Banach and Hilbert spaces

Definition 1 (Banach space). We say that \mathcal{B} is a Banach space, if:

- B is a vector space over the real numbers;
- \mathcal{B} is a normed vector space in the sense that there is a norm $p:\mathcal{B}\to\mathbb{R}$ such that:
 - $-p(x) \geq 0$ for all $x \in \mathcal{B}$;
 - $-if p(x) = 0 for some x \in \mathcal{B}, then x = 0;$
 - $-p(x+y) \le p(x) + p(y)$ for all $x, y \in \mathcal{B}$;
 - $-p(\alpha x) = |\alpha|p(x)$ for all $x \in \mathcal{B}$ and all $\alpha \in \mathbb{R}$.

We will often use the notation

$$||x||_{\mathcal{B}} := p(x).$$

• \mathcal{B} is complete, that is, every Cauchy sequence $\{x_n\}_{n\geq 1}$ in \mathcal{B} (equipped with the norm $\|\cdot\|_{\mathcal{B}}$) admits a limit $x\in\mathcal{B}$.

Definition 2 (Hilbert space). We say that \mathcal{H} is a Hilbert space, if:

- *H* is a vector space over the real numbers;
- H is equipped with a scalar product

$$\langle \cdot, \cdot \rangle : \mathcal{H} \times \mathcal{H} \to \mathbb{R};$$

• \(\lambda\) is complete with respect to the norm

$$||x||_{\mathcal{H}} = \sqrt{\langle x, x \rangle}.$$

Example 3. The following spaces are Banach spaces:

- $L^p(\mathbb{R})$ for $p \in [1, +\infty]$;
- ℓ^p for $p \in [1, +\infty]$;
- C(I), where I is an interval in \mathbb{R} , equipped with the norm

$$||f||_{\infty} = \sup_{x \in I} |f(x)|;$$

- $C_0(\mathbb{R})$, which is the subspace of $C(\mathbb{R})$ of continuous functions $f: \mathbb{R} \to \mathbb{R}$ with $\lim_{x \to \pm \infty} f(x) = 0$.
- $C^1(I)$, where I is an interval in \mathbb{R} , equipped with the norm

$$||f||_{C^1} = ||f||_{\infty} + ||f'||_{\infty} = \sup_{x \in I} |f(x)| + \sup_{x \in I} |f'(x)|.$$

Exercice 4. For every interval $I \subset \mathbb{R}$ consider the space C(I) of bounded continuous functions $f: I \to \mathbb{R}$. Prove that C(I) equipped with the norm

$$||f||_{\infty} = \sup_{x \in I} |f(x)|;$$

is a Banach space.

Exercice 5. Consider the space $C_0(\mathbb{R})$ of bounded continuous functions $f: \mathbb{R} \to \mathbb{R}$ satisfying

$$\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = 0.$$

Prove that $C_0(\mathbb{R})$ equipped with the norm

$$||f||_{\infty} = \sup_{x \in \mathbb{R}} |f(x)|;$$

is a Banach space.

Exercice 6. For every interval $I \subset \mathbb{R}$ consider the space $C^1(I)$ of bounded differentiable functions $f: I \to \mathbb{R}$ with continuous derivatives f'. Prove that $C^1(I)$, equipped with the norm

$$||f||_{C^1} = ||f||_{\infty} + ||f'||_{\infty} = \sup_{x \in I} |f(x)| + \sup_{x \in I} |f'(x)|,$$

is a Banach space.

Exercice 7. Let \mathcal{B} be a Banach space with norm $\|\cdot\|$. Prove that $\|\cdot\|$ is induced by a scalar product

$$\langle \cdot, \cdot \rangle : \mathcal{H}?times\mathcal{H} \to \mathbb{R},$$

if and only if

$$\left\| \frac{x+y}{2} \right\|^2 + \left\| \frac{x-y}{2} \right\|^2 = \frac{1}{2} \|x\|^2 + \frac{1}{2} \|y\|^2 \quad for \ all \quad x, y \in \mathcal{B}.$$

Moreover, the scalar product is given by

$$\langle x, y \rangle = \left\| \frac{x+y}{2} \right\|^2 - \left\| \frac{x-y}{2} \right\|^2.$$

Exercice 8 (P.Acquistapace, esame scritto 2003). Let \mathcal{B} be a Banach space with norm $\|\cdot\|$. Prove that $\|\cdot\|$ is induced by a scalar product if and only if:

for all $n \geq 2$ and for all n-uple of vectors $x_1, \ldots, x_n \in \mathcal{B}$ it holds:

$$\sum_{1 \le j < k \le n} \|x_j - x_k\|^2 + \left\| \sum_{j=1}^n x_j \right\|^2 = n \sum_{j=1}^n \|x_j\|^2.$$

Exercice 9 (P.Acquistapace, esame scritto 2004). Let \mathcal{B} be a Banach space with norm $\|\cdot\|$ and let $x \in \mathcal{B} \setminus \{0\}$ be fixed.

(1) Prove that for all $v \in X$ it holds

$$-\|v\| \le \liminf_{t \to 0} \frac{\|x + tv\| - \|x\|}{t} \le \limsup_{t \to 0} \frac{\|x + tv\| - \|x\|}{t} \le \|v\|.$$

(2) Find an example (of \mathcal{B}, x, v) such that

$$\liminf_{t \to 0} \frac{\|x + tv\| - \|x\|}{t} < \limsup_{t \to 0} \frac{\|x + tv\| - \|x\|}{t}.$$

(3) Show that if the norm $\|\cdot\|$ is induced by a scalar product, then the limit

$$\lim_{t \to 0} \frac{\|x + tv\| - \|x\|}{t}$$

exists.

(4) Suppose that the limit

$$\lim_{t \to 0} \frac{\|x + tv\| - \|x\|}{t}$$

exists for all $x, v \in \mathcal{B} \setminus \{0\}$. Is it true that \mathcal{B} is Hilbert?

Exercice 10. Let \mathcal{B} be a Banach space with norm $\|\cdot\|_{\mathcal{B}}$. Is it true that there exists a norm $\|\cdot\|_{\mathcal{H}}$ on \mathcal{H} such that:

• $\|\cdot\|_{\mathcal{H}}$ and $\|\cdot\|_{\mathcal{B}}$ are equivalent in the sense that

$$c\|\cdot\|_{\mathcal{H}} \le \|\cdot\|_{\mathcal{B}} \le C\|\cdot\|_{\mathcal{H}}$$

for some constants $0 < c < C < +\infty$;

• $\|\cdot\|_{\mathcal{H}}$ is induced by a scalar product?

Exercice 11. Let \mathcal{H} be an Hilbert space and let

 $\mathcal{K} \subset \mathcal{H}$ be a closed convex subset of \mathcal{H} .

Prove that there for every $x \in \mathcal{H}$ there is a unique $P(x) \in \mathcal{K}$ such that

$$||x - P(x)|| = \inf_{y \in K} ||x - y||.$$

Prove that the map $P: \mathcal{H} \to \mathcal{K}$ is 1-Lipschitz.

Exercice 12. Let $\mathcal{H} = L^2(\mathbb{R})$ and $\mathcal{K} = \{ f \in \mathcal{H} : f = 0 \text{ a.e. on } \mathbb{R} \setminus [0,1] \}$. Given a function $f \in L^2(\mathbb{R})$ find the projection P(f) of f on \mathcal{K} .

Exercice 13. Let $\mathcal{H} = L^2([0,1])$ and $\mathcal{K} = \{ f \in \mathcal{H} : \int_0^1 f(t) dt = 0 \}$. Given a function $f \in L^2([0,1])$ find the projection P(f) of f on \mathcal{K} .

Exercice 14. Let $\mathcal{H} = L^2([0,1])$ and let $\mathcal{K} = \{f \in \mathcal{H} : ||f|| \le 1\}$. Given a function $f \in L^2([0,1])$ find the projection P(f) of f on \mathcal{K} .

Question 15. Let \mathcal{H} be an Hilbert space and let $\mathcal{K} \subset \mathcal{H}$ be a subset of \mathcal{H} satisfying the following property:

for every $x \in \mathcal{H}$ there is a unique $P(x) \in \mathcal{K}$ such that $||x - P(x)|| = \inf_{y \in \mathcal{K}} ||x - y||$.

Is it true that K is closed and convex?

Exercice 16. Let K be a closed convex subset of $L^p(I)$, where I is an interval and $p \in (0, +\infty)$. Prove that there for every $f \in L^p(I)$ there is a unique $P(f) \in K$ such that

$$||f - P(f)|| = \inf_{g \in K} ||f - g||_{L^p(I)}.$$

Exercice 17. Let $\mathcal{H} = L^p([0,1])$ and let $\mathcal{K} = \{f \in \mathcal{H} : ||f|| \leq 1\}$. Given a function $f \in L^2([0,1])$ find the projection P(f) of f on \mathcal{K} .

Definition 18 (Uniformly convex Banach space). We say that a Banach space \mathcal{B} with norm $\|\cdot\|$ is uniformly convex if:

for all $\varepsilon > 0$ there is $\delta > 0$ such that the, for all $x, y \in \mathcal{B}$, following holds:

if
$$||x|| \le 1$$
, $||y|| \le 1$ and $||x - y|| > \varepsilon$, then $\left\| \frac{x + y}{2} \right\| < 1 - \delta$.

Exercice 19. Let \mathcal{B} be a uniformly convex Banach space and let \mathcal{K} be a closed convex subset of \mathcal{B} . Prove that there for every $x \in \mathcal{B}$ there is a unique $P(x) \in \mathcal{K}$ such that

$$||x - P(x)|| = \inf_{y \in K} ||x - y||.$$

Exercice 20. Find a Banach space \mathcal{B} , a closed convex subset $\mathcal{K} \subset \mathcal{B}$ and a point $x \in \mathcal{B}$ such that the infimum $\inf_{y \in K} ||x - y||$ is not achieved.