(Tx)_n=x_{2n}$.

Prove that T is a bounded linear operator from ℓ^2 to ℓ^2 and compute its norm

$$||T|| := \sup \left\{ ||Tx||_2 : x \in \ell^2, ||x||_2 \le 1 \right\}.$$

Exercice 17 (Written exam 2003, Paolo Acquistapace). Consider the Banach space C([0,1]), of continuous functions on [0,1], equipped with the norm $\|\cdot\|_{L^{\infty}}$. For every $f \in C([0,1])$ define the function

$$Tf:[0,1]\to\mathbb{R}$$

as follows

$$Tf(x) = \int_0^x (x^2 - t^2) f(t) dt$$
 for all $x \in [0, 1]$.

Prove that T is a bounded linear operator from C([0,1]) to C([0,1]) and compute the norm

$$||T|| := \sup \left\{ ||T(f)||_{L^{\infty}} : f \in C([0,1]), ||f||_{L^{\infty}} \le 1 \right\}.$$

Exercice 18 (Written exam 2003, Paolo Acquistapace). Consider the Banach space C([a,b]), of continuous functions on [a,b], equipped with the norm $\|\cdot\|_{L^{\infty}(a,b)}$. For every $f \in C([a,b])$ define

$$(Tf)(x) = \int_{a}^{x} \frac{f(t)}{\sqrt{x-t}} dt$$
 for all $x \in [a,b]$.

Prove that T is a bounded linear operator from C([a,b]) to C([a,b]) and compute the norm

$$||T|| := \sup \{ ||T(f)||_{L^{\infty}} : f \in C([a, b]), ||f||_{L^{\infty}} \le 1 \}.$$

Exercice 19 (Written exam, Pietro Majer). Let $p \in [1, +\infty]$. For all $u \in L^p(0, \pi)$ and $x \in [0, \pi]$, define

$$(Tu)(x) = \int_0^{\sin x} u(s) \, ds$$

Prove that T is a bounded linear operator from $L^p(0,\pi)$ in $L^p(0,\pi)$ and compute (or estimate from above) its norm

$$||T|| := \sup \{ ||T(f)||_{L^p} : f \in L^p(0,\pi), ||f||_{L^p} \le 1 \}.$$

Exercice 20 (Written exam, Pietro Majer). Consider the Hilbert space $L^2([0,\pi])$. For all $u \in L^2([0,\pi])$ and $x \in [0,\pi]$, define the Volterra's operator

$$(Tu)(x) = \int_0^x u(s) \, ds$$

Prove that T is a bounded linear operator from $L^2([0,\pi])$ to $L^2([0,\pi])$ and compute (or estimate from above) its norm

$$||T|| := \sup \left\{ ||T(f)||_{L^2} : f \in L^2([0, \pi]), ||f||_{L^2} \le 1 \right\}.$$

Exercice 21 (Written exam 2023, Pietro Majer). Consider the Hilbert space $L^2([0,1])$. For all $u \in L^2([0,1])$ and $x \in [0,1]$, define

$$(Tu)(x) = \int_0^1 \cos(\log xy) \, u(y) \, dy$$

Prove that T is a bounded linear operator from $L^2([0,\pi])$ to $L^2([0,\pi])$ and compute

$$\sup_{\|u\|=1} \|T(u)\| , \qquad \sup_{\|u\|=1} \langle T(u), u \rangle , \qquad \inf_{\|u\|=1} \langle T(u), u \rangle.$$

Exercice 22 (Written exam 2011, Francesca Prinari). Let $p \in [1, +\infty]$. Consider the Banach space $L^p([0, 1])$. For all $u \in L^p([0, 1])$ and $x \in [0, 1]$, define

$$(Tu)(x) = xu(x).$$

Prove that T is a bounded linear operator from $L^p([0,1])$ to $L^p([0,1])$ and compute its norm.

Exercice 23 (Written exam 2011, Francesca Prinari). Let c_0 be the Banach space

$$c_0 = \left\{ a = (a_n)_{n \ge 1} : a_n \in \mathbb{R} \text{ for all } n \ge 1, \lim_{n \to \infty} a_n = 0 \right\},$$

equipped with the norm

$$||a||_{\infty} = \sup_{n} |a_n|.$$

Consider the linear operator

$$T: c_0 \to c_0$$
, $(Ta)_n = a_{n+1} - a_n$.

Prove that T is bounded and compute its norm.

Exercice 24 (Written exam 2011, Francesca Prinari). Let X and Y be Banach spaces and let $T: X \to Y$ be a linear operator with the following property:

for every bounded linear operator $\ell: Y \to \mathbb{R}$, the operator $\ell \circ T: X \to \mathbb{R}$ is bounded and linear.

Prove that T is bounded.

Exercice 25. Check the following exercice booklet by Prof. Prinari:

https://www.unife.it/scienze/lm.matematica/insegnamenti/analisi-funzionale/materiale-didattico/raccoltaesamianfunz.pdf