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Errata

@ Recall the quantum fidelity between two states p, o € S(H):

F(p,0) = tr[y//po /P

@ Motivated by the analogy with the Bhattacharyya coefficient, the
analogue of the Hellinger distance is the Bures metric

Da(p,0)2 =2 (1~ /F(p.0)).

@ The Bures metric is an actual distance (check the updated notes,
reference e.g. in Holevo’s book).
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OT via Lipschitz operators

@ In the classical case, we can use Kantorovich duality to define W¢:

W p,q) = sup {Zf(X)(p(X)—q(X))}

fis 1-Lip

@ A similar strategy in the quantum setting dates back to Connes: define
first what are Lipschitz observables and obtain the cost via duality.

@ We proposed to consider the case of product systems
H=QH.
iel

providing a quantum analogue of OT with respect to the Hamming
distance

@ Recall that on sets N, A},

dHam((Xl i€l yl IE/ 21{X17’5}’:

iel
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Distances (conclusion) Quantum optimal transport

@ f: Mg X;i — Ris (Hamming) 1-Lipschitz if and only if, for every i € |,
[f(x) = f(y)[ <1

whenever x, y differ only at the coordinate i (write x ~; y).

@ Equivalently, define the oscillation at i € I as

01f = sup [f(x) ~ (y)] = 2inf sup £(x) ~ gi(x)|

X~y
where g; does not depend upon the coordinate i. Then,

1FllLip = max &if.
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Distances (conclusion) Quantum optimal transport

@ On a product system H = ), H;, for every i € | and observable
A € O(H), define

GA=Inf{2|A-G@lyll, : G¢e 0(®H,)} ,
j#i
@ The quantum Lipschitz constant of A € O(H) is
1All := max ;A.
@ The quantum Wasserstein distance of order 1 between p,o € S(H) is

lo = ollw, = sup {ulA(p —o)] = Al <1}
= sup{(A), = (A)s : [IAll, <1}
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Distances (conclusion) Quantum optimal transport

@ Back to the classical case, forget about the product structure (i.e.,
consider the set X a single factor): then the Hamming distance is the
trivial distance and

W (p,q) = lIp - gl rv-

@ Since
Ty <O ey < ey
iel

this leads to a comparison between OT distances.

@ Also in the quantum case, we can compare

Du(p, o) < llp = ollw, < [1|Du(p, 7).

13/02/2023
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Distances (conclusion) Quantum optimal transport

@ For product states p = ®jcipi, 0 = ®jcioi, then
lp = ollw, =Y Dulpi 7).
iel

@ Exercise: Compute the Wasserstein distance of order 1 between any two
Bell states on the composite system H = C? ® C?, e.g.

p= %(|oo>+|11>)(<00|+<11|)’
o= 1(101) + [10)) ((01] + (10]) .

N
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Entropy Classical entropy

@ Given a probability p over a set , its Shannon entropy is

=) p(w)logp(w

weN

@ We assume 0log 0 = 0 and that log = log, (S is measured in bits)
@ S(p) >0, and p— S(p) is concave.
@ Examples:

@ If pis uniform over n values,

S((1/m)1) = —n- L log(1/n) = log .
© For a probability distribution over two values (a Bernoulli law),
S((,1 —a)) = —aloga — (1 — a)log(1 — a) = h(a).

@ a — hy(«) is called binary entropy function.
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Entropy as information content

@ The entropy of a random variable X : Q — X is

S(X) = S((B(X = X))xex) = = > P(X = x) log(P(X = X)).

XeX

@ To avoid(!) ambiguities, S(X) = Sp(X) (p is the low X or the probability
on Q)

@ S(X) measures the information content of a random variable X:

e Itholds 0 < S(X) < log |X|.
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Conditional entropy

@ If Bob observes another random variable Y (possibly correlated with X),
how should he update the entropy of X?

@ After Bob observes Y = y, he updates the law of X, hence

X)ejy—y = — > _P(X =x|Y = y)logP(X = x|Y = y).

XeX

@ From the engineer’s viewpoint, we are more interested in the average
over the values Bob may observe. Hence the conditional entropy of X
given Y'is

S(X]Y) = Z S(X)py=yP(Y = ).
yey

@ Notice that S(X]Y) >0
@ Moreover, S(X|Y) = S((X, Y)) — S(Y), or equivalently the chain rule:

S(X,Y) = S(Y) + S(X]Y).
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Entropy Classical entropy

Lemma (Fano’s inequality)
Let X, X' be random variables and set p = P(X # X'). Then,

S(X|X') < ho(p) + plog(|X] — 1).

Sketch of proof:
@ Write S(X|X’) = ZXEX SP‘X/:X(X)]P)(X/ = X).

@ For each x, use the chain rule

S(X)pixr=x = S(X, Ix=x)p|x'=x
= S(Ix=x)px'=x + S(X|Ix=x)p|x'=x

< ha(P(X = X|X' = X)) + log(|X] — 1)B(X # x|X' = X).

@ Summation over x and concavity of h, yields the thesis.
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Mutual information

@ How to quantify the average gain of information of Bob about X, after
receiving Y?
@ Shannon proposed the mutual information:

I(X;Y)=S8(X) - S(X|Y).
@ Intuitively, /(X; Y) > 0 (proof later). By definition,

I(X; Y) = S(X) — (S(X, Y) — S(Y)) = S(X) + S(Y) — S(X, Y)
= I(Y; X).

@ More explicit expression:

o= 3 s (S

XeEX,yey
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Relative entropy

@ The last formula suggests replace the denominator with a general
probability density.

@ We define the relative entropy (or Kullback-Leibler divergence) of p with
respect to g (both defined on a set X)) as

DKL qu Z P |Og X)/q( ))

xeX
= p(x) (log p(x) — log g(x))
xXexXx
p)+ > p(x)log q(x),

XeX

@ The above holds p << q, otherwise Dk (p||q) = oo

@ The relative entropy can be conveniently thought as a “distance” between
p, however it is not symmetric,

Dki(pllq) # Dki(qllp) (in general).



Entropy Classical entropy

@ Dy enjoys natural monotonicity and convexity properties.
@ Given Markov kernel N(x, ¥)xex yey, from X to Y, the relative entropy

decreases:
Di.(N'p|IN'q) < Dri(pllq),

@ By taking any kernel such that Np = Nfq, we obtain

0 = Dk (N'p|INTqQ) < Dii(pl|q).

@ Monotonicity implies also that

(p,q) — Dki(p||q) is jointly convex.
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Maximum entropy distributions

@ Given E : X — R and for m € R, what is the probability p on X which
maximizes Shannon’s entropy S(p), with the constraint

Y E(x)p(x) = m?
XEX
@ For min E < m < max E, (the) answer is given by Gibbs distribution
ps(x) = e F/z,
where § € R is a parameter, and
z=2(8)=) e FW
XEX

is a normalization constant.
@ Why? for every p,

Dki(pllgs) = —S(p) + Bm + log z(3) > 0.

@ Example: The uniform distribution maximizes the entropy (put E = 0):

S(p) < log|X]|.
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Entropy Classical entropy

@ The mutual information /(X Y) is a special case of relative entropy:
I(X;Y) = Dke(Pxy||Px ® Py) > 0
@ This can be rewritten as subadditivity
S(X,Y) < S(X)+ S(Y).

@ Data processing inequality: given a Markov chain (X, Y,Z),i.e.,, X and Z
are conditionally independent given Y, it holds

I(X; Z) < I(X; Y).

@ Interpretation: by further transforming Y, Bob cannot increase the
information received about X!
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Proof of the data processing inequality

@ By assumption, the joint law factorizes

Pxvz(x,y,2) = Pxy(x,¥y)N(y, 2),

where N is a Markov kernel from ) to Z.

@ Extend N to a kernel from X x Y to X x Z by acting trivially on X,

N((x,), (X', 2)) = (X )N(y, 2),

@ Check that

Nt (Pxy) = Pxz, N(Px®Py)=Px® Pz
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LB ==/ Py
Strong subadditivity

@ Consider the case Z = f(Y). Then,
(X H(Y)) < I(X;Y).
@ Replacing Y with a joint variable (Y, Z) and letting f(y, z) = y, we obtain
I(X;Y) < I(X;(Y,2)).
@ The above is equivalent to
S(X|(Y, 2)) < S(X]Y),
or to the strong subadditivity property of the Shannon entropy

S(X,Y.Z) < S(X,Y)+ S(Y,Z) - S(Y),
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S Quantum entropy
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von Neumann entropy

@ Consider a finite-dimensional quantum system H and a state p € S(H).
von Neumann defined its entropy as

S(p) = —tr[plog p],

where p log p is obtained via functional calculus.

@ S(p) is Shannon entropy of the probability distribution associated to the
spectrum of p (with multiplicities)

@ Hence, S(p) > 0 with equality if and only if o(p) C {0, 1} is pure.

@ Notation: S(H), or simply S(H) if the state p is understood.
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Quantum relative entropy

@ We introduce quantum relative entropy of p with respect to another state
o€ S(H) as
S(pllo) = tr[p(log p — log 7],
where the operators plog p and log o are defined via functional calculus.

@ The formula above requires that the kernel of ¢ is contained in the kernel
of p (recall that in the classical case we require p << q), we interpret

p(logp —logo) =0
on the kernel of p. Otherwise, S(p||o) = .

@ If p and o commute, then

S(pllo) = Dri(pl|q),

where p, q are probability distribution associated to the spectra of p, o.
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Monotonicity of relative entropy

Theorem (data processing inequality, DPI)

Let
@ H, Hbe quantum systems
e o' be a quantum channel from H to H,
@ p, 0 € S(H).

Then, it holds

S(@'(p)ll*"(0)) < S(pllo).
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Proof

@ We use general differentiation trick (much employed in entropic
inequalities).

@ Letf,g:[a b] — R be such that, for t € [a, b]

f(t) <g(t) and f(a)=g(a)

@ If both f and g are (right-)differentiable at { = a, then

f'(a) < g'(a).
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S Quantum entropy

@ By Lieb’s concavity theorem, for K =1z, and X = p, Y =0, t € [0, 1],
ufp! o] < uf®T(p)' 1T (0)'].

@ For t = 0, we have equality (¢ is trace preserving).

@ Assume for simplicity that p, o, ®f(p), (o) are all invertible, then both
sides in the inequality are smooth functions of ¢.

@ We have

d
1—t _t T 1—tgy T t
o tr[p' ~'o'] < P +tr[d) (p)' "o (0)'].

t=0+ t=0

@ We compute

ufp' !0’ = u[—plog p + plog o] = —S(pl|0),
t=0*

at

and similarly for the right hand side.
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S Quantum entropy

@ Consider any trivial channel that maps any state into the same state, e.g.
®T(p) = 1/dim(H): then

S(p|lo) > S(1x/dim(H); 15/dim(H)) = 0.
@ The quantum relative entropy is jointly convex, i.e.,
(p,o) — S(p|lo) is convex.

Apply the DPI to the partial trace channel ®f(M) = tro[M] to

_( P O _ (o0 O
(85 ) = (3 5)
@ For E € O(H), Gibbs states ps = e #H/zfor g € R, z = u[e=PH] > 0 are
a maximizer of von Neumann entropy (keeping fixed (H), = tr[Epg]).

@ In particular, von Neumann entropy always satisfies the inequalities

0 < S(H), < dim(H).
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Quantum conditional entropy

@ The analogue of S(X|Y) is a delicate quantity, since a “quantum
conditional density” is not available.

@ We impose the validity of the chain rule: given p € S(H ® K) with educed
density operator py = trg[p] € S(H), its quantum conditional entropy is

S(K|H), = S(p) — S(pn) = S(H® K), — S(H),.
@ Notation S(HK), = S(H® K),.

@ Now the chain rule holds, but S(H|K) may be strictly negative, because
of entangled states!
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S Quantum entropy

Proposition (purification of a state)

Given p € S(H), there exists an auxiliary quantum system K and a pure state

|W) (V] € S(H® K) such that

tux[[W) (W]] = p.

@ The chain rule implies
0 =S(H® K)wyw = S(H), + S(KIH)jw) |,

hence the relative entropy must be negative in this case!

@ This observation is turned into an indicator of entanglement
(entanglement entropy).
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Proof of purification

@ Let K = H* be the dual of H, and consider the isomorphism
HoH 3 [) @ (el = [¢){pl € L(H).

@ The |[V) € H® H* corresponding to /p € L(H) is a purification of p.
@ Pick orthonormal basis (]/));c; of eigenvectors of p and write
Vo= _Vpili) i,
iel

hence

) =Y Voiliy @i

iel

@ Since [V) (V[ =3, ic, vOiBi(|1) ® (i[)((| ® |f)), taking the partial trace

k(W) (W] =D pili) (il = p.

iel
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Quantum mutual information

@ To define the quantum mutual information, we mimic the classical case:
given p € S(H ® K) with reduced density operators py € S(H),
pk € S(K),

I(H: K),

S(pllpH @ pk)
S(H)p, — S(HIK),
= ( )PH + S(K)PK - S(H® K)p-

@ From the DPI: given p € S(H ® K) and a quantum channel ¢' from K to
K, then

I(H; R)HL(H)®¢T(P) < I(H; K)P

@ Replace K with K ® L and let ' = tr; be the partial trace channel: for
every pe S(H® K® L),

I(H; K)pe < I(H K @ L)y,
which is equivalent to the strong subadditivity of von Neumann entropy
SHoK® L)< S(H® K)+ S(K ® L) — S(K).
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