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Chapter 1

Introduction

Young Integration firstly introduced by L.C. Young in [You36] had a key role in
the development of the modern Rough Paths’ theory. Nowadays it is a tool in
the study of stochastic differential equations driven by continuous processes other
than the Brownian motion such as the fractional Brownian motion with Hölder
regularity > 1

2
. in this work we study the regularity of solutions to Young differ-

ential equations. In Chapter two we introduce the theory of Young integration
for function f, g from a compact interval [0, T ] ⊂ R with value in some Banach
spaces A,B with some Hölder regularity. In Chapter three we focus our attention
on the differential problem:

y(t) = y0 +

∫ t

0

f (y(s)) dx(s), t ∈ [0, T ] (1.1)

showing that under suitable condition on f, x there exists a solution under the
Young theory. In the last part of this chapter we study the Itō map, defined as
the map that associates the initial datum y0 and the noise x to the solution of
the problem (1.1) for a vector field f ∈ C1,γ(A,L(A,B)). Our aim is to study the
differentiability of the Itō map with respect to the initial datum and the regular-
ity of its Fréchet derivative. The fourth chapter contains an approach to study
the sharpness of the regularity of the Fréchet derivative of the Itō map.
For the firsts chapters we followed the article [Lej10] and in showing the Fréchet
derivative with respect to the initial datum of the Itō map we used the approach
of [CL18], via Omega Lemma. The results in Chapter four are an original com-
putation suggested by R. Züst and E. Stepanov.

1.1 Notation

Here is a list of frequently used notations:

• L (A,B) is the space of bounded linear functional from a Banach space A
to a Banach space B,

• Cα ([0, T ], A) is the space of α-Hölder functions from [0, T ] to a Banach
space A,
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• C1,α ([0, T ], A) is the space of functions from [0, T ] to a Banach space that
admit α-Hölder Fréchet derivative,

• C1,α
b (A,B) is the space of functions from a Banach spaceA to a Banach space
B that admit α-Hölder Fréchet derivative which is uniformly bounded.

To improve readibility we use for function f : [0, T ] → X, where X is a set, the
equivalent notation f(t) = ft, whenever the second choice is needed to seek a
lighter reading. For the same reasons we decided to use the symbol |·| whenever
this is referred to an operator norm. So it will be frequent to read, whenever
f : [0, T ]→ A, where A is a Banach space, the symbol |f (t)| instead of ‖f (t)‖A.
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Chapter 2

Young’s Integration

In this chapter we will introduce the theory of Young’s Integration. Let us fix
a compact interval [a, b] ⊂ R and let us consider two continuous function f, g :

[a, b]→ R. Our aim is to define the integral∫ b

a

f dg =

∫ b

a

f(t) dg(t)

for function of low regularity. Generally speaking, such an integral can represent
many phenomena:

• if g(t) is the cumulative distribution function of a random variable X and
f(t)=t for every t, then one can interpret the integral as the expectation of
the random variable X;

• if g(t) is the position of a particle at a certain time t and f(t) is the force
applied to that particle, then one can interpret the integral as the work
made by the force in the interval [a, b].

Note that in the first case, there exists a robust definition of the integral that
is the Lebesgue-Stieltjes construction, since F is a monotone positive function.
Moreover, if g is a differentiable function, namely g ∈ C1([a, b],R), then the
Riemann construction gives the following equality:∫ b

a

f(t) dg(t) =

∫ b

a

f(t)g′(t) dt.

Our goal is to extend the integral to function α-Hölder and β-Hölder continuous,
such that α + β > 1.
The constraint introduced is sharp. In fact, if one consider the trajectories of a
Brownian Motion (Bt)t∈[0,T ], a typical result of stochastic analysis states that the
trajectories are α-Hölder, for every α < 1

2
. Whenever we define a certain integral

we expect that it satisfies a "stability property" under different choices of the
Riemann sums. Let us consider a sequence of partitions Πn = {a = t0 < t1 <

... < tn = b} of the interval [a, b] such that

|Πn| = sup
ti∈Πn

a=t0<t1<···<tn=b

|ti+1 − ti| → 0
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as n→∞ and Πn ⊂ Πn+1, then we want that the following equality holds true:∫ b

a

f(t) dg(t) = lim
n→∞

∑
ti∈Πn

ξi∈[ti,ti+1]

f(ξi)(g(ti+1)− g(ti))

for every family of nested partitions (Πn)n∈N and for every choices of ξi ∈ [ti, ti+1].
Unfortunately this may not be true for f, g Hölder continuous with α + β < 1.
This fact is shown by the following:

Proposition 1. Let (Bt)t∈[0,T ] be a Brownian motion and let t ∈ [0, T ] then the
integral ∫ t

0

Bs dBs

depends on the choice of the point ξi ∈ [ti, ti+1]. In particular, let Πn = {0 = t0 <

t1 < ... < tn = t}, then:

It = lim
n→∞

∑
ti∈Πn

Bti

(
Bti+1

−Bti

)
=

1

2
B2
t −

1

2
t

BIt = lim
n→∞

∑
ti∈Πn

Bti+1

(
Bti+1

−Bti

)
=

1

2
B2
t +

1

2
t

SIt = lim
n→∞

∑
ti∈Πn

1

2
(Bti+1

+Bti)
(
Bti+1

−Bti

)
=

1

2
B2
t

Proof. It is useful to rewrite I as:

It = lim
n→∞

n−1∑
i=0

Bti

(
Bti+1

−Bti

)
= lim

n→∞

n−1∑
i=0

{
1

2

(
B2
ti+1
−B2

ti

)
− 1

2

(
Bti+1

−Bti

)2
}
.

Now the first term is telescoping, so that:

n−1∑
i=0

1

2

(
B2
ti+1
−B2

ti

)
=

1

2
B2
tn −B

2
t0

=
1

2
B2
t −B2

0 =
1

2
B2
t .

The other therm converges to the quadratic variation of a Brownian motion, that
is t for every t ∈ [0, T ], yielding:

lim
n→∞

n−1∑
i=0

Bti

(
Bti+1

−Bti

)
= lim

n→∞

n−1∑
i=0

{
1

2

(
B2
ti+1
−B2

ti

)
− 1

2

(
Bti+1

−Bti

)2
}

=
1

2
B2
t−

1

2
t.

As previously done, let us write:

BIt = lim
n→∞

n−1∑
i=0

Bti+1

(
Bti+1

−Bti

)
= lim

n→∞

n−1∑
i=0

{
1

2

(
B2
ti+1
−B2

ti

)
− 1

2

(
Bti+1

−Bti

)2
}
.
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Then as we have seen before, the first term converges to 1
2
B2
t and the second term

to t, yielding:

BIt = lim
n→∞

n−1∑
i=0

Bti+1

(
Bti+1

−Bti

)
= lim

n→∞

n−1∑
i=0

{
1

2

(
B2
ti+1
−B2

ti

)
− 1

2

(
Bti+1

−Bti

)2
}

=
1

2
B2
t +

1

2
t.

Finally note that SIt = 1
2
(It +BIt) yelding the thesis.

In general I is called Itō integral, while BI is called Backward Itō integral
and SI is called Stratonovich integral.

2.1 Hölder spaces

We will introduce some basic facts about Hölder space. To focus on the theory of
Young’s integral some proofs will be left to appendix. Let us start with defining
the space of continuous functions. We will denote by C0([a, b], A) the space of
continuous function from [a, b] to A, where A is a Banach space, endowed with
the norm:

‖f‖∞ = sup
s∈[a,b]

|f(s)| .

Theorem 1. The space C0([a, b], A) endowed with the norm ‖.‖∞ is a Banach
space.

From now on we will work with Hölder continuous functions. Let us introduce
a definition:

Definition 1. Let [a, b] ⊂ R, and A be a Banach space A, and α ∈ (0, 1). A
function f : [a, b]→ A is said to be α-Hölder continuous if it satisfies the following
estimate:

|f(x)− f(y)| ≤ C |x− y|α (x, y) ∈ [a, b]

for some constant C ≥ 0.
Moreover for such a function it is well defined the Hölder norm as:

‖f‖α = ‖f‖∞ + sup
x,y∈[a,b]
x6=y

|f(x)− f(y)|
|x− y|α

The constraint α ∈ (0, 1) is explained by the following:

Lemma 1. If for some α > 1 the following inequality holds true:

|f(t)− f(s)| ≤ c |t− s|α .

Then f is constant. Moreover, whenever |f(t)− f(s)| = o(|t− s|) uniformly as
|t− s| → 0 then f is constant.
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Proof. By continuity of f for every ε > 0 there exists δ > 0 such that |t− s| ≤ δ

implies |f(t)− f(s)| ≤ ε |t− s|. Let [c, d] ⊂ [a, b] be a compact interval and
consider a partition c = t0 < t1 < · · · < tn = d with ti+1 − ti ≤ δ, then
|f(ti+1)− f(ti)| ≤ ε |ti+1 − ti| so that:

|f(d)− f(c)| ≤
n−1∑
i=0

|f(ti+1)− f(ti)| | ≤
n−1∑
i=0

ε |ti+1 − ti| = ε(d− c).

Sending ε to 0, f(d) = f(c) for every compact [c, d] ⊂ [a, b], i.e. f is constant.

From now on we will denote by Cα([a, b], A) the space of α-Hölder functions
from [a, b] to A, where A is a Banach space. For our scope it will be useful to have
some properties of completeness for the space C1,α([a, b], A), that is the space of
differentiable function from [a, b] to a Banach space A such that the derivative is
Hölder continuous.

Theorem 2. The space Cα([a, b], A) endowed with the norm ‖.‖α is a Banach
space.

Let us denote by C∞([a, b], A) the space of infinitely many differentiable func-
tions. In particular note that C∞([a, b], A) ⊂ Cα([a, b], A) for every α ∈ (0, 1),but
it is not true that C∞([a, b], A) is dense in Cα([a, b], A).

Theorem 3. The closure of C∞([a, b], A) in Cα([a, b], A) is the subset Cα0 ([a, b], A)

defined by

Cα0 ([a, b], A) = {f : |f(t)− f(s)| = o(|t− s|)uniformly as |t− s| → 0}.

However the following inclusions hold true:

Cα+ε([a, b], A) ⊂ Cα0 ([a, b], A) ⊂ Cα([a, b], A),

for any ε > 0.

Proposition 2. Let α, β ∈ (0, 1) with if β > α. Then Cβ([a, b], A) ⊂ Cα([a, b], A).

Proof. Given f ∈ Cβ([a, b], A) we have:

sup
x,y∈[a,b]
x 6=y

|f(x)− f(y)|
|x− y|α

= sup
x,y∈[a,b]
x6=y

|f(x)− f(y)|
α
β

|x− y|β
α
β

· sup
x,y∈[a,b]
x 6=y

|f(x)− f(y)|
β−α
β

≤ ‖f‖
α
β

β (2 ‖f‖∞)
β−α
β

For our scope it is importan that the space C1,α([a, b], A) is a Banach space.
The following theorem will be proven in the appendix.

Theorem 4. The space C1,α([a, b], A) endowed with the norm ‖.‖α is a Bancach
space.
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2.2 Construction of Young Integral

In this section we will construct the Young Integral by proving a more general
result called Sewing Lemma. Let us recall the following proposition, that will be
useful in advance.

Proposition 3. Let (xn)n∈N ⊂ A, where A is a Banach space, be a sequence such
that

∞∑
n=1

|xn+1 − xn| <∞

then (xn)n∈N is a Cauchy sequence.

Proof. Let n̄ ∈ N such that

∞∑
n=n̄

|xn+1 − xn| < ε.

The for every m ≥ n ≥ n̄:

|xm − xn| = |xm − xm−1 + xm−1 − · · ·+ xn+1 − xn|

≤
m−1∑
s=n

|xs+1 − xs|

≤
∞∑
s=n̄

|xs+1 − xs| < ε.

Where in the last inequality we used that the latter is the tail of a convergent
series.

Now we are ready to state the key result on the construction of the Young
Integral. For its proof we follow [FdLPM08].

Lemma 2 (Sewing Lemma). Let γ > 1, µ(a, b) be a continuous function defined
for 0 ≤ a ≤ b ≤ T to A, where A is a Banach space, satisfying the relation:

|µ(a, b)− µ(a, c)− µ(c, b)| ≤ K |b− a|γ

for every c ∈ [a, b] and for some constant K ∈ R. Then there exists a function
ϕ(t) on [0, T ] to A, unique up to an additive constant, such that:

|ϕ(b)− ϕ(a)− µ(a, b)| ≤ c(γ)K |b− a|γ

where c(γ) = 2γ

2γ−2
.

Proof. Existence. Let us set µ′(a, b) = µ(a, c)+µ(c, b) where c = a+b
2

and define
µ(n+1) = µ(n)′, where we set µ(0) = µ. For n ≥ 0 we obtain that:∣∣µ(n)(a, b)− µ(n+1)(a, b)

∣∣ ≤ K
|b− a|γ

2(γ−1)n
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We will prove this fact by induction. For n = 0 the thesis holds true, in fact:∣∣µ(0)(a, b)− µ(1)(a, b)
∣∣ = |µ(a, b)− µ(a, c)− µ(c, b)| ≤ K |b− a|γ

by hypothesis. Then let us suppose that the thesis holds true for n − 1 and let
us prove it for k = n. We have that:∣∣µ(n)(a, b)− µ(n+1)(a, b)

∣∣ =
∣∣µ(n)(a, b)− µ(n)(a, c)− µ(n)(b, c)

∣∣
=
∣∣µ(n−1)(a, c) + µ(n−1)(c, b)− µ(n)(a, c)− µ(n)(c, b)

∣∣
≤
∣∣µ(n−1)(a, c)− µ(n)(a, c)

∣∣+
∣∣µ(n−1)(c, b)− µ(n)(c, b)

∣∣
≤ K2n−1

(
|c− a|
2n−1

)γ
+K2n−1

(
|b− c|
2n−1

)γ
≤ K2n−1

(
|b− a|

2n

)γ
+K2n−1

(
|b− a|

2n

)γ
= K

|b− a|γ

2(γ−1)n
.

Moreover, since γ − 1 > 0, (µ(n)(a, b))n∈N is a Cauchy sequence, in fact:
∞∑
n=0

∣∣µ(n+1)(a, b)− µ(n)(a, b)
∣∣ ≤ K

∞∑
n=0

|b− a|γ

2(γ−1)n
<∞.

So by Proposition 3 (µ(n)(a, b))n∈N is a Cauchy sequence. We let u(a, b) =

limn→∞ µ
(n)(a, b). The function u(a, b) is midpoint additive, in other words

u(a, b) = u(a, c) + u(c, b).
Uniqueness. By its definition we have that:

|u(a, b)− µ(a, b)| ≤ c(γ)K |b− a|γ .

This follows from the inequality:

∣∣µ(n)(a, b)− µ(a, b)
∣∣ ≤ n−1∑

s=0

∣∣µ(s+1)(a, b)− µ(s)(a, b)
∣∣

taking n to ∞ we have that:
∞∑
s=0

∣∣µ(s+1)(a, b)− µ(s)(a, b)
∣∣ ≤ c(γ)K |b− a|γ

Let v(a, b) be another midpoint additive function, such that

|v(a, b)− µ(a, b)| ≤ c(γ)K |b− a|γ .

We prove by induction that:

|v(a, b)− u(a, b)| ≤ C2n
(
|b− a|

2n

)γ
for some constant C ∈≥ 0. Firstly note that:

|v(a, b)− u(a, b)|A ≤ ‖v(a, b)− µ(a, b)‖+ ‖µ(a, b)− u(a, b)‖
≤ 2c(γ)K |b− a|γ = C |b− a|γ
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where we put C = 2c(γ)K.
For n = 1 the thesis is true since, by midpoint additivity, we have that:

|v(a, b)− u(a, b)| = |v(a, c)− v(c, b)− u(a, c)− u(c, b)|
≤ |v(a, c)− u(a, c)|+ |v(c, b)− u(c, b)|

≤ C |c− a|γ + C |b− c|γ = 2C

(
|b− a|

2

)γ
.

Then let us suppose the thesis true for k ≤ n − 1 and let us set k = n, then we
have:

|v(a, b)− u(a, b)| = |v(a, c)− v(c, b)− u(a, c)− u(c, b)|
≤ |v(a, c)− u(a, c)|+ |v(c, b)− u(c, b)|

≤ 2n−1C

(
|c− a|
2n−1

)γ
+ 2n−1C

(
|b− c|
2n−1

)γ
= C2n

(
|b− a|

2n

)γ
.

Then |v(a, b)− u(a, b)| ≤ C2n
(
|b−a|

2n

)γ
→ 0 as n→∞, so that v = u.

Continuity of u. Note that by its definition:

µ(n)(a, b) =
2n∑
i=1

µ

(
a+

(i− 1)(b− a)

2n
, a+

i(b− a)

2n

)
.

In fact, by induction the equality holds true for n = 0 then, supposing the thesis
holds for k ≤ n, for k = n+ 1 we have:

µ(n+1)(a, b) = µ(n)

(
a,
b+ a

2

)
+ µ(n)

(
b+ a

2
, b

)
=

2n∑
i=1

µ

(
a+

(i− 1)( b+a
2
− a)

2n
, a+

i( b+a
2
− a)

2n

)

+
2n∑
i=1

µ

(
b+ a

2
+

(i− 1)(b− b+a
2

)

2n
,
b+ a

2
+
i(b− b+a

2
)

2n

)

=
2n∑
i=1

µ

(
a+

(i− 1)(b− a)

2n+1
, a+

i(b− a)

2n+1

)

+
2n∑
i=1

µ

(
(b+ a)2n + (i− 1)(b− a)

2n+1
,
(b+ a)2n + i(b− a)

2n+1

)
.
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Let us study the second sum, setting j = i+ 2n we have:

2n+1∑
j=2n+1

µ

(
(b+ a)2n + (j − 2n − 1)(b− a)

2n+1
,
(b+ a)2n + (j − 2n)(b− a)

2n+1

)
=

=
2n+1∑

j=2n+1

µ

(
(b+ a)2n + (j − 1)(b− a)− 2n(b− a)

2n+1
,
(b+ a)2n + j(b− a)− 2n(b− a)

2n+1

)

=
2n+1∑
j=2n

µ

(
a+

(j − 1)(b− a)

2n
, a+

j(b− a)

2n

)
.

And the equality holds true adding the two pieces. Now let us consider the
quantity:

sup
a,b∈[0,T ]

∣∣u(a, b)− µ(n)(a, b)
∣∣ = sup

a,b∈[0,T ]

∣∣∣∣∣
∞∑

i=2n+1

µ(a+
(i− 1)(b− a)

2n
, a+

i(b− a)

2n
)

∣∣∣∣∣.
And the term on the right hand side goes to 0 as n → ∞ since it is the tail of
a convergent series. Since the series that defines u converges uniformly and µ is
continuous by hypothesis, then u is continuous.
Additivity of u We prove that for every c ∈ [a, b]

u(a, b)− u(a, c)− u(c, b) = 0.

Let k ≥ 3 be an integer and let:

w(a, b) =
k−1∑
i=0

u(ti, ti+1)

where ti = a + i (b−a)
k

. Then also w is midpoint additive, and by induction and
using the assumption on µ

|µ(a, b)− w(a, b)| ≤ CKc(γ) |b− a|γ

hence w = u.
At this point we have proved that u is additive on rational points, moreover let
us consider (cn)n∈N ⊂ Q such that cn → c as n→∞, then:

u(a, b) = u(a, cn) + u(cn, b),

and taking the limit, by the continuity of u:

u(a, b) = u(a, c) + u(c, b)

for every 0 ≤ a ≤ b ≤ c ≤ T .
So u is additive and finally we put ϕ(t) = u(0, t).
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Proposition 4. Let Πn = {a = t0 < t1 < · · · < tn = b} be a finite partition of
[a, b], let µ, ϕ as in the Sewing Lemma, then

lim
|Πn|→0

∑
ti∈Πn

µ(ti, ti+1) = ϕ(b)− ϕ(a).

Proof. We have that:∣∣∣∣∣ϕ(b)− ϕ(a)−
∑
ti∈Πn

µ(ti, ti+1)

∣∣∣∣∣ =

∣∣∣∣∣∑
ti∈Πn

ϕ(ti+1)− ϕ(ti)− µ(ti, ti+1)

∣∣∣∣∣
≤
∑
ti∈Πn

c(γ)K(ti+1 − ti)γ

≤ c(γ)K |Πn|γ−1
∑
ti∈Πn

(ti+1 − ti)

≤ c(γ)K |Πn|γ−1 (b− a)

And the quantity on the right hand side vanishes as n→∞.

Now we are ready to define the Young’s Integral. Let us set:

µ(a, b) = f(a)(g(b)− g(a))

for some f ∈ Cα([0, T ],L(A,B)), g ∈ Cβ([0, T ], A), with α+ β > 1. Note that for
such µ we have that:

|µ(a, b)− µ(a, c)− µ(c, b)| = |f(a)(g(b)− g(a))− f(a)(g(c)− g(a))− f(c)(g(b)− g(c))|
= |(f(c)− f(a)(g(b)− g(a))|
≤ ‖f‖α ‖g‖β |b− a|

α+β .

Then let ϕ be the function defined by the Sewing Lemma. By proposition 4 it is
well defined the Young Integral:∫ b

a

f(r) dg(r) = lim
|Πn|→0

∑
ti∈Πn

µ(ti, ti+1) = ϕ(b)− ϕ(a) (2.1)

where Πn = {a = t0 < t1 < · · · < tn = b} is a finite partition of [a, b].

2.3 Properties of Young Integral

In this section we will prove some basic properties of Young Integral. The char-
acterization in 2.1 assures the linearity of the Young Integral, now let us start
with some calculus properties analogous to the ones of the Riemann Integral.

Proposition 5 (Chain Rule). Let F : A → L(A,A) be differentiable and with
DF Lipschitz. Then, if f ∈ Cα([a, b], A) with α > 1

2
, we have that

F (f(t)) = F (f(a)) +

∫ t

a

DF (f(s)) df(s), t ∈ [a, b].

12



Proof. By Taylor expansion, for any x, y ∈ [a, b] we have that:

F (x)− F (y)−DF (y)(x− y) = o(|x− y|2α),

F (x)− F (y)−DF (y)(x− y) =

∫ x

y

(F ′(s)− F ′(x)) ds.

Now set x = f(t) and y = f(s), for s, t ∈ [a, b], we can write

F ((f(t))− F (f(s)) = DF (f(s))(f(t)− f(s)) + o(|t− s|2α),

since |f(t)− f(s)| ≤ ‖f‖α |t− s|
α. Let us call J(t) = F (f(t))− F (f(a)), then

J(t)− J(s) = DF (f(s))(f(t)− f(s)) + o(|t− s|)

so by the uniqueness of Lemma 2 it follows that J(t) is the Young integral of DF
against f , whith α = β.

Proposition 6 (Integration by parts). For f ∈ Cα([a, b],L(A,B)), g ∈ Cβ([a, b], A)

with α + β > 1, then we can write∫ t

a

f(s) dg(s) = f(t)g(t)− f(a)g(a)−
∫ t

a

g(s) df(s).

Proof. Let us set J(t) = f(t)g(t)− f(a)g(a)−
∫ t
a
g(s) df(s), note that:

J(t)− J(s) = f(t)g(t)− f(s)g(s)− g(s)(f(t)− f(s)) + o(|t− s|α+β)

= f(t)(g(t)− g(s)) + o(|t− s|α+β)

= f(t)(g(t)− g(s)) + (f(t)− f(s))(g(t)− g(s)) + o(|t− s|α+β)

= f(s)(g(t)− g(s)) + o(|t− s|α+β).

Then again by Lemma 2 J(t) =
∫ t
a
f(s) dg(s).

Proposition 7. Let f ∈ Cα([0, T ],L(A,B)), g ∈ Cβ([0, T ], A), with α + β > 1

then ∫ t

0

f(r) dg(r)−
∫ t

0

f(r) dh(r) =

∫ t

0

f(r) d(g − h)(r).

Proof. By the characterization given by proposition 4 we have:∫ t

0

f(r) d(g − h)(r) = lim
|Πn|→0

∑
ti∈Πn

f(ti)(g(ti+1)− h(ti+1)− g(ti) + h(ti))

= lim
|Πn|→0

∑
ti∈Πn

f(ti)(g(ti+1)− g(ti))−

− lim
|Πn|→0

∑
ti∈Πn

f(ti)(h(ti+1)− h(ti))

=

∫ t

0

f(r) dg(r)−
∫ t

0

f(r) dh(r).

13



Proposition 8. Let f ∈ Cα([0, T ],L(A,B)), g ∈ Cβ([0, T ], A), T > 0, α, β ∈ (0, 1)

such that α + β > 1, then∫ ˙

0

f(r) dg(r) ∈ Cβ([0, T ], B).

Moreover: ∥∥∥∥∫ ˙

0

f(r) dg(r)

∥∥∥∥
β

≤ (K ‖f‖α T
α + ‖f‖∞) ‖g‖β (T β + 1),

where K = 2α+β

2α+β−2
.

Proof. Since by Sewing Lemma I(t) =
∫ t

0
f(r) dg(r) is continuous for t ∈ [0, T ],

to prove that I(t) ∈ Cβ([0, T ],R]), it sufficies to show that the following inequality
holds true:

|I(t)− I(s)| ≤ C |t− s|β

for some constant C ∈ R. We have that:

|I(t)− I(s)| =
∣∣∣∣∫ t

0

f(r) dg(r)−
∫ s

0

f(r) dg(r)

∣∣∣∣ =

∣∣∣∣∫ t

s

f(r) dg(r)

∣∣∣∣
=

∣∣∣∣∫ t

s

f(r) dg(r)− f(s)(g(t)− g(s)) + f(s)(g(t)− g(s))

∣∣∣∣
≤
∣∣∣∣∫ t

s

f(r) dg(r)− f(s)(g(t)− g(s))

∣∣∣∣+ |f(s)(g(t)− g(s))| .

Then using using the inequality we obtained in Sewing Lemma 2 and setting
K = 2α+β

2α+β−2
we obtain:

|I(t)− I(s)| ≤
∣∣∣∣∫ t

s

f(r) dg(r)− f(s)(g(t)− g(s))

∣∣∣∣+ ‖f(s)(g(t)− g(s))‖

≤ K ‖f‖α ‖g‖β |t− s|
α+β + ‖f‖∞ ‖g‖β |t− s|

β

= (K ‖f‖α ‖g‖β |t− s|
α + ‖f‖∞ ‖g‖β) |t− s|β

≤ (K ‖f‖α T
α + ‖f‖∞) ‖g‖β |t− s|

β

= C |t− s|β .

Since C does not depend on t, s ∈ [0, T ], then I ∈ Cβ([0, T ],R).
For the second part of the proposition, we need to compute ‖I‖∞. Then, by the
same argument used above:

|I(t)| = |I(t)− I(0)− f(0)(g(t)− g(0)) + f(0)(g(t)− g(0))|
≤ |I(t)− I(0)− f(0)(g(t)− g(0))|+ |f(0)(g(t)− g(0))|
≤ K ‖f‖α ‖g‖β T

α+β + ‖f‖∞ ‖g‖β T
β.

Then, putting together the pieces, we obtain:∥∥∥∥∫ ˙

0

f(r) dg(r)

∥∥∥∥
β

≤ (K ‖f‖α T
α + ‖f‖∞) ‖g‖β (T β + 1).
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Sometimes it is useful to integrate against an integral function, we show that
under certain condition the Young integral well behaves with this kind of inte-
gration.

Proposition 9. Let A ∈ Cγ([0, T ],L(A,B)), x ∈ Cα([0, T ], A), B ∈ Cβ([0, T ],L(B,C))

where A,B are Banach spaces and α + β > 1, γ + β > 1 then if:

y(t) =

∫ t

0

A(s) dx(s)

the folllowing identity holds true:∫ t

0

B(s) dy(s) =

∫ t

0

B(s)A(s) dx(s).

Proof. By the definition of the Young Integral we have:∫ t

s

B(r) dy(r) = B(s)(y(t)− y(s)) + o(|t− s|α+β).

On the other hand:∫ t

s

B(r)A(r) dx(r) = B(s)A(s)(x(t)− x(s)) + o(|t− s|α+β).

We want to show that:

B(s)(y(t)− y(s)) + o(|t− s|α+β) = B(s)A(s)(x(t)− x(s)) + o(|t− s|α+β).

Now

y(t)− y(s) =

∫ t

s

A(r) dx(r) = A(s)(x(t)− x(s)) + o(|t− s|α+β).

So that:

B(s)(y(t)− y(s)) + o(|t− s|α+β) = B(s)(A(s)(x(t)− x(s)) + o(|t− s|α+β))

+ o(|t− s|α+β)

= B(s)A(s)(x(t)− x(s)) + o(|t− s|α+β).

15



Chapter 3

Young Differential Equations

In this section we will study differential equations of the following type:

y(t) = y0 +

∫ t

t0

f(y(s)) dx(s) (3.1)

for some f ∈ C1,γ
b (B,L(A,B)), y0 ∈ B, t ∈ [t0, T ], where B is a Banach space.

Definition 2. A solution to (3.1) is a function y : [t0, T ] → B such that (3.1)
holds for any t ∈ [t0, T ].

Note that by Proposition 8 one should expect that a solution to (3.1) inherit
the regularity of x, and that is true under suitable condition. Let us assume that
a solution to (3.1) exists and let us give an a priori estimate to such a solution.

Proposition 10. Let x ∈ Cα([t0, T ], A), y ∈ Cα([t0, T ], B) for some α ∈ (1
2
, 1]

and let f ∈ Lip(B,L(A,B)), with Lipschitz constant L, such that given y0 ∈ R
we have that:

y(t) = y0 +

∫ t

t0

f(y(s)) dx(s).

Then ‖y‖β is bounded, uniformly in ‖x‖α , L, T − t0, ‖f‖∞.

Proof. Using the inequality given by Lemma 2 we have that:

|y(t)− y(s)− f(y(s))(x(t)− x(s))| =
∣∣∣∣∫ t

s

f(y(r)) dx(r)− f(y(s))(x(t)− x(s))

∣∣∣∣
≤ C ‖f ◦ y‖α ‖g‖α |t− s|

2α .

Where C = 22α

22α−2
. So that:

|y(t)− y(s)| = |y(t)− y(s)− f(y(s))(x(t)− x(s)) + f(y(s))(x(t)− x(s))|
≤ |y(t)− y(s)− f(y(s))(x(t)− x(s))|+ |f(y(s))(x(t)− x(s))|
≤ C ‖f ◦ y‖α ‖x‖β |t− s|

α+β + ‖f‖∞ ‖x‖β |t− s|
β .
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It remains to study ‖f ◦ y‖α, we have that:

‖f ◦ y‖α = ‖f ◦ y‖∞ + sup
t0≤s<t≤T

|f(y(t))− f(y(s))|
|t− s|α

≤ ‖f‖∞ + sup
t0≤s<t≤T

|f(y(t))− f(y(s))|
|t− s|α

Moreover since f is Lipschitz, we have:

sup
t0≤s<t≤T

|f(y(t))− f(y(s))|
|t− s|α

≤ sup
t0≤s<t≤T

L |y(t)− y(s)|
|t− s|α

≤ sup
t0≤s<t≤T

L ‖y‖α |t− s|
α

|t− s|α
= L ‖y‖α .

So that:
‖f‖α ≤ ‖f‖∞ + L ‖f‖α <∞.

Finally we obtain that

|y(t)− y(s)| ≤ c(‖f‖∞ + L ‖y‖α) |t− s|α+β + ‖f‖∞ ‖x‖β |t− s|
β

≤ (c(‖f‖∞ + L ‖y‖α) |T − t0|α + ‖f‖∞ ‖x‖β) |t− s|β .

So that y ∈ Cβ and ‖y‖β is bounded.

The previous proposition proves that if a solution exists then it is bounded
for any finite interval of time.

3.1 An existence and uniqueness result

In this section we will prove that there exists a unique solution to the Young
Differential Equation

y(t) = y0 +

∫ t

t0

f(y(s)) dx(s)

under the assumptions x ∈ Cα([t0, T ], A), α ∈ (0, 1), f ∈ C1,γ
b (B,L(A,B)), y0 ∈ B,

with α(1 + γ) > 1. For the sake of simplicity we will consider interval of time
of the type [0, T ] as, up to a translation y(t− t0), the problem does not change.
Our proof will be based on what we would do if we are handling usual ordinary
differential equation. Indeed we will define the map:

MT,y0(y) = y0 +

∫ t

0

f(y(r)) dx(r), t ∈ [0, T ],

then we will prove it is a contraction for balls of a suitable radius and then we
will obtain a solution thanks to the Banach Fixed Point Theorem.
Let us start with a definition.
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Definition 3. Let (X, d) be a metric space. A map T : X → X is called a
contraction mapping on X if there exists L ∈ [0, 1) such that d(T (x), T (y)) ≤
Ld(x, y) for all x, y ∈ X.

The proof of the following theorem is due to [Pal07].

Theorem 5 (Banach Fixed Point Theorem). Let (X, d) be a complete non empty
metric space. Let T : X→ X a contraction mapping on X then the map T admits
a unique fixed point.

Proof. Firstly let us note that for every n ∈ N, x, y ∈ X we have d(T n(x), T n(y)) ≤
Lnd(x, y). By induction the thesis holds for n = 0, then supposing the thesis holds
true for n let us prove the thesis for n+ 1:

d(T n+1(x), T n+1(y)) ≤ Ld(T n(x), T n(y)) ≤ Ln+1d(x, y).

Moreover by the triangle inequality we have:

d(x, y) ≤ d(x, T (x)) + d(T (x), T (y)) + d(T (y), y))

≤ d(x, T (x)) + Ld(x, y) + d(T (y), y).

So that:
(1− L)d(x, y) ≤ d(x, T (x)) + d(T (y), y),

then:
d(x, y) ≤ d(T (x), x) + d(T (y), y)

1− L
. (3.2)

Existence. Let us prove that the sequence (T n(x))n∈N is a Cauchy sequence. By
3.2 we have:

d(T n(x), Tm(x)) ≤ d(T (T n(x)), T n(x)) + d(T (Tm(x)), Tm(x))

1− L

=
d(T n(T (X)), T n(x)) + d(Tm(T (x)), Tm(x))

1− L

≤ Lnd(T (x), x) + Lmd(T (x), x)

1− L

=
Ln + Lm

1− L
d(T (x), x)→ 0

as n,m → ∞ since L ∈ [0, 1) proving that (T n(x))n∈N is Cauchy. So that there
exists a limit x? = lim

n→∞
T n(x). The point x? is a fixed point, in fact since T is a

contraction then it is continuous, so that:

x? = lim
n→∞

T n(x) = lim
n→∞

T n+1(x) = T ( lim
n→∞

T n(x)) = T (x?).

Uniqueness. Let x, y ∈ X such that T (x) = x, T (y) = y, then by (3.2)

d(x, y) ≤ d(T (x), x) + d(T (y), y)

1− L
=
d(x, x) + d(y, y)

1− L
= 0.

So that x = y.
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Note that in the proof of theorem 5 we obtained the fixed point by an iterative
construction. In particular, if the map MT,y0 is a contraction mapping of some
suitable space into itself, then we can construct an approximation to a solution,
whenever it exists, of 3.1 by considering the sequence:

Mn
T,y0

= y0 +

∫ t

0

f(Mn−1
T,y0

(r)) dx(r).

In order to study whether the map MT,y0(y) is a contraction or not, we need to
study its norm. To do this we need to study the behaviour of the composition
f ◦y. To do this let us introduce a result that will be useful to study the behaviour
of the composition.

Proposition 11. Let x, y > 0, α ∈ (0, 1) then

(x+ y)α ≤ xα + yα.

Proof. We have that:

(x+ y)α − xα =

∫ x+y

x

αtα−1 dt ≤
∫ x+y

x

α(t− x)α−1 dt

≤ α
1

α
(t− x)α

∣∣x+y

x
= yα.

The inequalities follows from the fact that 1 − α > 0, yielding (x + y)α ≤ xα +

yα.

Now we are ready to give an estimate on the composition f ◦ y.

Lemma 3. Given α ∈ (0, 1], let x, y ∈ Cα([0, T ], B) and f ∈ C1,γ(B,B′), where
B,B′ are Banach spaces. Then:

‖f ◦ x− f ◦ y‖αγ ≤ (‖Df‖∞ (1 + Tα(1−γ)) + ‖Df‖γ (‖x‖γα + ‖y‖γα)) ‖x− y‖α .

Proof. Let us define

g :B ×B → L(B,B′)

(u, v) 7→
∫ 1

0

Df(tu+ (1− t)v) dt.

Then the following identity holds

f(u)− f(v) = g(u, v)(u− v)

by applying the Fundamental Theorem of Calculus to the function f ◦ τ where

τ :[0, 1]→ B

t 7→ tu+ (1− t)v.
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Now we can observe that:

‖g‖∞ ≤
∫ 1

0

‖Df‖∞ dt = ‖Df‖∞ .

Moreover:

|g(u, v)− g(ū, v̄)| ≤
∫ 1

0

|Df(tu+ (1− t)v)−Df(tū+ (1− t)v̄| dt

≤ ‖Df‖γ
∫ 1

0

|t(u− ū) + (1− t)(v − v̄)|γ dt

≤ ‖Df‖γ
∫ 1

0

(t |u− ū|+ (1− t) |v − v̄|)γ dt

≤ ‖Df‖γ
∫ 1

0

(tγ |u− ū|γ + (1− t)γ |v − v̄|γ) dt

≤ ‖Df‖γ
∫ 1

0

(|u− ū|γ + |v − v̄|γ) dt

= ‖Df‖γ (|u− ū|γ + |v − v̄|γ).

Before going on let us introduce the following notation for g from [0, T ] to some
Banach space B: gs,t = g(t)− g(s). Now by substituting x, y we obtain:

|(f ◦ x)s,t − (f ◦ y)s,t| = |(f(x(t)− f(y(t)))− (f(x(s))− f(y(s)))|
= |g(x(t), y(t))(x(t)− y(t))− g(x(s), y(s))(x(s)− y(s))|
= |g(x(t), y(t))(xs,t − ys,t+

+ x(s)− y(s))− g(x(s), y(s))(x(s)− y(s))|
≤ |g(x(t), y(t))(xs,t − ys,t)|+

+ |(g(x(t), g(y(t))− g(x(s), y(s)))(x(s)− y(s)|
≤ ‖Df‖∞ |xs,t − ys,t|+ ‖Df‖γ (|xs,t|γ + |ys,t|γ) |x(s)− y(s)| .

Then we have:

‖f ◦ x− f ◦ y‖αγ ≤ ‖f ◦ x− f ◦ y‖∞+

+ ‖Df‖∞ ‖x− y‖α T
α(1−γ) + ‖Df‖∞ (‖x‖γα + ‖y‖γα) ‖x− y‖∞

≤ ‖f‖∞ ‖x− y‖α +

+ ‖Df‖∞ ‖x− y‖α T
α(1−γ) + ‖Df‖∞ (‖x‖γα + ‖y‖γα) ‖x− y‖α

≤ (‖Df‖∞ (1 + Tα(1−γ)) + ‖Df‖γ (‖x‖γα + ‖y‖γα)) ‖x− y‖α .

That is the thesis.

Now we are ready to prove the existence and uniqueness theorem for solution
to 3.1.

Theorem 6 (Existence and Uniqueness of the solutions to Young Differential
Equations). Given α ∈ (1

2
, 1], A,B two Banach spaces, let x ∈ Cα([0, T ], A) and
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f ∈ C1,γ
b (B,L(A,B)) with α)1 + γ) > 1. For every y0 ∈ B there exists a unique

solution y ∈ Cα([0, T ], B) to the differential equation:

y(t) = y0 +

∫ t

0

f(y(r)) dx(r).

Proof. Firstly note that the Young’s integral should be defined since f ◦ y ∈
Cα([0, T ],L(A,B)) and 2α > 1 by hypothesis. We fix β ∈ (1

2
, α) such that

βγ + α > 1 and consider the operator between Banach spaces defined as follows:

MT,y0 :Cβ([0, T ], B)→ Cα([0, T ], B)

y 7→ y0 +

∫ t

0

f(y(r)) dx(r).

The integral is well defined since f ◦y lies in Cβ([0, T ], B) and, by the choice of β,
α+β > 1. MoreoverMT,y0 maps the subspace V = {y ∈ Cβ([0, T ], B) : y(0) = y0}
into itself.
As we briefly said at the beginning of the paragraph, we want to find a suitable
space whereMT,y0 is a contraction. Since V is invariant underMT,y0 , then a good
choice should be a subspace of V . Let us consider W = {y ∈ V : ‖y‖β ≤ 1} then,
for a suitable T > 0 small enough MT,y0(W ) ⊂ W .

‖Mt,y0(y)‖β =

∥∥∥∥∫ t

0

f(y(r)) dx(r)

∥∥∥∥
≤ (K ‖f ◦ y‖β T

β + ‖f ◦ y‖∞)(T β + 1) ‖x‖β
≤ (K ‖Df‖∞ ‖y‖β T

β + ‖f‖∞)(T β + 1) ‖x‖α T
α−β.

Then choosing T ≤ min{1, T1} where

T1 = (2(K ‖Df‖∞ + ‖f‖∞) ‖x‖α)
1

α−β .

Now we will show that MT,y0 is a contraction for a suitable T > 0 and then by
Theorem 5, there exists a solution ȳ toMT,y0(ȳ) = ȳ in the interval [0, T ] meaning
that ȳ is a solution to the intial problem on [0, T ]. For z, y ∈ W :

‖MT,y0(z)−MT,y0(y)‖β =

∥∥∥∥∫ .

0

(f(z(r))− f(y(r))) dx(r)

∥∥∥∥
β

≤ K ‖f ◦ z − f ◦ y‖βγ T
β + ‖f ◦ z − f ◦ y‖∞)(T β + 1) ‖x‖β

≤ K((‖Df‖∞ (1 + T β(1−γ))+

+ 2 ‖Df‖γ) ‖z − y‖β)T β+

+ ‖f ◦ z − f ◦ y‖∞)(T β + 1) ‖x‖α T
α−β

≤ K((‖Df‖∞ (1 + T β(1−γ))+

+ 2 ‖Df‖γ))T
β+

+ ‖Df‖∞)(T β + 1) ‖z − y‖β ‖x‖α T
α−β
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Then by choosing T ≤ min{1, T1, T2} where:

T2 =

(
1

2
K
(

2 ‖Df‖∞ + 2 ‖Df‖γ
)

+ 2 ‖Df‖∞) ‖x‖α
) 1

α−β

,

we have that:
‖MT,y0(z)−MT,y0(y)‖β ≤

1

2
‖z − y‖β .

So MT,y0 is a contraction on W for T as above. Finally, since MT,y0 takes also
value in Cα([0, T ], B) we have y ∈ Cα([0, T ], B).
Now we want to show that the results holds true for any T > 0. Let n ∈ N such
that nmin{1, T1, T2} ≥ T then, for what we have already shown, there exists
unique y(1), . . . , y(n) ∈ Cα([0, T

N
], B) that solve the differential problems:

y
(1)
t = y0 +

∫ t

0

f
(
y(1)(r)

)
dx(r)

y
(i+1)
t = y(i−1)

(
i
T

n

)
+

∫ t

0

f
(
y(i+1)(r)

)
dx

(
r + i

T

n

)
Given y ∈ Cα([0, T ], B) solution to the differential equation, by the uniqueness of
the solution onto [ (i−1)T

n
, iT
n

], the following identity holds:

y(i)(t) = y

(
t+ (i− 1)

T

n

)
for every i, then the solution is unique. On the other hand y constructed as
above is a solution to the differential equation and that concludes the proof of
the theorem.

Before going on let us remark that the contraction does not depend on y0.
Since we have obtained a solution let us note that it behaves well with composi-
tion. The following result is a refining of proposition 5.

Proposition 12 (Itô’s Formula). For some α > 1
2
, let x ∈ Cα([0, T ], A), y ∈

Cα([0, T ], B) satisfying 3.1 where f ∈ Lip(B,L(A,B)). Then if G : B → B is
differentiable, with Lipschitz derivative, then for all t ∈ [a, b],

G(y(t)) = G(y0) +

∫ t

a

G′(y(s)) dy(s) = G(y0) +

∫ t

a

G′(y(s))f(y(s)) dx(s).

Proof. By Taylor expansion:

G(y(t))−G(y(s)) = G′(y(s))(y(t)− y(s)) + o(|t− s|2α).

By the definition of the Young Integral:∫ t

s

G′(y(r)) dy(r) = G′(y(s))(y(t)− y(s)) + o(|t− s|2α).
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On the other hand:∫ t

s

G′(y(r))f(y(r) dx(r) = G′(y(s))f(y(s))(x(t)− x(s)) + o(|t− s|2α).

So we need to show that:

G′(y(s))(y(t)− y(s)) + o(|t− s|2α) = G′(y(s))f(y(s))(x(t)− x(s)) + o(|t− s|2α).

Now:

y(t)− y(s) =

∫ t

s

f(y(r)) dx(r) = f(y(s))(x(t)− x(s)) + o(|t− s|2α).

So that:

G′(y(s))(y(t)− y(s)) + o(|t− s|2α) = G′(y(s))f(y(s))(x(t)− x(s)) + o(|t− s|2α).

Then the thesis holds by Sewing Lemma.

This is a refinement of proposition 5 and proposition 9.

3.2 Flow properties

Given f ∈ C1,γ
b (B,L(A,B)), x ∈ Cα([0, T ], A), y0 ∈ B, where A,B are Banach

spaces and α ∈ (1
2
, 1), with α(1 + γ) > 1 let us define the following map:

Y(y0, x) :B × Cα([0, T ], A)→ Cβ([0, T ], B), (β ≥ α)

(y0, x) 7→ y0 +

∫ t

0

f(Ys(y0, x)) dx(s).

The map Y(y0, x) is usually called Itō Map ( or flow in the case of ODEs). Note
that the map is well defined since it satisfies the hypothesis of Theorem 6.

Proposition 13. The map Y(., x) is Lipschitz for every fixed x.

Proof. Firstly we show that there exists a sufficiently small T̃ > 0 such that
Y : B × Cα([0, T̃ ], A)→ Cα([0, T̃ ], B) is Lipschitz.
Let y0, ȳ0 ∈ B, β ∈ (1

2
, α) then:

‖Y(y0, x)−Y(ȳ0, x)‖β =

∥∥∥∥y0 − ȳ0 +

∫ .

0

{f(Yr(y0, x))− f(Yr(ȳ0, x))} dx(r)

∥∥∥∥
β

≤ |y0 − ȳ0|+
∥∥∥∥∫ .

0

{f(Yr(y0, x))− f(Yr(ȳ0, x))} dx(r)

∥∥∥∥
β

.

By the same arguments used in the proof of Theorem 6 we obtain the following
inequality:∥∥∥∥∫ .

0

{f(Yr(y0, x))− f(Yr(ȳ0, x))} dx(r)

∥∥∥∥
β

≤

≤ (K ‖Df‖∞ (1 + T β(1−γ)) + ‖Df‖γ (‖Y(y0, x)‖γβ + ‖Y(ȳ0, x)‖γβ)T β+

+ ‖Df‖∞)(T β + 1)) ‖x‖α ‖Y(y0, x)−Y(ȳ0, x)‖β T
α−β.
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Setting:

C(β, γ) = (K ‖Df‖∞ (1 + T β(1−γ)) + ‖Df‖γ (‖Y(y0, x)‖γβ +

+ ‖Y(ȳ0, x)‖γβ)T β + ‖Df‖∞)(T β + 1)) ‖x‖α
we obtain:

‖Y(y0, x)−Y(ȳ0, x)‖β ≤ |y0 − ȳ0|+ C(β, γ) ‖Y(y0, x)−Y(ȳ0, x)‖β T
α−β.

Then if T̃ < 1
C(β,γ)

we obtain:

‖Y(y0, x)−Y(ȳ0, x)‖β ≤
1

1− T̃C(β, γ)
|y0 − ȳ0|

As ‖.‖β ≥ ‖.‖∞ we have:

‖Y(y0, x)−Y(ȳ0, x)‖∞ ≤
1

1− T̃C(β, γ)
|y0 − ȳ0|

Finally, remembering the semigroup law of Y(y0, x), meaning that

YT−t(y0, x) = Yt(YT (y0, x), x),

and by the uniqueness of the solution to (3.1) the result can be extended by the
whole interval [0, T ].

Moreover, fixed T > 0, one can interpret YT (., x) as the map B 7→ YT (B, x),
where

YT (B, x) = {YT (y0, x) ∈ Cα([0, T ], B) : YT (y0, x) satisfies y0+

+

∫ T

0

f(Yr(y0, x) dx(r) for some y0 ∈ B}.

Furthermore YT (., x) is a homeomorphism between the two spaces. To show this
we need a preliminary result regarding time inversion for Young Integral.

Lemma 4. Given y ∈ Cα([0, T ],L(A,B)), x ∈ Cβ([0, T ], A) with α + β > 1, then∫ t

0

y(s) dx(s) = −
∫ T

T−t
y(T − s) dx(T − s).

Proof. As we have seen in proposition 4 the Young is define as the limit of the
Riemann sums:

Jn(0, t) =
∑
ti∈Πn

y(ti)(x(ti+1)− x(ti))

among a partition Πn = {0 = t0 < t1 < · · · < tn = T} of the interval [0, T ] such
that lim

n→∞
|Πn| = 0.

Hence:

Jn(0, t) =
∑
ti∈Πn

(y(ti)− (y(ti+1)− y(ti+1)))(x(ti+1)− x(ti))

=
∑
ti∈Πn

y(ti+1)(x(ti+1)− x(ti))−
∑
ti∈Πn

(y(ti+1)− y(ti))(x(ti+1)− x(ti)).
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On the other hand:∣∣∣∣∣∑
ti∈Πn

(y(ti+1)− y(ti))(x(ti+1)− x(ti)

∣∣∣∣∣ ≤ ‖y‖α ‖x‖β ∑
ti∈Πn

|ti+1 − ti|α+β

≤ ‖y‖α ‖x‖β |Πn|
∑
ti∈Πn

|ti+1 − ti|α+β−1

≤ ‖y‖α ‖x‖β |Πn|Tα+β−1 → 0

as n→∞. Setting u(t) = y(T − t), v(t) = x(T − t) we have:

Jn(0, t) =
∑
ti∈Πn

u(T − ti+1)(v(T − ti+1)− v(T − ti)) + o(|Πn|)

= −
∑
ti∈Πn

u(T − ti+1)(v(T − ti)− v(T − ti+1)) + o(|Πn|),

which converges to −
∫ T
T−t u(s) dv(s) yelding the thesis.

Now let us consider the map, for T > 0, yT 7→ Y−1
T (yT , x̂) defined as:

Y−1
T (yT , x) = yT +

∫ T

0

f(Y−1
s (yT , x̂)) dx̂(T − s),

where x̂(s) = x(T − s). Using the time inversion property we obtain:

YT−t(yT , x) = yT −
∫ T

T−t
f(YT−s(yT , x) dx̂(s)

= YT (yT , x) +

∫ t

0

f(Yt−s(yT , x)) dx̂(s).

By the uniqueness of the solution to the differential problem

Yt(y0, x) = y0 +

∫ t

0

f(Yr(y0, x)) dx(r), y0 ∈ B,

we obtain that YT−t(y0, x) = Y−1
t (YT (y0, x), x) and Y0(y0, x) = y0. Sim-

ilarly Y−1
T−t(YT (y0, x), x) = Y−1

T−t(y0, x) and then y0 = YT (Y−1
T (y0, x), x) =

Y−1
T (YT (y0, x), x). We can resume all the discussion above in the following result.

Proposition 14. Let f ∈ C1,γ(A,L(A,B)) and x ∈ Cα([0, T ], A) with α(1 +γ) >

1. For any T > 0, the map y0 7→ YT (y0, x) defines a Lipschitz homeomorphism
from B to YT (B, x) and its inverse is y0 7→ Y−1

T (y0, x)

From now on we are interested in studying the differentiability of the map
(y0, x) 7→ Y (y0, x) with respect to the initial datum y0. To do this we use a result
due to Da Prato [DP14, Theorem D.2], that we report here as a Lemma.

Lemma 5. Let A,B two Banach spaces and F : A×B → B such that:
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1. There exists K < 1 such that, given x ∈ A,X, Y ∈ B the following inequal-
ity holds true: ‖F (x,X)− F (x, Y )‖B ≤ K ‖X − Y ‖B,

2. There exists Fx ∈ L(A,B) and FX ∈ L(B,B) such that, given x, y ∈ R, Y ∈
B we have:

lim
h→0

F (x+ hy,X + hY )− F (x,X)

h
= Fx(x,X)y + FX(x,X)Y,

3. The functions Fx(., .) : A × B → L(A,B) and FX(., .) : A × B → L(B,B)

are continuous.

Then the function x 7→ Xx where Xx is the only solution to F (x,Xx) = Xx is
differentiable and

∂Xx

∂x
= Fx(x,X

x) + FX(x,Xx)
∂Xx

∂x
.

Proof. Note that Xx is unique and well defined since F (x, .) is a contraction, then
for every x there exists, by Theorem 5 a unique solution to F (x,Xx) = Xx.
Let us start proving that the map x 7→ Xx is continuous. In fact:

Xx −Xy = F (x,Xx)− F (y,Xx) + F (y,Xx)− F (y,Xy),

then:
‖Xx −Xy‖B ≤ ‖F (x,Xx)− F (y,Xx)‖B +K ‖Xx −Xy‖B .

So that:
(1−K) ‖Xx −Xy‖B ≤ ‖F (x,Xx)− F (y,Xx)‖B .

Since 1−K > 0 we can write:

‖Xx −Xy‖B ≤
1

1−K
‖F (x,Xx)− F (y,Xx)‖B .

Since F (., Xx) is continuous by hypothesis, for every ε > 0 there exists δ > 0

such that ‖x− y‖A < δ ⇒ ‖F (x,Xx)− F (y,Xx)‖B < ε. Then choosing δε <
(1−K)εδ, we obtain that for every x, y such that ‖x− y‖A < δε we have:

‖Xx −Xy‖B ≤ ε

proving that x 7→ Xx is continuous.
By 2) for every fixed x ∈ A,F (x, .) is Gateaux differentiable with respect to X.
Moreover by 1):

‖FX(x, .)‖L(B,B) ≤ K.

From 2), 3) the function

t 7→ F ((1− t)x+ ty, (1− t)X + tY )

is differentiable and
d

dt
F ((1− t)x+ ty, (1− t)X + tY )) =

= Fx((1− t)x+ ty, (1− t)X + tY )(y − x) + FX((1− t)x+ ty, (1− t)X + tY )(Y −X).
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So that:

F (y, Y )− F (x,X) =

∫ 1

0

Fx((1− t)x+ ty, (1− t)X + tY )(y − x) dt+

+

∫ 1

0

FX((1− t)x+ ty, (1− t)X + tY )(Y −X) dt.

In particular

Xx+y −Xx = F (x+ y,Xx+y)− F (x,Xx)

=

∫ 1

0

Fx(x+ ty, (1− t)Xx+y + tXx)y dt+

+

∫ 1

0

FX(x+ ty, (1− t)Xx+y + tXx)(Xx+y −Xx) dt.

Let us define the operator:

Gy =

∫ 1

0

FX(x+ ty, (1− t)Xx + tXx+y) dt.

Then Gy ∈ L(B,B), ‖Gy‖L(B,B) ≤ K and y 7→ Gy is continuous. Moreover for
every Z ∈ B we have:

lim
y→0

GyZ = FX(x,Xx)Z.

Since ‖Gy‖L(B,B) ≤ K < 1 it is defined (I −Gy)
−1 =

∞∑
n=0

Gn
y . Then:

Xx+y −Xx = Gy(X
x+y −Xx) + y

∫ 1

0

Fx(x+ ty, (1− t)Xx + tXx+y) dt,

(I −Gy)(X
x+y −Xx)

y
=

∫ 1

0

Fx(x+ ty, (1− t)Xx + tXx+y) dt,

Xx+y −Xx

y
= (I −Gy)

−1

∫ 1

0

Fx(x+ ty, (1− t)Xx + tXx+y) dt.

Hence:
∂Xx

∂x
= lim

y→0

Xx+y −Xx

y
= (I − FX(x,Xx))−1Fx(x,X

x). (3.3)

In fact lim
y→0

(I − Gy)
−1 = lim

y→0

∞∑
n=0

Gn
y =

∞∑
n=0

FX(x,Xx)n = (I − FX(x,Xx))−1.

Finally we observe that 3.3 is equivalent to the thesis.

Now we need some result to assure ourselves that the functionY(y0, x) satisfies
the hypothesis of Lemma 5. To do this let us start with a result regarding
different estimates that we can obtain for Hölder function by evaluating them in
four points:
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Lemma 6. Let A be a Banach space, let g ∈ Cα([0, T ], A) with α ∈ (0, 1). Then
for any k ∈ [0, 1]:

‖g(z)− g(y)− g(z′)− g(y′)‖A ≤ ‖g‖α (|y′ − y|αk+|z′ − z|αk)(|z′ − y′|αk̄+|z − y|αk̄),

for every y, z, y′, z′ ∈ [0, T ] and k̄ = 1− k.

Proof. Let us consider y, z, y′, z′ ∈ [0, T ], then:

|g(z)− g(y)− g(z′) + g(y′)| ≤ ‖g(y′)− g(y)‖A + ‖g(z′)− g(z)‖A
≤ ‖g‖α |y

′ − y|α + ‖g‖α |z
′ − z|α

≤ ‖g‖α (|y′ − y|α + |z′ − z|α).

Then elevating to k and by proposition 11 we obtain:

|g(z)− g(y)− g(z′) + g(y′)|k ≤ ‖g‖kα (|y′ − y|α + |z′ − z|α)γ

≤ ‖g‖kα (|y′ − y|αk + |z′ − z|αk).

Moreover:

|g(z)− g(y)− g(z′) + g(y′)| ≤ |g(z)− g(y)|+ |g(y′)− g(z′)|
≤ ‖g‖α (|z − y|α + |y′ − z′|α).

Then elevating to k̄ and using proposition 11 we obtain:

|g(z)− g(y)− g(z′) + g(y′)|k̄ ≤ ‖g‖k̄α (|z − y|αk̄ + |y′ − z′|αk̄).

Then multiplying the two inequalities we finally obtain the thesis.

We now use a simplified version of the "Omega Lemma" from [CL18].

Lemma 7 (Omega Lemma). Let α ∈ (0, 1), γ ∈ (0, 1), k ∈ (0, 1) and f ∈
C1,γ(B,L(A,B)). Let us set F (y) = (f(yt)t∈[0,T ]) then F (y) ∈ C1,(1−k)γ from
any ball of radius ρ > 0 of Cα([0, T ], B) to Cβ([0, T ],L(A,B)) where β = αkγ. In
addition DyF (y) · h = (Df(yt) · ht)t∈[0,T ] belongs to Cβ([0, T ], B).

Proof. Call B = Cβ([0, T ],L(A,B)),A = Cα([0, T ], B) Firstly let us show that
DyF (y) · h ∈ B, for every h ∈ A. We have:

‖Df(ys) · hs −Df(yt) · ht‖B =

= ‖Df(ys) · hs −Df(yt) · hs +Df(yt) · hs −Df(yt) · ht‖B
≤ ‖Df(ys) · hs −Df(yt) · hs‖B + ‖Df(yt) · hs −Df(yt) · ht‖B
≤ ‖Df‖γ ‖yt − ys‖

γ
A ‖h‖α + ‖Df‖∞ ‖ht − hs‖A

≤ ‖Df‖γ ‖y‖
γ
α ‖h‖α |t− s|

αγ + ‖Df‖∞ ‖h‖α |t− s|
α

= (‖Df‖γ ‖y‖
γ
α + |t− s|αγ(1−k) + ‖Df‖∞ |t− s|

α(1−kγ)) ‖h‖α |t− s|
αkγ

≤ (‖Df‖γ ‖y‖
γ
α + Tαγ(1−k) + ‖Df‖∞ T

α(1−kγ)) ‖h‖α |t− s|
αkγ .
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Since αkγ = β the thesis holds.
Now let us show that DyF (y) ∈ C(1−k)γ

loc (A,L(A,B). Let ρ > 0 and let us consider
y, z such that ‖y‖α , ‖z‖ < ρ then we want to show that for every h ∈ A we have:

‖(DyF (y)−DyF (z)) · h‖β ≤ C ‖y − z‖(1−k)γ
α ‖h‖α ,

where C > 0 is a constant that does not depend on h. Then we have:

‖(DyF (y)−DyF (z)) · h‖∞ ≤ ‖Df‖γ ‖y − z‖
γ
∞ ‖h‖α ≤ ‖Df‖γ (2ρ)γα ‖h‖α .

On the other hand:

|(Df(yt)−Df(zt)) · ht − (Df(ys)−Df(zs)) · hs| ≤
≤ |(Df(yt)−Df(zt)) · ht − (Df(ys)−Df(zs)) · ht|+

+ |(Df(ys)−Df(zs)) · ht − (Df(ys)−Df(zs)) · hs|

Now let us estimate the two terms separately.
For the first we have:

|(Df(yt)−Df(zt)) · ht − (Df(ys)−Df(zs)) · ht| ≤
≤ ‖Df‖γ (|yt − ys|kγ + |zt − zs|kγ)(|yt − zt|(1−k)γ

≤ ‖Df‖γ (4(‖y‖kγα + ‖z‖kγα )Tαkγ ‖y − z‖(1−k)γ
α )

≤ ‖Df‖γ (8ρkγ)Tαkγ ‖y − z‖(1−k)γ
α .

Where we used Lemma 6.
For the second term we have:

|(Df(ys)−Df(zs)) · ht − (Df(ys)−Df(zs)) · hs| ≤ ‖Df‖γ |ys − zs|
γ |ht − hs|

≤ ‖Df‖γ (2ρ)kγ ‖h‖α T
αkγ ‖y − z‖(1−k)γ .

Then we are able to find a constant C > 0, that does not depend on h, such
that:

‖(DyF (y)−DyF (z)) · h‖β ≤ C ‖y − z‖(1−k)γ
α ‖h‖α (3.4)

yelding the thesis.
Finally let us how that the derivative exists, in other words let us prove that:

‖F (y + h)− F (y)−DyF (y) · h‖β = o(‖h‖α).

We have that:

‖f(yt + ht)− f(yt)−Df(yt) · ht − f(ys + hs) + f(ys) +Df(ys) · hs‖B =

=

∥∥∥∥∫ 1

0

{(Df(yt + τht)−Df(yt)) · ht − (Df(ys + τhs)−Df(ys)) · hs} dτ
∥∥∥∥
B

≤
∫ 1

0

|(Df(yt + τht)−Df(yt))ht − (Df(ys + τhs)−Df(ys))hs| dτ

≤
∫ 1

0

|Df(yt + τht)−Df(yt) +Df(ys + τhs)−Df(ys)| ‖h‖α dτ+

+

∫ 1

0

|Df(ys + τhs)−Df(ys)| |ht − hs| dτ.
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Now let us study the two terms independently. For the first term, by applying
Lemma 6 we have:∫ 1

0

|Df(yt + τht)−Df(yt) +Df(ys + τhs)−Df(ys)| ‖h‖α dτ ≤

≤
∫ 1

0

‖Df‖γ (|yt + τht − ys − τhs)|+ |yt − ys|)γk(|τht|+ |τhs|)γ(1−k) ‖h‖α dτ

≤ K1 ‖h‖(1−k)γ+1
α .

For a suitable constant K1 > 0.
For the second term we have∫ 1

0

|Df(ysτhs)−Df(ys)| |ht − hs| dτ ≤

≤
∫ 1

0

‖Df‖γ |τhs| ‖h‖α |t− s|
α dτ ≤ K2 ‖h‖1+γ

α .

Then, putting together the pieces, we have obtained (3.4) with o(‖h‖1+(1−k)γ
α ).

Let us consider the map MT,y0(y) = MT (y0, y) define in Theorem 6. This
map has a unique fixed point Y(y0, x) then if MT (y0, x) satisfies the hypothesis
of Lemma 5, the Fréchet derivative of Y(y0, x) would satisfie:

∂Y

∂y0

(y0, x) =
∂MT

∂y0

(y0,Y(y0, x)) +
∂MT

∂y
(y0,Y(y0, x)

∂Y

∂y0

(y0, x).

On the other hand we have:

• ∂MT

∂y0
(y0,Y(y0, x)) = ∂

∂y0
(y0 +

∫ ·
0
f(y(s)) dx(s))|y=Y(y0,x) = I

• By Lemma 7 and since the Young integral map z 7→
∫ t

0
z(s) dx(s) is linear

and smooth, the derivative ∂
∂y
MT (y0, ·) is (1− k)γ - Hölder.

It remains to verify that MT (y0, ·) is a contraction. By theorem 6 MT (·, y) is a
contraction for a suitable T̃ > 0. So that, by Lemma 5, Y(y0, x) admits Frêchet
derivative at least for a suitable ball of Cα([0, T̃ ], B). By the same argument used
in theorem 6 one can extend the result by gluing the derivative as done for the
solution to (3.1).
Let us now focus on the equation satisfied by the Fréchet derivative of Y(y0, x):

∂Y

∂y0

(y0, x) =
∂MT

∂y0

(y0,Y(y0, x)) +
∂MT

∂y
(y0,Y(y0, x))

∂Y

∂y0

(y0, x).

From what we already noticed, ∂MT

∂y
is, by Lemma 7, (1 − k)γ - Hölder, then

∂Y(y0,x)
∂y0

can only be δ - Hölder with δ ≤ (1 − k)γ. In fact this is given by the
following proposition:

Proposition 15. Let f ∈ Cα([0, T ], A), g ∈ Cβ([0, T ], A), then f + g is {δ}-
Hölder, with δ ≤ min{α, β}.
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Proof.

|f(t) + g(t)− f(s)− g(s)| ≤ ‖f‖α |t− s|
α + ‖g‖ |t− s|β

≤ (‖f‖α T
α−δ + ‖g‖T β−δ) |t− s|δ .

Moreover let us now differentiate the equation that defines Y(y0, x) then we
obtain:

∂

∂y0

Y(y0, x) =
∂

∂y0

(y0 +

∫ t

0

f(Ys(y0, x)) dx(s)

= I +

∫ t

0

Df(Ys(y0, x))
∂

∂y0

Ys(y0, x) dx(s).

Then we obtain another formulation for the Fréchet derivative of Y(y0, x).
In conclusion we have obtained that ∂Y(y0,x)

∂y0
, if exists, satisfies the differential

problem given above and has δ- Hölder regularity with δ ≤ (1− k)γ.
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Chapter 4

Regularity of Young integrals
depending on a Parameter

From the last chapter we know that the Fréchet derivative with respect to the
intial datum of the Itō map previously defined is δ-Hölder with δ ≤ (1− k)γ.
In this chapter we partially investigate if this condition is sharp. To do this let
us recall the equation satisfied by ∂

∂y0
Y(y0, x):

∂

∂y0

Y(y0, x) = I +

∫ t

0

Df(Ys(y0, x))
∂

∂y0

Ys(y0, x) dx.

If we set H(y0, s) = Df(Ys(y0, x)) ∂
∂y0

Ys(y0, x), the problems becomes the regu-
larity of the integral: ∫ t

0

H(y0, s) dx(s),

for δ fixed. Indeed if H ∈ Cδ with respect to the two variables and x ∈
Cα([0, T ], A) we have, for y, y′ ∈ B:∣∣∣∣∫ t

0

H(y, s) dx(s)−
∫ t

0

H(y′, s) dx(s)

∣∣∣∣ ≤ K ‖H(y, .)−H(y′, .)‖kδ ‖x‖α ,

by the definition of the Young Integral.If k ∈ (0, 1) such that α + kδ > 1, by
Proposition 6 of the previous chapter we have:

|H(y, s)−H(y′, s)−H(y, s′) +H(y′, s′)| ≤ 2 ‖H‖δ |y − y
′|(1−k)δ

2 |s− s′|kδ ,

so that |H(y, .)−H(y′, .)|kδ ≤ 4 ‖H‖γ |y − y′|
(1−k)γ.

This shows that y 7→
∫ t

0
H(y, s) dx(s) is (1− k)δ- Hölder.

In the following section we will introduce the Weierstrass functions that will
gave us an interesting example that suggests the sharpness of this condition.
However this in a sull result since H will be constructed ad hoc, not of the type
H(y0, s) = Df(Ys(y0, x)) ∂

∂y0
Ys(y0, x).

Before going on we thank Eugene Stepanov and Roger Züst that gave us the idea
we developed.
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4.1 Hölder-continuity of Weierstrass functions

Definition 4. We say that a function f is a Weierstrass function if f is of the
following form:

f =
∞∑
n=1

an cos(bnt) t ∈ (R) (4.1)

for some a, b > 0.

Now we want to prove that a Weierstrass function is Hölder continuous for a
certain α ∈ (0, 1). The following result assures us this condition.

Lemma 8. Let 0 < a < 1, b > 1 and ab > 1, let f be a Weierstrass function with

a, b as above and let fN =
N∑
n=1

an cos(bnt). Then:

• f is − logb a Hölder continuous

• sup
t∈R
|f(t)− fN(t)| → 0 as N →∞

• Let us set γ = − logb a, then ‖fN‖γ ≤ ‖f‖γ and for every ε ∈ (0, γ)

‖fN − f‖γ−ε → 0 as N →∞

Proof. Let t ∈ R, h ∈ (−1, 1) and let us compute

f(t+ h)− f(h) =
∞∑
n=1

an (cos(bn(t+ h))− cos(bnt))

= −2
∞∑
n=1

an sin

(
1

2
bn(2t+ h)

)
sin

(
1

2
bnh

)
.

Where we used in the second equality the Prosthaphaeresis formulas:

cos(a)− cos(b) = −2 sin

(
1

2
(a+ b)

)
sin

(
1

2
(a− b)

)
.

Since b > 1, h ∈ (−1, 1) there exists m ∈ N such that bm−1 |h| ≤ 1 < bm |h|. So:

|f(t+ h)− f(t)| ≤ 2
∞∑
n=1

∣∣∣∣an sin

(
1

2
bn(2t+ h)

)
sin

(
1

2
bnh

)∣∣∣∣
≤ 2

∞∑
n=1

∣∣∣∣an sin

(
1

2
bnh

)∣∣∣∣
= 2

m∑
n=1

∣∣∣∣an sin

(
1

2
bnh

)∣∣∣∣+ 2
∞∑

n=m+1

∣∣∣∣an sin

(
1

2
bnh

)∣∣∣∣ .
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Note that the first term on the right hand side is a finite sum while the second,
since 0 < a < 1 can be estimated with the tail of a convergent geometric series,
in other words:

|f(t+ h)− f(t)| ≤ 2
m∑
n=1

∣∣∣∣an sin

(
1

2
bnh

)∣∣∣∣+ 2
∞∑

n=m+1

an

=
ab |h|
ab− 1

ambm +
2a

1− a
am.

Since bm−1 |h| ≤ 1 < bm |h| and 0 < a < 1, it follows that bm |h| < b and
am ≤ |h|− logb a. In fact

am < |h|− logb a ⇐⇒ m logb a < (− logb a)(logb |h|)

And the last inequality holds true whenever m > − logb |h|, that is equivalent to
bm |h| > 1.
So:

|f(t+ h)− f(t)| ≤ ab |h|
ab− 1

ambm +
2a

1− a
am

≤ ab2

ab− 1
am +

2a

1− a
am

≤ (
ab2

ab− 1
+

2a

1− a
) |h|− logb a

=
ab2 − a2b2 + 2a2b− 2a

(ab− 1)(1− a)
|h|− logb a .

Now note that

|f(t)| ≤
∞∑
n=1

an = Ma <∞.

Now take t, s ∈ R, |t− s| > 1 by the Prostaphaeresis formulas:

|f(t+ h)− f(t)| ≤

∣∣∣∣∣2
∞∑
n=1

an sin

(
1

2
bn(t+ s)

)
sin

(
1

2
bn(t− s)

)∣∣∣∣∣
≤ 2

(
∞∑
n=1

an

)
|t− s|− logb a = Ma |t− s|− logb a .

Where we used that |t− s| > 1 implies |t− s|−logba > 1 > sin(x) ,∀x ∈ R and
finally we can conclude that f is Hölder continuos.
For the last two assertions, firstly note that f(x)−fN(x) is the tail of a convergent
series and this implies that

sup
t∈R
|f(t)− fN(t)| → 0
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as N →∞.
Moreover, let γ, ε be as in the statement of the Lemma, by the definition of fN
it follows that ‖fN‖γ ≤ ‖f‖γ. We argue by interpolation that:

‖fN − f‖γ−ε = sup
t,s∈R
t6=s

|f(t)− fN(t)− (f(s)− fN(s))|
|t− s|γ−ε

= sup
t,s∈R
t6=s

|f(t)− fN(t)− (f(s)− fN(s))|
γ−ε
γ

|t− s|
γ(γ−ε)
γ

·

· sup
t,s∈R
t6=s

|f(t)− fN(t)− (f(s)− fN(s))|
ε
γ

≤ (2 ‖f‖γ)
γ−ε
γ (2sup

t∈R
|f(t)− fN(t)|)

ε
γ −→ 0.

as N →∞

We will know consider modified Weierstrass function as functions of the type:

∞∑
n=1

εna
ncos(bnt),

where a, b are as in the previous theorem and (εn)n∈N is a sequence that takes
values in (0, 1).

Proposition 16. Let (εn)n∈N such that εn ∈ (0, 1] then the series

∞∑
n=1

εna
ncos(bnt)

with 0 < a < 1, b > 1 and ab > 1 is still −logba- Hölder continuous.

Proof. Following the proof of Theorem 4.1 we obtain

|f(t+ h)− f(t)| ≤ 2
∞∑
n=1

∣∣∣∣εnan sin

(
1

2
bn(2t+ h)

)
sin

(
1

2
bnh

)∣∣∣∣
≤ 2

∞∑
n=1

∣∣∣∣an sin

(
1

2
bn(2t+ h)

)
sin

(
1

2
bnh

)∣∣∣∣ ,
and the thesis holds by the same arguments used in the previous proof.

At this point we can ask ourselves whether a Weierstrass function is differen-
tiable at any point or not. Since Weierstrass introduced this function, there were
many results regarding the differentiability of this kind of function, the sharpest
was proved by Hardy in 1916 in [Har16].

Theorem 7. For every a, b ∈ R such that b ≥ a > 1 the function (4.1) is bounded
and continuous in R, but has no point of differentiability.
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4.2 Study of two particular functions

Now we introduce the following two functions

x(s) =
∞∑
n=1

2−nα sin(2ns)

H(y, s) =
∞∑
n=1

ψ(y2n)2−nγ cos(2ns)

where α, γ ∈ (0, 1), (y, s) ∈ R+×[0, 2π] and ψ(x) is defined as

ψ(x) =


2x− 2 1 ≤ x ≤ 3

2
,

4− 2x 3
2
≤ x ≤ 2,

0 otherwise.

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

Figure 4.1: Plot of ψ for x ∈ [0, 3]

Firstly we notice that the two series define two functions since they are abso-
lutely convergent for every (y, s) ∈ R+×[0, 2π], in fact from α, γ ∈ (0, 1) it follows
that

|x(s)| ≤
∞∑
n=1

2−nα ≤
∞∑
n=1

(2−α)n <∞

|H(y, s)| ≤
∞∑
n=1

2−nγ ≤
∞∑
n=1

(2−γ)n <∞

since the series on the right hand side are two geometric series with ratio less
than 1.
From what we already proved x∈Cα([0, 2π],R) and H(·, s) ∈ Cγs ([0, 2π],R), since
it is a modified Weierstrass function with εn = ψ(y2n) and it is γ-Hölder by
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proposition 16.

From now on we will show that H ∈ Cγx(R+,R). Primarily we compute:

|H(y, s)−H(ȳ, s)| =

∣∣∣∣∣
∞∑
n=1

{ψ(y2n)− ψ(ȳ2n)}2−nγ cos(2ns)

∣∣∣∣∣
≤

∞∑
n=1

∣∣{ψ(y2n)− ψ(ȳ2n)}2−nγ cos(2ns)
∣∣

≤
∞∑
n=1

∣∣{ψ(y2n)− ψ(ȳ2n)}2−nγ
∣∣

=
∞∑
n=1

|ψ(y2n)− ψ(ȳ2n)| 2−nγ.

Now note that ψ(x) is bounded by 1 and Lipschitz with Lipschitz constant 2.
Remembering the definition of H(y, s) we observe that there exist only one n ∈ N
such that ψ(y2n) 6= 0. In fact the condition ψ(y2n) 6= 0 can be translated as
2−n ≤ y ≤ 2−n+1 meaning that, for every fixed y ∈ R+, there exist a unique
n(y) ∈ N such that ψ(y2n(y)) 6= 0 since the intervals, for n 6= m, [2−n, 2−n+1] and
[2−m, 2−m+1] are disjoint. From this, let us distinguish between two cases:

1. n(y) = n(ȳ) = n. Recalling the previous inequality we have, since we are
in the case that n(y) = n(ȳ) = n, that

|H(y, s)−H(ȳ, s)| ≤ |ψ(y2n)− ψ(ȳ2n)| 2−nγ

= 2−nγ |ψ(y2n)− ψ(ȳ2n)|1−γ |ψ(y2n)− ψ(ȳ2n)|γ

≤ (2 ‖ψ‖∞)1−γ2−nγ2γ2nγ |y − ȳ|γ

= 2 ‖ψ‖1−γ
∞ |y − ȳ|γ = K1 |y − ȳ|γ .

Where the constant K1 does not depend on y, ȳ.

2. n(y) 6= n(n̄) in this case notice that ψ(y2n(ȳ)) = ψ(ȳ2n(y)) = 0 so that

|H(y, s)−H(ȳ, s)| ≤
∣∣ψ(y2n(y))2−n(y)γ − ψ(ȳ2n(ȳ))2−n(ȳ)γ

∣∣
=
∣∣ψ(y2n(y))2−n(y)γ − ψ(ȳ2n(y))2−n(y)γ + ψ(x2n(ȳ))2−n(ȳ)γ − ψ(ȳ2n(ȳ))2−n(ȳ)γ

∣∣
≤
∣∣ψ(y2n(y))− ψ(ȳ2n(y))

∣∣ 2−n(y)γ +
∣∣ψ(y2n(ȳ))− ψ(ȳ2n(ȳ))

∣∣ 2−n(ȳ)γ

=
∣∣ψ(x2n(y))− ψ(ȳ2n(y))

∣∣1−γ ∣∣ψ(y2n(y))− ψ(ȳ2n(y))
∣∣γ 2−n(y)γ+

+
∣∣ψ(y2n(ȳ))− ψ(ȳ2n(ȳ))

∣∣1−γ ∣∣ψ(y2n(ȳ))− ψ(ȳ2n(ȳ))
∣∣γ 2−n(ȳ)γ

≤ 4 ‖ψ‖1−γ
∞ |y − ȳ|γ = K2 |y − ȳ|γ .

Where we obtained the last inequality using the same technique of the
previous case. Moreover, the constant K2 does not depend on y, ȳ.

Taking K = max{K1, K2} we finally obtain:

|H(y, s)−H(ȳ, s)| ≤ K |y − ȳ|γ

Where K does not depend on y, ȳ, so we can conclude that H(y, s) ∈ Cγx(R+,R).
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4.3 Integrating H(y, s) against x(s)

In this section we integrate H(y, s) against x(s) in the sense of the Young Integral
and we study the behaviour of such integral. To do this, by Young Integration
theory, we need α, γ ∈ (0, 1) such that γ + α > 1.

0 2 4 6 8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

α = 0.70

0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

α = 0.20

Figure 4.2: Plot of x(s) for α = 0.20 and α = 0.70

To integrate the two functions let us first recall an integration formula that
we can obtain by basic calculus facts.

Proposition 17.∫ t

0

cos(mx) cos(nx) dx =


sin((m−n)x)

2(m−n)
+ sin((m+n)x)

2(m+n)

∣∣∣t
0

m 6= n

x
2

+ sin(2nx)
4n

∣∣∣t
0

m = n

Proof. Let us consider the following two cases:

• m 6= n∫ t

0

cos(mx) cos(nx) dx =

∫ t

0

1

2
[cos((m− n)x) + cos((m+ n)x)] dx

=
sin((m− n)x)

2(m− n)
+

sin((m+ n)x)

2(m+ n)

∣∣∣∣t
0

.

• m = n ∫ t

0

cos(mx) cos(nx) dx =

∫ t

0

cos2(nx) dx

=

∫ t

0

1 + cos(2nx)

2
dx

=
x

2
+

sin(2nx)

4n

∣∣∣∣t
0

.
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In particular one can observe that for t = 2π:∫ 2π

0

cos(mx) cos(nx) dx =

{
0 m 6= n

π m = n

We are ready to integrate H(y, s) against x(s) from 0 to 2π and study the be-
haviour, with respect to the variable y, of such integral. Remembering that for
every fixed y, there exists a unique n(y) such that y ∈ [2−n(y), 2−n(y)+1], we obtain:∫ 2π

0

H(y, s) dx(s) =

∫ 2π

0

2−n(y)γ cos(2n(y)s) d(
∞∑
n=1

2−nαsin(2ns))

Let us call

SN(s) =
N∑
n=1

2−nαsin(2ns)

Since sin(s) is a C∞(R,R) function and SN(s) is a finite sum of C∞(R,R) func-
tions, then SN(s) is also a C∞(R,R) function. For instance consider the integral
of H(x, s) against SN(s), by using the properties of Young’s Integral we have:∫ 2π

0

H(y, s) dSN(s) =

∫ 2π

0

2−n(y)γ cos(2n(y)s)
m∑
n=1

2−nα2n cos(2ns) ds

Since the sums on the right hand side are finite and by the linearity of the integral
we can write:∫ 2π

0

H(y, s) dSN(s) =
m∑
n=1

∫ 2π

0

2−n(y)γ cos(2n(y)s)2−nα2n cos(2ns) ds

=

{
π2−n(y)γ2n(y)(1−α) N ≥ n(y)

0 otherwise

Where the last equality follows from proposition 17. If m ≥ n(y), remembering
the choice of n(y), it follows that 2−n(y) ≤ y and 2−n(y) ≥ y

2
so that:∫ 2π

0

H(y, s) dSm(s) ≈ yγ+α−1

for y → 0+. Now we need to prove that:

lim
m→∞

∫ 2π

0

H(y, s) dSm(s) =

∫ 2π

0

H(y, s) dx(s).

By proposition 7:

lim
m→∞

∫ 2π

0

H(y, s) dSm(s)−
∫ 2π

0

H(y, s) dx(s) = lim
m→∞

∫ 2π

0

H(y, s) d(Sm(s)−x(s)).
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Then by the estimates we obtained in the second chapter, for a every ε > 0 such
that α + γ − ε > 1, since Cα ⊂ Cα−ε, we can find a constant C > 0 such that:∥∥∥∥∫ 2π

0

H(y, s) d(Sm(s)− x(s))

∥∥∥∥
α−ε
≤ C ‖Sm(s)− x(s)‖α−ε .

Moreover that quantity goes to zero by Theorem 4.1.
Finally we conclude that for y → 0+∫ 2π

0

H(y, s) dg(s) ≈ (yγ+α−1).

Since ∫ 2π

0

H(0, s) dx(s) = 0

the function

y 7→
∫ 2π

0

H(y, s) dx(s)

cannot be δ-Hölder for δ > γ + α− 1.
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Appendix A

Basic Facts on Banach Space

Let A be a real linear space.

Definition 5. A mapping ‖.‖ : A→ [0,∞) is called a norm if

1. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ A,

2. ‖λx‖ = |λ| ‖x‖ for all x ∈ A, λ ∈ R,

3. ‖x‖ = 0 if and only if x = 0.

Definition 6. We say a sequence (xn)n∈N ⊂ A converges to x, written xn → x if

lim
n→∞

‖xn − x‖ = 0.

Definition 7. 1. A sequence (xn)n∈N ⊂ A is called a Cauchy sequence pro-
vided for each ε > 0 there exists N > 0 such that

‖xn − xm‖ < ε for all n,m ≥ N.

2. X is complete if each Cauchy sequence in A converges, that is, whenever
(xn)n∈N is a Cauchy sequence, there exists x ∈ A such that (xn)n∈N con-
verges to x.

3. A Banach space is a compete, normed linear space.

Let A,B be Banach spaces.

Definition 8. A map F : A → B is a linear operator provided F (λx + µy) =

λF (x) + µF (y) for all x, y ∈ A, λ, µ ∈ R.

Definition 9. A linear operator F : A→ B is bounded if the following norm it
is finite:

‖F‖L(A,B) = inf{C ≥ 0 : ‖Ax‖B ≤ C ‖x‖A for all x ∈ A}.

Proposition 18. A bounded linear operator F : A→ B is continuous.
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Proof. Let δ < ε
‖F‖L(A,B)

then for every x, y ∈ A such that ‖x− y‖A ≤ δ we have:

‖F (x)− F (y)‖B ≤ ‖F (x− y)‖B ≤ ‖F‖L(A,B) ‖x− y‖A < ε.

It is known that the viceversa of the proposition above holds thanks to some
functional analysis results, that we do not include here.

Definition 10. Let A,B be two Banach spaces. F : A → B is called Fréchet
differentiable at x ∈ A if there exists a bounded linear operator DF (x) : A→ B

such that
lim
h→0

‖F (x+ h)− F (x)−DF (x) · h‖B
‖h‖A

= 0.

We call DF (x) the Fréchet derivative of F at x. A function F that is Fréchet
differentiable for any points of A is said to be C1(A,B) if the function:

DF :A→ L(A,B)

x 7→ DF (x)

is continuous.

Note that requiring the continuity of the map x 7→ DF (x) is different from
requiring that the map DF (x) is continuous for every x ∈ A.

A.1 Hölder spaces are Banach spaces

Theorem 8. Let A,B be two Banach spaces. The space Ck,γ(A,B) endowed with
the norm:

‖f‖k,γ =
∑
i≤k

∥∥Dif
∥∥
∞ +

∣∣Dkf
∣∣
γ

is a Banach space.

Proof. It is clear that ‖f‖k,γ ia a norm, and that the space Ck,γ(A,B) is lineare.
We now prove that it is complete.
Let (un)n∈N be a Cauchy sequence in Ck,γ(A,B), we want to show that there
exists u ∈ Ck,γ(A,B) such that

lim
n→∞

un = u.

Note that the Hölder norm is the sum of the Ck norm and the Hölder seminorm.
By the completeness of Ck(A,B) there exists u ∈ Ck(A,B) such that:

lim
n→∞

‖un − u‖Ck = 0.

We want to show that the limit u belongs to Ck,γ(A,B). To do this let us set:

v = Diu, vn = Diun.
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Then for x 6= y we have:

|v(x)− v(y)|
|x− y|γ

=

=
|v(x)− vn(x) + vn(x)− vn(y) + vn(y)− v(y)|

|x− y|γ

≤ |v(x)− vn(x)|
|x− y|γ

+
|vn(x)− vn(y)|
|x− y|γ

+
|vn(y)− v(y)|
|x− y|γ

.

Hence the first and third term can be made small enough since vn → v uniformly
and the middle term can be made small enough since we assumed (un)n∈N to be
a Cauchy sequence. Then for every 0 ≤ i ≤ k we can find a constant Mi such
that

|v(x)− v(y)|
|x− y|γ

≤Mi.

Then u ∈ Ck,γ(A,B). Now we need to show that the convergence is in Ck,γ(A,B).
Let us consider the quantity:

|(v − vm)(x)− (v − vm)(y)|
|x− y|γ

=

And the last term can be made small enough since (un)n∈N ia a Cacuhy sequence
in Ck,γ(A,B). Then vn converges to v in the order seminorm, since there are only
finitely many indices i to consider, we can conclude that un → u in Ck,γ(A,B).

Proposition 19. C1,γ(A,B) is a Banach space.

Here we report a convergence result that links the uniform norm with the
Hölder norm.

Lemma 9. Let (un)n∈N be a bounded equicontinuous sequence in Cβ([0, T ], A)

with β ∈ (0, 1], then un → u in Cα([0, T ], A), for every α < β.

Proof. Let us assume, without loss of generality u = 0. By Ascoli - Arzelá
theorem un → 0 uniformly, in other words ‖un‖∞ → 0 as n → ∞. We want to
show, assuming that un ∈ Cβ([0, T ], A) there is α - Hölder convergence for α < β.
We have, by interpolation

|un(x)− un(y)|
|x− y|α

≤

(
|un(x)− un(y)|
|x− y|β

)α
β

|un(x)− un(y)|1−
α
β

≤ ‖un‖
α
β

β (2 ‖un‖∞)1−α
β

≤M
α
β (2 ‖un‖∞)1−α

β → 0

as n→∞ since 1− α
β
> 0, where M > 0 is such that ‖un‖β < M .

For completeness we provide an equivalent Hölder norm that is easier to use
in many context, e.g. whenever we handle integral functions, since it coincides
with the Hölder seminorm. The result is the following.
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Proposition 20. Let us consider the following two norms:

‖f‖α = ‖f‖∞ + sup
x,y∈[0,T ]
x 6=y

|f(x)− f(y))|
|x− y|α

‖f‖α• = |f(0)|+ sup
x,y∈[0,T ]
x 6=y

|f(x)− f(y))|
|x− y|α

.

Then ‖.‖α , ‖.‖α• are equivalent on Cα([0, T ], A), where A is a Banach space.

Proof. We need to show the following inequalities ‖f‖α ≥ a ‖f‖α• and ‖f‖α ≤
b ‖f‖α• holds true for some constant a, b > 0. The first inequality is triviale since
|f(0)| ≤ ‖f‖∞ then setting a = 1 we have the thesis.
For the second inequality we have:

|f(x)| = |f(x)− f(0) + f(0)| ≤ |f(x)− f(0)|+ |f(0)|
≤ ‖f‖α• |x|

α + |f(0)|
≤ ‖f‖α• T

α + |f(0)| .

Then taking the sup over [0, T ] we have that ‖f‖∞ ≤ |f(0)| + ‖f‖α Tα. Finally
we obtain:

‖f‖α ≤ ‖f‖α• T
α + |f(0)|+ sup

x,y∈[0,T ]
x 6=y

|f(x)− f(y))|
|x− y|α

= ‖f‖α• T
α + ‖f‖α• = (1 + Tα) ‖f‖α• = b ‖f‖α• .
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Appendix B

Sewing Lemma: an abstract
approach

In this section we show an abstract version of the Sewing Lemma that can be
found in [FdLPM08]. Let us start with a definition.

Definition 11. We will say that a non decreasing function V : [0, T ] → R is a
control function if V (0) = 0 and satisfies the Dini condition, namely

V̄ (t) =
∑
n≥0

2nV

(
T

2n

)
<∞

for every t ∈ [0, T ].

Later we will use a particular control function to assure ourselves that the
integral we want to define is finite. Let us start with some properties of this class
of functions.

Proposition 21. Le V : [0, T ] → R non decreasing such that V (0) = 0. The
followings are equivalent:

1. V is a control function

2.
∑
n≥1

V

(
T

n

)
<∞

3.
∑
n≥0

2nV

(
T

2n

)
<∞

4.
∫ 1

0
V (Ts)
s2

ds =
∫∞

1
V
(
T
s

)
ds <∞

Proof.

1)⇒ 3) By the definition of control function,
∑

n≥0 2nV
(
T
2n

)
< ∞ for every t ∈

[0, T ].

45



3)⇒ 1) Since V si non decreasing, for every t ∈ [0, T ] the following inequality holds
true: ∑

n≥0

2nV

(
t

2n

)
<
∑
n≥0

2nV

(
T

2n

)
2)⇔ 3) Let us recall the following result:

Proposition 22 (Cauchy condensation test). Given a non negative and
non decreasing sequence(an)n∈N the sum∑

n∈N

an

converges if and only if converges the sum∑
n∈N

2na2n .

Applying the test to∑
n≥0

V

(
T

n

) ∑
n≥0

2nV

(
T

2n

)
<∞

the thesis holds true.

3)⇔ 4) We have that:∫ ∞
1

V

(
T

s

)
ds =

∑
n≥0

∫ 2n+1

2n
V

(
T

s

)
ds

≤
∑
n≥0

∫ 2n+1

2n
V

(
T

2n

)
ds

=
∑
n≥0

2nV

(
T

2n

)

≤ V (T ) + 2

(∑
n≥0

∫ 2n+1

2n
V

(
T

2n

)
ds

)

= V (T ) + 2

∫ ∞
0

V

(
T

s

)
ds.

Proposition 23. Given a control function V it holds:

lim
t→0

V̄ (t)

t
= 0.
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Proof. Let ε > 0 and let (an)n∈N ⊂ (0, T ], an → 0 such that:

V (an)

an
≥ ε

We will also suppose, with no loss of generalities, that for every n ∈ N, an+1

an
≤ 1

2
.

By the monotony of V :
V (s) ≥ V (an+1) ≥ εan+1

for s ∈ [an+1, an]. So: ∫ 1

0

V (Ts)

s2
ds =

1

T

∫ T

0

V (s)

s2
ds

≥ 1

T

∑
n≥0

∫ an

an+1

V (s)

s2
ds

≥ ε

T

∑
n≥0

an+1

∫ an

an+1

ds

s2

≥ ε

T

∑
n≥0

(
1
an
an+1

)
≥ ε

T

∑
n≥0

1

2
>∞.

And this is not possible by the last point of the previous proposition.

Theorem 9 (Sewing Lemma 2). Let µ(a, b) be a continuous function defined for
0 ≤ a ≤ b < T satisfying the relation:

|µ(a, b)− µ(a, c)− µ(c, b)| ≤ V (b− a)

for every c ∈ [a, b], where V is a control function. Then there exists a unique
function ϕ(t) on [0, T ), up to an additive constant, such that:

|ϕ(b)− ϕ(a)− µ(a, b)| ≤ V̄ (b− a)

Proof. Existence. Let us put µ′(a, b) = µ(a, c) + µ(c, b) where c = a+b
2

and so
we define µ(n+1) = µ(n)′. For n ≥ 0 we obtain that:∣∣µ(n)(a, b)− µ(n+1)(a, b)

∣∣ ≤ 2nV (
|b− a|

2n
).

We will prove this fact by induction. For n = 0 the thesis holds true, in fact:∣∣µ(0)(a, b)− µ(1)(a, b)
∣∣ = |µ(a, b)− µ(a, c)− µ(c, b)| ≤ V (|b− a|)
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by hypothesis. Then let us suppose that the thesis holds true for k ≤ n− 1 and
let us set k = n. We have that:∣∣µ(n)(a, b)− µ(n+1)(a, b)

∣∣ =
∣∣µ(n)(a, b)− µ(n)(a, c)− µ(n)(b, c)

∣∣
=
∣∣µ(n−1)(a, c) + µ(n−1)(c, b)− µ(n)(a, c)− µ(n)(c, b)

∣∣
≤
∣∣µ(n−1)(a, c)− µ(n)(a, c)

∣∣+
∣∣µ(n−1)(c, b)− µ(n)(c, b)

∣∣
≤ 2n−1V̄

(
|c− a|

2n

)
+ 2n−1V̄

(
|b− c|

2n

)
≤ 2n−1V̄

(
|b− a|

2n

)
+ 2n−1V̄

(
|b− a|

2n

)
= 2nV̄

(
|b− a|

2n

)
.

Moreover by proposition 23 the sequence (µ(n)(a, b))n∈N is a Cauchy sequence, in
fact: ∣∣µ(n+1)(a, b)− µ(n)(a, b)

∣∣ ≤ 2nV

(
|b− a|

2n

)
→ 0

as n → ∞. So that µ(n)(a, b) → u(a, b) and the function u(a, b) is midpoint
additive, in other words u(a, b) = u(a, c) + u(c, b), whenever c = b+a

2
.

Uniqueness. By its definition we have that:

|u(a, b)− µ(a, b)| ≤ cV̄ (b− a).

This follows from the inequality:

∣∣µ(n)(a, b)− µ(a, b)
∣∣ ≤ n−1∑

s=0

∣∣µ(s+1)(a, b)− µ(s)(a, b)
∣∣

taking n to ∞ we have that:

∞∑
s=0

∣∣µ(s+1)(a, b)− µ(s)(a, b)
∣∣ ≤ 2nV̄ (

|b− a|
2n

).

Let v(a, b) be another midpoint additive function, then

|v(a, b)− µ(a, b)| ≤ c̃V̄ (b− a).

Moreover
|v(a, b)− u(a, b)| ≤ 2nV

(
|b− a|

2n

)
.

By induction:

|v(a, b)− u(a, b)| ≤ 2nKV̄

(
b− a

2n

)
−→ 0.

Continuity. Note that by its definition:

µ(n)(a, b) =
2n∑
i=1

µ

(
a+

(i− 1)(b− a)

2n
, a+

i(b− a)

2n

)
.
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In fact, by induction the equality holds true for n = 0 then, supposing the thesis
holds for k ≤ n, for k = n+ 1 we have:

µ(n+1)(a, b) = µ(n)

(
a,
b+ a

2

)
+ µ(n)

(
b+ a

2
, b

)
=

2n∑
i=1

µ

(
a+

(i− 1)( b+a
2
− a)

2n
, a+

i( b+a
2
− a)

2n

)

+
2n∑
i=1

µ

(
b+ a

2
+

(i− 1)(b− b+a
2

)

2n
,
b+ a

2
+
i(b− b+a

2
)

2n

)

=
2n∑
i=1

µ

(
a+

(i− 1)(b− a)

2n+1
, a+

i(b− a)

2n+1

)

+
2n∑
i=1

µ

(
(b+ a)2n + (i− 1)(b− a)

2n+1
,
(b+ a)2n + i(b− a)

2n+1

)
.

Let us study the second sum, setting j = i+ 2n we have:

2n+1∑
j=2n+1

µ

(
(b+ a)2n + (j − 2n − 1)(b− a)

2n+1
,
(b+ a)2n + (j − 2n)(b− a)

2n+1

)
=

=
2n+1∑

j=2n+1

µ

(
(b+ a)2n + (j − 1)(b− a)− 2n(b− a)

2n+1
,
(b+ a)2n + j(b− a)− 2n(b− a)

2n+1

)

=
2n+1∑
j=2n

µ

(
a+

(j − 1)(b− a)

2n
, a+

j(b− a)

2n

)
.

And the equality holds true adding the two pieces. Now let us consider the
quantity:

sup
a,b∈[0,T ]

∣∣u(a, b)− µ(n)(a, b)
∣∣ = sup

a,b∈[0,T ]

∣∣∣∣∣
∞∑

i=2n+1

µ

(
a+

(i− 1)(b− a)

2n
, a+

i(b− a)

2n

)∣∣∣∣∣.
And the term on the right hand side goes to 0 as n → ∞ since it is the tail of
a convergent series. Since the series that defines u converges uniformly and µ is
continuous by hypothesis, then u is continuous.
Additivity of u We prove that for every c ∈ [a, b]

u(a, b)− u(a, c)− u(c, b) = 0.

Let k ≥ 3 be an integer and let:

w(a, b) =
k−1∑
i=0

u(ti, ti+1)
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where ti = a + i (b−a)
k

. Then also w is midpoint additive, and by induction and
using the assumption on µ

|µ(a, b)− w(a, b)| ≤ 2nV̄

(
|b− a|

2n

)
hence w = u.
At this point we have proved that u is additive on rational points, moreover let
us consider (cn)n∈N ⊂ Q such that cn → c as n→∞, then:

u(a, b) = u(a, cn) + u(cn, b),

and taking the limit, by the continuity of u:

u(a, b) = u(a, c) + u(c, b)

for every 0 ≤ a ≤ b ≤ c ≤ T .
So u is additive and finally we put ϕ(t) = u(0, t).

Note that the function V (t) = |t|γ, used in constructing the Young Integral,
is a control function whenever γ > 1 in fact V (0) = 0 and

V̄ (T ) =
∑
n≥0

2n
T γ

2γn
<∞

for every T > 0, since γ > 1.
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