DYNAMICAL EQUIVALENCE ON G^*

IGOR PROTASOV

For every infinite group G, the remainder $G^* = \beta G \setminus G$ of the Stone- \check{C} ech compactification βG of G has a natural structure of G-space. The *orbit equivalence* $((x, y) \in E \iff gx = y$ for some $g \in G$) determines the smallest by inclusion, closed in $G^* \times G^*$ equivalence \check{E} on G^* containing Ewhich is called a *dynamical equivalence*, and the factor-space $\gamma(G) = G^*/\check{E}$ is called a *corona* of G. To clarify the virtual equivalence \check{E} we use the slowly oscillating functions (see [3]) and [4, Chapter 8]).

A function $f: G \longrightarrow [0, 1]$ is called *slowly oscillating* if, for any $g \in G$ and $\epsilon > 0$, there exists a finite subset F of G such that

$$\mid f(gx) - f(x) \mid < \epsilon$$

for every $x \in G \setminus F$. Then $(p,q) \in \check{E}$ if and only if, for every slowly oscilating function $f : G \longrightarrow [0,1], f^{\beta}(p) = f^{\beta}(q)$ where f^{β} is the extension of f to βG .

The space βG has also a natural structure of compact right topological semigroup (see [1], [2]). Given $p \in G^*$, the orbit closure \overline{Gp} is the left ideal βGp of βG . An ultrafilter $p \in G^*$ is called *strongly prime* if $p \notin \overline{G^*G^*}$.

Theorem. Let G be a countable discrete group, $p \in \beta G$ and \check{p} be an \check{E} -equivalence class containing p. Then

(1) if p is a P-point in G^* then $\check{p} = \beta Gp$;

(2) if p is strongly prime and $\check{p} = \beta Gp$ then p is a P-point in G;

(3) there exist the strongly prime ultrafilters $p, q \in G^*$ such that $\check{p} = \check{q}$ but $\beta G p \cap \beta G q = \emptyset$;

(4) $\gamma(G)$ contains a topological copy of $\omega^* = \beta \omega \backslash \omega$;

(5) if G is locally finite then $\gamma(G)$ contains a topological copy of ω^* which is a retract of $\gamma(G)$

(6) there exists a continuous surjective mapping $f : \gamma(G) \longrightarrow \gamma(\mathbb{N})$, where $\gamma(\mathbb{N}) = \{ \check{p} \in \gamma(\mathbb{Z}) : \mathbb{N} \in p \}.$

References

- N. Hindman and D. Strauss, Algebra in the Stone-Čech compactification Theory and Applications, de Grueter, Berlin, 1998.
- [2] I. Protasov, Combinatorics of Numbers, Math. Stud. Monogr. Ser., vol. 2, VNTL, Lviv, 1997.
- [3] I. V. Protasov, Coronas of balleans, Topology Appl., 149 (2005), 149-160.
- [4] I. Protasov, M. Zarichnyi, General asymptology, Math. Stud. Monogr. Ser., vol. 12, VNTL, Lviv, 2007.

DEPARTMENT OF CYBERNETICS, KYIV UNIVERSITY, UKRAINE. *E-mail address*: protasov@unicyb.kiev.ua