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A quantum coding theorem The classical case

Shannon’s limit which quantifies the maximum rate at which information
can be transferred via a noisy communication channel.

Alice sends a message X (with values in a set X ) through a noisy
communication channel. Bob receives a distorted Y (with values Y).

The channel is modelled as Markov kernel N from X to Y, so that, if p
denotes the law of X ,

P(X = x ,Y = y) = p(x)N(x , y).

The channel is memoryless, i.e., n applications give N⊗n from X n to Yn,

N⊗n((xi )
n
i=1, (yi )

n
i=1) =

n∏
i=1

N(xi , yi ).

Alice and Bob agree to use iterated applications of the channel and
transmit the message via a coding procedure.
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A quantum coding theorem The classical case

Classical codes

A code (W ,V ) consists of
1 a codebook

W : {1, . . . ,m} → X n

with m codewords (size of the code) of a fixed length n, to be transmitted
by Alice via the composite channel N⊗n,

2 a decision rule,
V : Yn → {0,1, . . . ,m}

which represents Bob’s estimate:
if V (y) = i , i 6= 0, Bob decodes y as W (i),
if V (y) = 0, Bob makes no decision.

The transmission rate, i.e. the number of bits of information per application of
the channel is therefore log m/n.
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A quantum coding theorem The classical case

Error probabilities
For each i ∈ {1, . . . ,m}, the probability that Bob decodes correctly the
word, given that Alice sent word i , is

P(V (y) = i |W (i)) =
∑

y∈{V =i}

N⊗n(W (i), y) =
∑

y∈{V =i}

m∏
j=1

N(yj |W (i)j ).

Two indicators:
1 the maximal error probability

pe(W ,V ) = max
i=1,...,m

(1− P(V (y) = i|W (i)),

2 the mean error probability

p̄e(W ,V ) =
1
m

m∑
i=1

(1− P(V (y) = i|W (i)).

By Markov inequality, from any code (W ,V ) with size 2m one can extract
a sub-code (W̃ , Ṽ ) of size at least m such that

pe(W ,V ) ≤ 2p̄e(W̃ , Ṽ ).
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A quantum coding theorem The classical case

Operational channel capacity

For given length n and size m, let

pe(n,m) = min
(W ,V )

pe(W ,V ), p̄e(n,m) = min
(W ,V )

p̄e(W ,V ),

r > 0 is an achievable transmission rate for the channel N if

lim
n→∞

pe(n,2nr ) = 0.

The (operational) channel capacity C(N) is the largest achievable
transmission rates r :

1 (direct statement) for every r < C(N),

lim
n→∞

p̄e(n, 2nr ) = 0,

2 (weak converse) for every r > C(N),

lim sup
n→∞

p̄e(n, 2nr ) > 0,
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A quantum coding theorem The classical case

The channel capacity is additive

C(N⊗k ) = kC(N), for every k ≥ 1.

Any code with respect to N⊗k of length n is also a code with respect to N,
with length kn.

Viceversa, any code with respect to N can be turned into a code with
respect to N⊗k by k repeated applications.
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A quantum coding theorem The classical case

Information channel capacity

Recall that we introduced the mutual information

I(X ; Y ) = S(X )− S(X |Y ) = S(Y )− S(Y |X )

Using that P(X = x ,Y = y) = p(x)N(x , y), we have

I(X ; Y ) = S

(∑
x∈X

p(x)N(x , ·)

)
−
∑
x∈X

p(x)S(N(x , ·)),

p 7→ I(X ; Y ) is concave.
The information channel capacity is

CI(N) = max
p

I(X ; Y ) = max
p

{
S

(∑
x∈X

p(x)N(x , ·)

)
−
∑
x∈X

p(x)S(N(x , ·))

}
.
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A quantum coding theorem The classical case

Theorem (Shannon’s limit)

It holds
C(N) = CI(N).

Structure of the proof:

the weak converse statement (inequality ≤) via Fano’s inequality

the direct statement (inequality ≥) via a random coding argument.
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A quantum coding theorem The classical case

Weak converse, C(N) ≤ CI(N)

Let (W ,V ) be any code of length n and size m = 2nr .
We turn W a random variable X n = W with uniform distribution on the m
codewords.
Applying N⊗n, V becomes a random variable with values in {0,1, . . . ,m},
yielding an estimator W ′ of W , with

P(W ′ 6= W ) ≤ 1
m

m∑
i=1

(1− P(V = i |W (i)) = p̄e(W ,V ).

Fano’s inequality yields

S(W |V ) ≤ S(W |W ′) ≤ h2(p̄e(W ,V )) + p̄e(W ,V ) log(m − 1)

≤ 1 + p̄e(W ,V ) log m.

Since S(W ) = log m,

I(W ; V ) = S(W )− S(W |V ) ≥ log m − p̄e(W ,V )) log m − 1.
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A quantum coding theorem The classical case

I(W ; V ) ≥ log m − p̄e(W ,V )) log m − 1.

Since I(W ; V ) ≤ CI(N⊗n), we deduce

p̄e(n,2nr ) ≥ 1− CI(N⊗n) + 1
nr

.

As n→∞, we obtain

lim sup
n→∞

p̄e(n,2nr ) ≥ 1− 1
r

lim inf
n→∞

CI(N⊗n)

n
.

Any

r > lim inf
n→∞

CI(N⊗n)

n
is not an achievable transmission rate, hence

C(N) ≤ lim inf
n→∞

CI(N⊗n)

n
.
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A quantum coding theorem The classical case

To conclude, we argue that

lim inf
n→∞

CI(N⊗n)

n
= CI(N).

CI is super-additive, i.e.,

CI(N⊗(k+h)) ≥ CI(N⊗k ) + CI(N⊗h).

Tensorization property of relative entropy

S(ρ⊗ ρ′||σ ⊗ σ′) = S(ρ||σ) + S(ρ′||σ′).

Hence

I((X k ,X h); (Y k ,Y h))pk⊗ph = I(X k ; Y k )pk + I(X h; Y h)ph .

For optimal pk , ph, we have stationarity conditions⇒ optimality (because
of concavity).
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A quantum coding theorem The classical case

Direct statement, C(N) ≥ CI(N)

The strategy is to sample a code randomly among all the possible codes.
Law of large numbers:

S(p) = −
∑
x∈X

p(x) log p(x) = −E [log p(X )]

is close to the empirical average

−1
n

n∑
i=1

log p(Xi ) = −1
n

log

(
n∏

i=1

p(Xi )

)
.

A typical random word W = (Xi )
n
i=1 will have probability of occurrence

P(W = w) =
n∏

i=1

p(Xi ) ≈ 2−nS(p),

for large n, W behaves as a uniformly distributed variable over 2nS(p)

values (asymptotic equipartition property)
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A quantum coding theorem The classical case

We build codes (W ,V ) attaining any rate r < CI(N).

We sample m = 2nr independent words (W (i))m
i=1, each of length n,

according to a single letter distribution p.

Bob’s decision rule V . After receiving y ,
1 first, he checks if y is a typical word for Y , otherwise he sets V (y) = 0.
2 for every i ∈ {1, . . . ,m}, he checks (in sequence) if y is conditionally typical

for the word W (i) in the codebook, i.e.,

P(y |W (i)) ≈ 2−nS(Y |X).

He stops at the first affirmative case and sets V (y) = i .
3 If no word is conditionally typical, he sets V (y) = 0.
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A quantum coding theorem The classical case

The output of the channel is effectively is uniformly distributed over 2nS(Y )

values.

On average, for each codeword in W , we have 2nS(Y |X) conditionally
typical outputs.

By independence, the conditionally typical outputs are well-separated.

We are able to build a code of size m,

m ≈ 2nS(Y )

2nS(Y |X)
= 2n(S(Y )−S(Y |X)) = 2nI(X ;Y )p ,

with asymptotically small error.

Choosing p in order to maximize I(X ; Y )p leads to C(N) ≥ CI(N).
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A quantum coding theorem The quantum case

We focus on the case of a classical to quantum channel,

Φ : X 3 x 7→ Φx ∈ S(H).

We can extend Φ to a quantum channel from CX into H, with Kraus
representation

Φ(ρ) =
∑
x∈X

√
Φx 〈x |ρx〉

√
Φx .

Bob measures the state to extract information on Alice’s message.

We consider general non-sharp measurements M = (My )y∈Y given by
POVM’s, i.e., My ∈ O≥0(H) and such that∑

y∈Y
My = 1H .
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A quantum coding theorem The quantum case

Such measurements strictly includes the sharp case V = (1Vy )y∈Y , but
greatly simplifies the mathematical derivation.

The analogy with classical case is to allow for probabilistic decision rules
(i.e., given by Markov kernels)

We associate to M a quantum to classical channel ΦM , from H to CY ,

S(H) 3 ρ 7→
∑
y∈Y

tr[Myρ] |y〉 〈y | ,

tr[Myρ] = Pρ(M = y) is the probability that, measuring M, we observe y .
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A quantum coding theorem The quantum case

We assume that repeated applications of the channel are memoryless: a
word w = (xi )

n
i=1 ∈ X n sent by Alice arrives to Bob as the product state

Φw = Φx1 ⊗ Φx2 ⊗ . . .⊗ Φxn ∈ S(H⊗n).

n applications of Φ correspond to a single application of the channel Φ⊗n.

A code (W ,M), consists of
1 a (classical) codebook W : {1, . . . ,m} → X n with size m,

2 a quantum decision rule M = (Mi )i=0,...m ⊆ O≥0(H⊗n), such that

m∑
i=0

Mi = 1H⊗n .

A code of size m, and length n, has transmission rate log m/n.
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A quantum coding theorem The quantum case

We have

P(“measures M and observes j”|“Alice sent the word w”) = tr[Mj Φw ].

We define
1 the maximal error probability

pe(W ,M) = max
j=1,...,m

(
1− tr[Mj ΦW (j)]

)
,

2 the mean error probability

p̄e(W ,M) =
1
m

m∑
i=1

(
1− tr[Mj ΦW (j)]

)
.

We set

pe(n,m) = min
(W ,M)

pe(W ,M), p̄e(n,m) = min
(W ,M)

p̄e(W ,M).

r > 0 is an achievable transmission rate for the channel Φ if

lim
n→∞

pe(n,2nr ) = 0.
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A quantum coding theorem The quantum case

The (operational classical) channel capacity C(Φ) is the largest achievable
transmission rate:

(direct statement) for every r < C(Φ),

lim
n→∞

p̄e(n,2nr ) = 0,

(weak converse) for every r > C(Φ),

lim sup
n→∞

p̄e(n,2nr ) > 0,

As in the classical case, the channel capacity is an additive quantity, i.e.,

C(Φ⊗k ) = kC(Φ), for every k ≥ 1.
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A quantum coding theorem The quantum case

For a Φ = (Φx )x∈X and a probability distribution p on X , define

χ(Φ)p = S

(∑
x∈X

p(x)Φx

)
−
∑
x∈X

p(x)S(Φx ),

where S denotes von Neumann entropy
By concavity of von Neumann entropy, p 7→ χ(Φ)p is concave.
Define the χ-capacity of Φ as

Cχ(Φ) = max
p
χ(Φ)p = max

p

{
S

(∑
x∈X

p(x)Φx

)
−
∑
x∈X

p(x)S(Φx )

}
.

As in the classical case (same argument) it is additive:

Cχ(Φ⊗k ) = kCχ(Φ).

Dario Trevisan (UNIPI) 17/02/2023 23 / 32



A quantum coding theorem The quantum case

Holevo’s bound

Theorem (Schumacher-Westmoreland, Holevo)

It holds
C(Φ) = Cχ(Φ).

Notice that

Cχ(Φ) ≤ max
p

S

(∑
x∈X

p(x)Φx

)
≤ log dimH,

(it was similarly true, but less surprising, in the classical case).
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A quantum coding theorem The quantum case

Weak converse, C(Φ) ≤ Cχ(Φ)

Idea: reduce to the classical case, with Markov kernel N(x , y) = tr[My Φx ].
Notice that (exercise):

χ(Φ)p = I(CX ; H)ρ = S(ρ||ρCX ⊗ ρH)

where
ρ =

∑
x∈X

p(x) |x〉 〈x | ⊗ Φx .

Given any measurement M, consider the channel ΦM from H to CY . By
the data processing inequality,

Cχ(Φ) ≥ I(CX ; H)ρ ≥ I(CX ;CY)1L(CX )⊗ΦM (ρ) = I(X ; Y )p,

where the classical variable (X ,Y ) have density

P(X = x ,Y = y) = p(x)tr[My Φx ].
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A quantum coding theorem The quantum case

Repeating the argument with Φ⊗n yields

Cχ(Φ⊗n) ≥ χ(Φ⊗n)ρ ≥ I(X n; Y n)p.

We follow the argument as in the classical case: given a code (W ,M) of
size m = 2nr assign uniform probability to W and use Fano’s inequality

p̄e(W ,M)) ≥ 1−
I(X n; Y n)p + 1

log m
≥ 1− Cχ(Φ⊗n) + 1

log m
.

Any rate r such that

r > lim inf
n→∞

Cχ(Φ⊗n)

n
is not admissible, hence

C(Φ) ≤ lim inf
n→∞

Cχ(Φ⊗n)

n
= Cχ(Φ).
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A quantum coding theorem The quantum case

We have the inequality

Cχ(Φ) ≥ sup
M,ρ

∑
x∈X ,y∈Y

p(x)tr[My Φx ] log

(
tr[My Φx ]

p(x)
∑

x ′∈X p(x ′)tr[My Φx ′ ]

)
,

It is known that the inequality can be strict.
The right hand side coincides with the operational channel capacity of Φ
when Bob is restricted to measurements of product type

Mj = Mj1 ⊗Mj2 ⊗ . . .⊗Mjn .

This is advantage is a manifestation of entanglement: even if Alice’s
messages are presented to Bob as product states, using general
non-product observables can be an advantage for Bob.
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A quantum coding theorem The quantum case

Direct statement, C(Φ) ≥ Cχ(Φ).

Given a state ρ ∈ S(H), n ≥ 1 and δ > 0, its δ-typical subspace on H⊗n

consists of the span of the eigenvectors of ρ⊗n with eigenvalues λ such
that

2−nS(p)−nδ ≤ λ ≤ 2−nS(p)+nδ.

The asymptotic equipartition property states that, for every δ, ε > 0,
1 For every n, the dimension of the δ-typical subspace of ρ is

tr[Pδ,n] ≤ 2n(S(p)+δ),

2 For n� 1, the contribution of vectors not δ-typical is

tr[(1− Pδ,n)ρ⊗n] ≤ ε.

3 For n� 1, the dimension of the δ-typical subspace of ρ is

tr[Pδ,n] ≥ (1− ε)2n(S(p)−δ),
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A quantum coding theorem The quantum case

Given a probability distribution p over X , write

S(H|CX )ρ =
∑
x∈X

p(x)S(Φx ),

for the the quantum conditional entropy of

ρ =
∑
x∈X

p(x) |x〉 〈x | ⊗ Φx .

For n ≥ 1, δ > 0 and w = (xi )
n
i=1 ∈ X n, define the conditionally typical

subspace of Φ given w (and p) as the linear span of the eigenvectors of
Φw = ⊗n

i=1Φxi whose eigenvalues λ satisfy

2−nS(H|CX )ρ−nδ ≤ λ ≤ 2−nS(H|CX )ρ+nδ,

Properties:
1 For every n, and w , we have

Pδ,nw ≤ 2n(S(H|CX )ρ+δ)Φw ,

2 For n sufficiently large, and ε > 0,

E
[
tr[(1− Pδ,nW )ΦW ]

]
≤ ε,

where W = (Xi )
n
i=1 are i.i.d. with common distribution p.
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A quantum coding theorem The quantum case

The codebook W is obtained via i.i.d. random sampling of m codewords
(wj )

m
j=1 of length n.

Fix δ > 0 and n. Write P = Pδ,n for the typical projector associated to

ρH =
∑
x∈X

px Φx ,

and Pw = Pδ,n
w for the conditional typical projectors.

Intuition: define Mj = Pwj P, but not self-adjoint.

Definition:

Mj = A−1/2PPwj PA−1/2 = (Pwj PA−1/2)∗Pwj PA−1/2,

where

A =
m∑

j=1

PPwj P.
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A quantum coding theorem The quantum case

Working with such definition, one obtains the upper bound

p̄e(W ,M) ≤ 1
m

m∑
j=1

4tr[Φwj (1− P)] + 4tr[Φwj (1− Pwj )] +
∑
i 6=j

tr[PΦwj PPwi ].

Taking expectation (w.r.t the sampling generating the codebook),

E [ΦX ] =
∑
x∈X

p(x)Φx = ρH .

Using independence,

E [p̄e(W ,M)]

≤ 4tr[ρ⊗n
H (1− P)] + 4E [tr[Φw (1− Pw )]] + (m − 1)tr[Pρ⊗n

H PE [Pw ]].
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A quantum coding theorem The quantum case

E [p̄e(W ,M)] ≤ 4tr[ρ⊗n
H (1−P)] + 4E [tr[Φw (1− Pw )]] + (m−1)tr[Pρ⊗n

H PE [Pw ]].

For n� 1,
tr[ρ⊗n

H (1− P)] + E [tr[Φw (1− Pw )]] ≤ 2ε,

By definition of typical subspace,

Pρ⊗n
H P ≤ 2−nS(H)ρH +nδ1H⊗n ,

Hence,

tr[Pρ⊗n
H PE [Pw ]] ≤ 2−nS(H)ρH +nδE [tr[Pw ]]

≤ 2−nS(H)ρH +nS(H|CX )ρ+2δn

= 2−nI(H;CX )ρ+2δn.

Choosing p such that I(H;CX )ρ = Cχ(Φ) we obtain that any r < Cχ(Φ) is
an achievable transmission rate.
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