Prova scritta -29/6/2024

Non è consetito l'uso di telefoni cellulari, tablet, smartwatch (né di altri dispositivi connessi), né di calcolatrici, libri, dispense, appunti...

Nome:

Cognome:

Parte 1. (Domande a risposta aperta. Sarà valutata solo la risposta finale.)

Esercizio 1. Consideriamo gli insiemi

(A)
$$\Omega_A = B_1(0,0) \setminus \left\{ (x,0) : x \ge 0 \right\};$$
 (D) $\Omega_D = \overline{B}_1(0,0) \setminus \left\{ (x,0) : x \ge 0 \right\};$

(B)
$$\Omega_B = B_1(0,0) \cup \{(x,0) : x \ge 0\}$$
; (E) $\Omega_E = \overline{B}_1(0,0) \cup \{(x,0) : x \ge 0\}$;

(C)
$$\Omega_C = B_1(0,0) \cap \left\{ (x,0) : x \ge 0 \right\};$$
 (F) $\Omega_F = \overline{B}_1(0,0) \cap \left\{ (x,0) : x \ge 0 \right\}.$

Gli insiemi sequenti sono compatti:

Gli insiemi seguenti sono aperti:

Gli insiemi sequenti non sono né aperti, né compatti:

Esercizio 2. Trovare la frontiera dell'insieme

$$D = B_1(0,0) \setminus \{(x,y) \in \mathbb{R}^2 : x + y \ge 1\}$$

 $\partial D =$

Esercizio 3. Sviluppare fino al secondo ordine in (0,0) la funzione

$$\frac{e^x\sqrt{1+2y}}{\cos(2x)} =$$

Esercizio 4. Siano
$$\gamma(t) = \left(\cos(2t)e^t - 1, \sin(2t)\cos(5t)\right)$$
 $e F(x,y) = \frac{x - 2y}{1 + x - y}$.

$$\frac{d}{dt}\Big|_{t=0} F(\gamma(t)) =$$

Esercizio 5. Calcolare, al variare del parametro $A \in \mathbb{R}$, la matrice hessiana H della funzione $F(x,y) = \frac{(1+Axy)e^{2x}}{1-u^2}$ nel punto (0,0).

H =

Per quali valori di A la matrice H è definita positiva?

Esercizio 6. Sia $\alpha = (y^2 + 2xy + x) dx + (xy + x^2) dy$ e sia γ la curva semplice chiusa e C^1 a tratti che parametrizza il bordo del dominio $\Omega = \{(x,y) : 0 < y < x \le 1\}$ in senso antiorario. Calcolare $\int_{\gamma} \alpha =$

Esercizio 7. Consideriamo il campo $F(x,y) = \left(\frac{xy}{x^2+y^2+5}, \frac{3x-y}{x^2+y^2+6}\right)$.

Dato l'insieme $\Omega = B_{\sqrt{3}}(0,0)$, calcolare $\iint_{\Omega} \operatorname{div} F(x,y) \, dx \, dy =$

Parte 2. Saranno valutate sia la risposta finale che lo svolgimento degli esercizi.

Esercizio 8. Consideriamo la funzione

$$F(x,y) = xy^2 - x^2 + 2xy.$$

Trovare i punti critici di F in \mathbb{R}^2 . Studiando la matrice hessiana, dire se si tratta di punti di massimo relativo, di minimo relativo oppure di punti di sella.

Esercizio 9. Mostrare che l'estremo superiore $\sup_{D} F$ della funzione

$$F(x, y, z) = x$$
,

sull'in sieme

$$D = \left\{ (x, y, z) \in \mathbb{R}^3 : (x - y)^2 + (2x - z)^2 + (y - 2z)^2 \le 3 \right\}.$$

è raggiunto sul bordo ∂D e trovarlo.

Esercizio 10. Data la funzione

$$F(x,y) = \frac{e^{xy} - 1}{x^2 + 4y^2} \quad ,$$

trovare $\limsup_{(x,y)\to(0,0)} F(x,y)$.

Esercizio 11. Consideriamo la funzione

$$F(0,0) = 0$$
 e $F(x,y) = \frac{x^{n+7}y^{n+3}}{(x^2 + y^2 + \sin(xy^2))^{2n}}$ $se(x,y) \neq (0,0)$.

Per quali valori del parametro intero $n \ge 1$ la funzione F è differenziabile in (0,0)?