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A quantum coding theorem The classical case

@ Shannon’s limit which quantifies the maximum rate at which information
can be transferred via a noisy communication channel.

@ Alice sends a message X (with values in a set X) through a noisy
communication channel. Bob receives a distorted Y (with values ).

@ The channel is modelled as Markov kernel N from X to ), so that, if p
denotes the law of X,

P(X = x,Y =y) = p(x)N(x, y).

@ The channel is memoryless, i.e., n applications give N€" from X" to )",

N= (), ()e) = T N, ).

i=1

@ Alice and Bob agree to use iterated applications of the channel and
transmit the message via a coding procedure.

Dario Trevisan (UNIPI) 17/02/2023 4/32



Classical codes

A code (W, V) consists of
@ a codebook
W:.{1,....my— X"
with m codewords (size of the code) of a fixed length n, to be transmitted
by Alice via the composite channel N®",
@ a decision rule,
V:y"—-{0,1,...,m}

which represents Bob’s estimate:
e if V(y) =i, i+# 0, Bob decodes y as W(i),
e if V(y) = 0, Bob makes no decision.

The transmission rate, i.e. the number of bits of information per application of
the channel is therefore log m/n.
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Error probabilities

@ Foreachie {1,...,m}, the probability that Bob decodes correctly the
word, given that Alice sent word /, is

P(V(y)=ilW(i) = > NE(W(i),y)= > HN yiIW (i),
ye{Vv=i} ye{V=i} j=1
@ Two indicators:
@ the maximal error probability

Pe(W, V) = max (1-P(V(y)=iW(),

,,,,,

@ the mean error probability

m

Pe(W, V) = 1522(1 = P(V(y) = ilW(i)).

i=1
@ By Markov inequality, from any code (W, V) with size 2m one can extract
a sub-code (W, V) of size at least m such that

Pe(W, V) < 2pe(W, V).



Operational channel capacity

@ For given length n and size m, let
Pe(n, m) = (min, Pe(W, V), pe(n,m) = (min, Pe(W, V),
@ r > 0is an achievable transmission rate for the channel N if
. nry __
nll)ngope(n,Z )=0.

@ The (operational) channel capacity C(N) is the largest achievable
transmission rates r:

@ (direct statement) for every r < C(N),
lim Pe(n,2™) =0,

n— oo
@ (weak converse) for every r > C(N),

limsup pe(n,2™) > 0,

n— oo
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A quantum coding theorem The classical case

@ The channel capacity is additive
C(N®K) = kC(N), forevery k > 1.

@ Any code with respect to N® of length n is also a code with respect to N,
with length kn.

@ Viceversa, any code with respect to N can be turned into a code with
respect to N®k by k repeated applications.
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Information channel capacity

@ Recall that we introduced the mutual information
I(X;Y)=8(X)—S(X|Y)=S(Y) - S(Y|X)
@ Using that P(X = x, Y = y) = p(x)N(x, y), we have

=5 (Z P()N(x;, ~)> — > P(x)S(N(x

xeX XeEX

@ p— I(X;Y)is concave.
@ The information channel capacity is

C/(N) = max I(X; Y) = max{ (Z p(x ) > p(x)S(N(x, -))} :

xeX xex
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A quantum coding theorem The classical case

Theorem (Shannon’s limit)

It holds
C(N) = Ci(N).

Structure of the proof:
@ the weak converse statement (inequality <) via Fano’s inequality

@ the direct statement (inequality >) via a random coding argument.
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Weak converse, C(N) < C/(N)

@ Let (W, V) be any code of length n and size m = 2",

@ We turn W a random variable X" = W with uniform distribution on the m

codewords.

@ Applying N®", V becomes a random variable with values in {0, 1, ..., m},

yielding an estimator W’ of W, with

m

B(W' # W) < L S7(1— B(V = i W) = Bo( W, V).

i=1
@ Fano’s inequality yields
S(WIV) < S(WIW') < ha(Be(W, V)) + Pe(W, V) log(m — 1)
<1+ Pe(W, V)logm.
@ Since S(W) = logm,
I(W; V) = S(W) — S(W|V) > log m — Be(W, V))logm — 1.
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A quantum coding theorem The classical case

I(W; V) > logm — pe(W, V))logm — 1.

@ Since I(W; V) < C)(N®M), we deduce

®n
Be(n,2™) >1 — %
@ As n — oo, we obtain
“,Tj;ppe(n’ 2"y > 1 — 17 Iinnliorlf CI(NT@T).
@ Any
r > lim inf Ci(N®)

is not an achievable transmission rate, hence

@n
C(N) <liminf Mn)

n—oo
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A quantum coding theorem The classical case

@ To conclude, we argue that

lim inf C’(':’fn) = C(N).
@ (; is super-additive, i.e.,
CHN®EEM) > ¢/(N®K) 4 ¢ )(N®).
@ Tensorization property of relative entropy
S(p® pllo ® o) = S(pllo) + S('||o").
Hence
IXE XY (Y Y M) prapn = X Y g+ H(X Y P)p,

@ For optimal p¥, p", we have stationarity conditions = optimality (because
of concavity).
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Direct statement, C(N) > C/(N)

@ The strategy is to sample a code randomly among all the possible codes.

@ Law of large numbers:

— Y p(x)log p(x) = —E [log p(X)]

xeX

is close to the empirical average

—% Zlogp(Xi) = —% log (H P(Xi)> :
i=1 =1

@ A typical random word W = (X;)7_, will have probability of occurrence
P(W = w) = [ (X)) ~ 2-750),
e for large n, W behaves as a uniformly distributed variable over 27S(P)

values (asymptotic equipartition property)
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A quantum coding theorem The classical case

@ We build codes (W, V) attaining any rate r < C;(N).

@ We sample m = 2™ independent words (W(i))" ,, each of length n,
according to a single letter distribution p.

@ Bob’s decision rule V. After receiving y,
@ first, he checks if y is a typical word for Y, otherwise he sets V(y) = 0.

@ foreveryic {1,..., m}, he checks (in sequence) if y is conditionally typical
for the word W(/) in the codebook, i.e.,

P(y|W(i)) ~ 27 "Y1,

He stops at the first affirmative case and sets V(y) = i.
© If no word is conditionally typical, he sets V(y) = 0.
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A quantum coding theorem The classical case

@ The output of the channel is effectively is uniformly distributed over 275(¥)
values.

@ On average, for each codeword in W, we have 2"S(Y1X) conditionally
typical outputs.

@ By independence, the conditionally typical outputs are well-separated.

@ We are able to build a code of size m,

onS(Y)

~ _ S(Y)=S(Y|X)) _ onl(X;Y
N sy = 2SSO — gnibx,,

m
with asymptotically small error.

@ Choosing p in order to maximize /(X; Y), leads to C(N) > C,(N).
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A quantum coding theorem The quantum case
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A quantum coding theorem The quantum case

@ We focus on the case of a classical to quantum channel,

b X35 x— e S(H).

@ We can extend ¢ to a quantum channel from C* into H, with Kraus

representation
O(p) = 3 /s (x|px) /0.

xeX

@ Bob measures the state to extract information on Alice’s message.

@ We consider general non-sharp measurements M = (M,),cy given by
POVMss, i.e., M, € O>o(H) and such that

> My =14

yey
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A quantum coding theorem The quantum case

@ Such measurements strictly includes the sharp case V = (1y,)ycy, but
greatly simplifies the mathematical derivation.

@ The analogy with classical case is to allow for probabilistic decision rules
(i.e., given by Markov kernels)

@ We associate to M a quantum to classical channel ®y,, from H to C”,

S(H)3 pr=Y_ ulMyp]ly) (yl,
yey

e tr[M,p] =P,(M = y) is the probability that, measuring M, we observe y.
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A quantum coding theorem The quantum case

@ We assume that repeated applications of the channel are memoryless: a
word w = (x;)7_, € X" sent by Alice arrives to Bob as the product state

Dy = Dy, @Dy, @ ... 0 by, € S(HE).

@ n applications of ® correspond to a single application of the channel ¢©".

@ A code (W, M), consists of
@ a (classical) codebook W : {1,..., m} — X" with size m,

@ aquantum decision rule M = (M))izo,...m C Oso(H®"), such that

m
Z Mj = 1H®n.
i=0

@ A code of size m, and length n, has transmission rate log m/n.
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A quantum coding theorem The quantum case

@ We have

P(*measures M and observes j”

@ We define
@ the maximal error probability

pe(W, M) = max (1= tu[Moug)]),

yeee,m

@ the mean error probability

1 m
= Z (1 — u[Mdyp)) -
=

@ We set

pe(”) m) = (W,IIUI) pe( W7 M)a pe(n7 m) = (W,I/\r}’) pe( W7 M)

@ r > 0is an achievable transmission rate for the channel ¢ if

. nry __
nILngope(n,Z )=0.
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A quantum coding theorem The quantum case

The (operational classical) channel capacity C(®) is the largest achievable
transmission rate:

@ (direct statement) for every r < C(®),
lim Pe(n,2™) =0,
n—oo
@ (weak converse) for every r > C(®),
lim sup Pe(n,2™) > 0,
n—oo

As in the classical case, the channel capacity is an additive quantity, i.e.,

C(®%K) = kC(®), forevery k > 1.
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A quantum coding theorem The quantum case

@ Fora & = (®4)xcx and a probability distribution p on X, define
-5 (X aon) - ¥ posce
XEX XeX

where S denotes von Neumann entropy
@ By concavity of von Neumann entropy, p — x(®), is concave.
@ Define the y-capacity of ¢ as

Ci(®) = maxx(®)p = max{ (Z p(x ) -> p(x)S(dDX)} :

xeX XEX

@ As in the classical case (same argument) it is additive:

Co(9%K) = KC, (9).
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Holevo’s bound

Theorem (Schumacher-Westmoreland, Holevo)

It holds
C(®) =C,(9).

Notice that
Cy(®) < mng (Z p(X)CIDX) < logdimH,

xXex

(it was similarly true, but less surprising, in the classical case).
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Weak converse, C(®) < C,(9)

@ Idea: reduce to the classical case, with Markov kernel N(x, y) = tr[M, ®,].
@ Notice that (exercise):

X(®)p = (C*; H), = S(pllpcx @ ph)

where
p=>_p(Xx)|x) (x| @ d,.

XeX

@ Given any measurement M, consider the channel ®), from H to CY. By
the data processing inequality,

Cu(®) 2 (T H)y 2 (T C)i oy woute) = I Y)p,
where the classical variable (X, Y)) have density

B(X = X, Y = y) = p(x)ir[M, &s].
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A quantum coding theorem The quantum case

@ Repeating the argument with ®®" yields

Co(997) = X(®°7), = [(X"; Y"),.

@ We follow the argument as in the classical case: given a code (W, M) of

size m = 2™ assign uniform probability to W and use Fano’s inequality

X7 Y1 Cy(9%) + 1

_ 1
Pe(W, M)) = 1 logm - logm
@ Any rate r such that
OO
r>liminf 22— 2
n— oo n
is not admissible, hence
.. C (¢®n)
C(o) < l'nrl!lf XT = Cy ().
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A quantum coding theorem The quantum case

@ We have the inequality

. o tr[My¢X]
Clorzge 2 POl es (55, e 1)

@ It is known that the inequality can be strict.

@ The right hand side coincides with the operational channel capacity of ¢
when Bob is restricted to measurements of product type

M=M,oMe.. oM,

@ This is advantage is a manifestation of entanglement: even if Alice’s
messages are presented to Bob as product states, using general
non-product observables can be an advantage for Bob.
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Direct statement, C(®) > C,(®).

@ Given a state p € S(H), n > 1 and § > 0, its §-typical subspace on H®"
consists of the span of the eigenvectors of p®" with eigenvalues A such

that
27nS(p)7n6 <A< 27nS(p)+n6.

@ The asymptotic equipartition property states that, for every 4, € > 0,
@ For every n, the dimension of the §-typical subspace of p is

tr[P‘S‘”] < 2n(3(p)+5)7
@ For n>> 1, the contribution of vectors not §-typical is

t[(1 = P*")p®"] < e.
© For n>> 1, the dimension of the §-typical subspace of p is

[P > (1 — £)2"5P)=9)
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A quantum coding theorem The quantum case

@ Given a probability distribution p over X, write

S(HICY), = Y p(x)S(®x)

XEX
for the the quantum conditional entropy of
p=">_ p(Xx)|x) (x| @ dy.
XEX

@ Forn>1,5>0and w = (x;)!_, € X", define the conditionally typical
subspace of ® given w (and p) as the linear span of the eigenvectors of
o, = ®L, Py whose eigenvalues )\ satisfy

2—nS(H|CY),—né  \ « o—nS(H|CY),+ns

@ Properties:
@ Forevery n, and w, we have

Pén < 2n (H|C* )o +5)¢
@ For nsufficiently large, and € > 0,

E [tr[(1 - Ps;,")cbw]] <e,

Wy

where W = (X;)[_; are i.i.d. with common distribution p.



A quantum coding theorem The quantum case

@ The codebook W is obtained via i.i.d. random sampling of m codewords
(W) of length n.

@ Fix § > 0 and n. Write P = P%" for the typical projector associated to

PH = ZPX(DX;

Xex

and P,, = P5" for the conditional typical projectors.

@ Intuition: define M; = Py, P, but not self-adjoint.

@ Definition:
M, = A~'2pPp, PA"'/? = (P, PA""/2)* P, PA""/2,
where
m
A=>"PP,P.
j=1
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A quantum coding theorem The quantum case

@ Working with such definition, one obtains the upper bound
1 m
pe(W. M) < — > 4u[oy, (1 — P)] + 4ty (1 — Py)] + > [Py, PP, .
j=1 i

@ Taking expectation (w.r.t the sampling generating the codebook),

Eox] = 3 p(x)ox = pu.

Xex
@ Using independence,

E [pe(W, M)]
< 4tr[pf"(1 — P)] + 4R [t[®y, (1 — Py)]] + (m — 1)u[Ppy" PE [P,]].
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A quantum coding theorem The quantum case

E [Pe(W, M)] < 4tr[p5"(1 — P)] +4E [tr[®w (1 — Pu)]] + (m— 1)tr[Pp5" PE [Py]].

@ Forn> 1,
tu[p"(1 = P)] + E [u[®w(1 — Pu)]] < 2¢,

@ By definition of typical subspace,
Pp%np < 27nS(H)pH+I‘l(5]1H®’77
@ Hence,

t[PpS"PE [Py]] < 27 "SHen*ME [t P,]]
< 2—nS(H)pH+nS(H\(CX)p+26n

__ o—nl(H;C*),4+26n
=2 ° .

@ Choosing p such that I/(H; C*), = C, (%) we obtain that any r < C,(®) is
an achievable transmission rate.
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