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My talk is about possible extensions of the fol-

lowing well-known theorem:

Theorem (Hindman). For any partition of N
into finitely many pieces there exist a piece H

and an infinite subset B ⊆ H such that H con-

tains all the finite sums of distinct elements

of B.

This was proved in 1974 and sharped early re-

sults of many authors starting from Hilbert.

The theorem can be extended to semigroups:

Theorem. Let (X, ·) be a right cancellative

semigroup. For any partition of X into finitely

many pieces there exist a piece H and a se-

quence (xi)i<ω of distinct elements of H such

that

xin+1
xin · · · xi2xi1xi0 ∈ H

whenever i0 < i1 < i2 < · · · < in < in+1 and

n < ω.



For further generalizations, let me introduce
the following terminology:

Let (X, ·) be a groupoid (a set with a binary
operation, not necessary associative). A set
H ⊆ X is a Hindman set w.r.t. a sequence
(xα)α<κ of distinct elements of H if

((· · · (xαn+1xαn) · · · xα2)xα1)xα0 ∈ H

whenever α0 < α1 < α2 < · · · < αn < αn+1
and n < ω. A κ-Hindman set is a Hindman set
w.r.t. some κ-sequence.

Thus Hindman’s theorem states that, if the
operation is associative and right cancellative,
then any finite partition of X contains some
ω-Hindman piece.

Mainly, my talk is on existence of Hindman sets
in infinite partitions and/or w.r.t. sequences
of transfinite length. A minor part concerns
Hindman sets for multiple structures and non-
associative operations.



Hindman’s theorem has close relationships with

idempotent ultrafilters: the simplest way (dis-

covered by Galvin and Glazer) to get it is to

prove two following results:

Lemma A.Any compact left topological semi-

group contains an idempotent.

To formulate the second, recall that any binary

operation on a set S can be uniquely extended

to a left continuous binary operation on ßS, the

space of all ultrafilters on S. (Left continuity

means here that the operation is continuous

whenever the 1st variable is fixed. We denote

the extended operation by the same symbol.)

Lemma B. Let (S, ·) be a discrete semigroup

and U ∈ ßS \S an idempotent ultrafilter. Then

every A ∈ U is ω-Hindman.



To get results on infinite partitions, we follow

the same strategy but deal with infinitely ad-

ditive (ultra)filters.

First, we extend Lemma A:

Let X be a topological space. Let us say that

quasicharacter of an S ⊆ X is greather than λ

if the intersection of λ neighborhoods of S in-

cludes some one.

Example. Let S ⊆ ßX be closed and so S = D

for some filter D on X (where D = {U ∈ ßX :

D ⊆ U}). Then quasicharacter of S is add (D)

while character of S is cof (D).



Lemma. Let (X, ·) be a compact left topolog-

ical semigroup such that any S ⊆ X of qua-

sicharacter > λ contains an element x ∈ S of

quasicharacter > λ. Then X contains an idem-

potent of quasicharacter > λ.

Proof (scetch). We follows the standard proof

as near as possible:

To find a minimal compact subsemigroup S

of quasicharacter > λ, we apply Zorn’s lemma

(since the intersection of any chain of compact

subsemigroups of quasicharacter > λ is such

a subsemigroup).

We then take e ∈ S of quasicharacter > λ

and show that eS = S and {x ∈ S : ex =

e} = S. (Besides usual arguments, we have

to check that both eS and {x ∈ S : ex = e}
have quasicharacter > λ.) We conclude that

S = {e}.



Recall that a cardinal κ is strongly compact if,

whenever |X| ≥ κ, any κ-additive filter on X

can be extended to some κ-additive ultrafilter

on X.

Corollary. Let κ be a strongly compact car-

dinal and (X, ·) a semigroup with |X| ≥ κ.

Then (ßX, ·) contains an idempotent which is

κ-additive.



Now we extend Lemma B:

Lemma. Let (X, ·) be a groupoid and D a non-

principal filter on X such that D is a sub-

groupoid of (ßX, ·). Then any A ∈ D is κ-Hind-

man with κ = add (D).

Proof. An appropriate modification of the stan-

dard proof. At limit steps, we use additivity

and take intersections.

Corollary. Let (X, ·) be a groupoid. If there

exists U ∈ ßX \ X which is an idempotent of

(ßX, ·) and κ = add (U), then any partition

of X into < κ pieces contains a κ-Hindman

piece.

(Notice that these claims require no associa-

tivity or other properties of the operation.)



Putting all together, we get

Theorem. Let κ be a strongly compact car-

dinal and (X, ·) a right cancellative semigroup

with |X| ≥ κ. Then any partition of X into < κ

pieces contains a κ-Hindman piece.

Question. Characterize cardinals κ such that,

whenever (X, ·) a right cancellative semigroup

with |X| ≥ κ, then any partition of X into < κ

pieces contains a κ-Hindman piece.

The existence of κ-additive idempotents is suf-

fucient but not obviously necessary. My guess

is that such cardinals are weakly compact (or

may be Ramsey, or something like).



Multiple structures.

Since Hindman’s theorem is applicable to both

semigroups (N,+) and (N, ·), one can ask: Is

it possible to find a piece which is

(i) additively and multiplicatively Hindman si-

multaneosly? and

(ii) additively and multiplicatively Hindman w.r.t.

the same sequence?

The answer to the first is positive:

Theorem (Bergelson–Hindman). For any par-

tition of N into finitely many pieces there ex-

ist a piece H and infinite B, C ⊆ H such that

H contains all the finite sums of distinct ele-

ments of B and all the finite products of dis-

tinct elements of C.

More recently Bergelson proved some sharper

results.



A heavy Hindman’s result answers to the sec-

ond negatively:

There exists a finite partition of N in which no

piece is additively and multiplicatively Hindman

w.r.t. the same ω-sequence.

Another negative result follows as a corollary:

no U ∈ N∗ satisfies U + U = U · U .



Multiple version of A:

Let us call (X,+, ·) a (left topological) semir-

ing if both (X,+) and (X, ·) are (left topo-

logical) semigroups and multiplication is left

distributive w.r.t. addition.

Lemma. Let (X,+, ·) be a compact left topo-

logical semiring such that any S ⊆ X of qua-

sicharacter > λ contains an element x ∈ S of

quasicharacter > λ. Then X contains a com-

mon idempotent e = e + e = e · e of quasichar-

acter > λ.

Since (N∗,+, ·) contains no common idempo-

tents, we see that no its closed subsemiring

satisfies left distributivity.

(A version of this lemma for many operations.)



Question.That any minimal compact left topo-

logical semigroup consists of a single element is

provable in ZF alone. Unlike this, our proof of

the fact that any minimal compact left topo-

logical semiring consists of a single element

uses Zorn’s lemma. Is AC really necessary for

the semiring version?



Multiple version of B:

Lemma. Let (X, (Fα)α<ξ) be a universal alge-

bra with binary operations and Eα = {U ∈ ßX :

Fα(U, U) = U}.
(i) If there exists

U ∈
⋂

α<ξ

Eα

with κ = add (U), then any partition of X into

< κ pieces contains a piece which is Hindman

for all Fα’s w.r.t. the same κ-sequence.

(ii) If there exists

U ∈
⋂

α<ξ

cl (Eα)

with κ = add (U), then any partition of X into

< κ pieces contains a piece which is κ-Hindman

for all Fα’s.



Putting together, we get

Theorem. Let κ be a strongly compact cardi-

nal and (X,+, ·) a right cancellative semiring

with |X| ≥ κ. Then any partition of X into < κ

pieces contains a piece which is additively and

multiplicatively κ-Hindman.



Relationships to AC. Partitions of ω1.

Hindman’s theorem for the case N is provable

in ZF alone (since arithmetic is absolute).

Question. Is there a conterexample to Hind-

man’s theorem in ZF? (Probably, yes.)

Let α + β be the usual addition of ordinals,

and let α +̇β = β + α. Notice that +̇ is right

cancellative.

Remark. The usual ordinal addition (which left

but not right cancellative) gives a simple ex-

ample when Hindman’s theorem fails for not

right cancellative semigroups.



In ZFC, the club filter on ω1 is countably ad-

ditive, and so we have:

Claim. Every countable partition of (ω1, +̇),

or even of any its stationary subsemigroup,

contains an ω1-Hindman piece.

Proof. An obvious club sequence (αξ)ξ<ω1
sat-

isfies αξ1+̇αξ0 = αξ1 whenever ξ0 < ξ1.

Certainly, the claim holds not only for usual

ordinal addition, but also for ordinal multipli-

cation, exponentiation, etc. (no associativity

requires).

Notice a difference between ω and ω1: the lat-

ter contains common idempotents.



This claim is not provable in ZF alone: simply

put cf ω1 = ω. Then one can ask:

Question. Is some of the following sentences

provable in ZF:

(i) Any countable partition of (ω1, +̇) contains

an ω-Hindman piece?

(ii) Any finite partition of (ω1, +̇) contains an

ω1-Hindman piece?

On the other hand, Determinacy proves the

stronger claim:

Claim. Assume AD. Let (ω1, ·) be arbitrary

semigroup. Then every countable partition of ω1

contains an ω1-Hindman piece.

Proof. Under AD, the club filter on ω1 is an

idempotent ultrafilter.



Let me conclude my talk with two questions:

Question. Assume AD. Let R be partitioned

into < Θ pieces. Is there a piece H which

is Hindman w.r.t. a perfect set (i.e. contains

a perfect subset such that all the finite sums

of its distinct elements are in H)?

Question.Let N be partitioned into finitely many

pieces. Is there a piece H which is Hindman

for addition, multiplication, and exponentia-

tion (and further obvious primitive recursive

operation)?


