Mathematical Aspects of Quantum Information Theory:

Lecture 5

Dario Trevisan

Università di Pisa dario.trevisan@unipi.it

1/32

Plan

- Distances (conclusion)
 - Quantum optimal transport

- 2 Entropy
 - Classical entropy
 - Quantum entropy

Dario Trevisan (UNIPI) 13/02/2023

2/32

Plan

- Distances (conclusion)
 - Quantum optimal transport

- 2 Entropy
 - Classical entropy
 - Quantum entropy

Errata

• Recall the quantum fidelity between two states ρ , $\sigma \in \mathcal{S}(H)$:

$$F(\rho, \sigma) = \operatorname{tr}[\sqrt{\sqrt{\rho}\sigma\sqrt{\rho}}]^2.$$

 Motivated by the analogy with the Bhattacharyya coefficient, the analogue of the Hellinger distance is the Bures metric

$$D_B(\rho,\sigma)^2 = 2\left(1 - \sqrt{F(\rho,\sigma)}\right).$$

• The Bures metric is an actual distance (check the updated notes, reference e.g. in Holevo's book).

OT via Lipschitz operators

• In the classical case, we can use Kantorovich duality to define W^d :

$$W^d(p,q) = \sup_{f \text{ is 1-Lip}} \left\{ \sum_{x \in \mathcal{X}} f(x) \left(p(x) - q(x) \right) \right\}.$$

- A similar strategy in the quantum setting dates back to Connes: define first what are Lipschitz observables and obtain the cost via duality.
- We proposed to consider the case of product systems

$$H=\bigotimes_{i\in I}H_i,$$

providing a quantum analogue of OT with respect to the Hamming distance

• Recall that on sets $\Pi_{i \in I} \mathcal{X}_i$,

$$d_{\mathsf{Ham}}((x_i)_{i \in I}, (y_i)_{i \in I}) = \sum_{i \in I} 1_{\{x_i \neq y_i\}}.$$

• $f: \Pi_{i \in I} \mathcal{X}_i \to \mathbb{R}$ is (Hamming) 1-Lipschitz if and only if, for every $i \in I$,

$$|f(x)-f(y)|\leq 1$$

whenever x, y differ only at the coordinate i (write $x \sim_i y$).

• Equivalently, define the oscillation at $i \in I$ as

$$\partial_i f = \sup_{x \sim_i y} |f(x) - f(y)| = 2 \inf_{g_i} \sup_{x} |f(x) - g_i(x)|$$

where g_i does not depend upon the coordinate i. Then,

$$||f||_{\mathsf{Lip}} = \max_{i \in I} \partial_i f.$$

• On a product system $H = \bigotimes_{i \in I} H_i$, for every $i \in I$ and observable $A \in \mathcal{O}(H)$, define

$$\partial_{i}A=\inf\left\{2\left\Vert A-G_{i}\otimes\mathbb{1}_{H_{i}}
ight\Vert _{\infty}\ :\ G_{i}\in\mathcal{O}(igotimes_{j
eq i}H_{j})
ight\},$$

• The quantum Lipschitz constant of $A \in \mathcal{O}(H)$ is

$$\|A\|_L := \max_{i \in I} \partial_i A.$$

• The quantum Wasserstein distance of order 1 between $\rho, \sigma \in \mathcal{S}(H)$ is

$$\begin{aligned} \|\rho - \sigma\|_{W_1} &= \sup \left\{ \text{tr}[A(\rho - \sigma)] : \|A\|_L \le 1 \right\} \\ &= \sup \left\{ (A)_\rho - (A)_\sigma : \|A\|_L \le 1 \right\} \end{aligned}$$

 Back to the classical case, forget about the product structure (i.e., consider the set X a single factor): then the Hamming distance is the trivial distance and

$$W^{d_{trivial}}(p,q) = \|p-q\|_{TV}.$$

Since

$$\mathbf{1}_{\{x \neq y\}} \leq \sum_{i \in I} \mathbf{1}_{\{x_i \neq y_i\}} \leq |I| \mathbf{1}_{\{x \neq y\}},$$

this leads to a comparison between OT distances.

Also in the quantum case, we can compare

$$D_{\mathrm{tr}}(\rho,\sigma) \leq \|\rho-\sigma\|_{W_1} \leq |I|D_{\mathrm{tr}}(\rho,\sigma).$$

• For product states $\rho = \bigotimes_{i \in I} \rho_i$, $\sigma = \bigotimes_{i \in I} \sigma_i$, then

$$\|\rho-\sigma\|_{W_1}=\sum_{i\in I}D_{\mathrm{tr}}(\rho_i,\sigma_i).$$

• Exercise: Compute the Wasserstein distance of order 1 between any two Bell states on the composite system $H = \mathbb{C}^2 \otimes \mathbb{C}^2$, e.g.

$$\rho = \frac{1}{2} \left(|00\rangle + |11\rangle \right) \left(\langle 00| + \langle 11| \right),$$

$$\sigma = \frac{1}{2} \left(|01\rangle + |10\rangle \right) \left(\langle 01| + \langle 10| \right).$$

Plan

- Distances (conclusion)
 - Quantum optimal transport

- 2 Entropy
 - Classical entropy
 - Quantum entropy

Classical entropy

• Given a probability p over a set Ω , its Shannon entropy is

$$S(p) = -\sum_{\omega \in \Omega} p(\omega) \log p(\omega),$$

- We assume $0 \log 0 = 0$ and that $\log = \log_2 (S \text{ is measured in bits})$
- $S(p) \ge 0$, and $p \mapsto S(p)$ is concave.
- Examples:
 - If *p* is uniform over *n* values,

$$S((1/n)_{i=1}^n) = -n \cdot \frac{1}{n} \log(1/n) = \log n.$$

2 For a probability distribution over two values (a Bernoulli law),

$$S((\alpha, 1 - \alpha)) = -\alpha \log \alpha - (1 - \alpha) \log(1 - \alpha) = h_2(\alpha).$$

• $\alpha \mapsto h_2(\alpha)$ is called binary entropy function.

Entropy as information content

• The entropy of a random variable $X : \Omega \mapsto \mathcal{X}$ is

$$S(X) = S((\mathbb{P}(X=x))_{x \in \mathcal{X}}) = -\sum_{x \in \mathcal{X}} \mathbb{P}(X=x) \log(\mathbb{P}(X=x)).$$

- To avoid(!) ambiguities, S(X) = S_p(X) (p is the low X or the probability on Ω)
- *S*(*X*) measures the information content of a random variable *X*:

• It holds $0 \le S(X) \le \log |\mathcal{X}|$.

Conditional entropy

- If Bob observes another random variable Y (possibly correlated with X), how should he update the entropy of X?
- After Bob observes Y = y, he updates the law of X, hence

$$S(X)_{\mathbb{P}|Y=y} = -\sum_{x \in \mathcal{X}} \mathbb{P}(X=x|Y=y) \log \mathbb{P}(X=x|Y=y).$$

 From the engineer's viewpoint, we are more interested in the average over the values Bob may observe. Hence the conditional entropy of X given Y is

$$S(X|Y) = \sum_{y \in \mathcal{Y}} S(X)_{\mathbb{P}|Y=y} \mathbb{P}(Y=y).$$

- Notice that $S(X|Y) \ge 0$
- Moreover, S(X|Y) = S((X,Y)) S(Y), or equivalently the chain rule:

$$S(X, Y) = S(Y) + S(X|Y).$$

Lemma (Fano's inequality)

Let X, X' be random variables and set $p = \mathbb{P}(X \neq X')$. Then,

$$S(X|X') \le h_2(p) + p \log(|\mathcal{X}| - 1).$$

Sketch of proof:

- Write $S(X|X') = \sum_{x \in \mathcal{X}} S_{\mathbb{P}|X'=x}(X) \mathbb{P}(X'=x)$.
- For each x, use the chain rule

$$\begin{split} S(X)_{\mathbb{P}|X'=x} &= S(X, I_{X=x})_{\mathbb{P}|X'=x} \\ &= S(I_{X=x})_{\mathbb{P}|X'=x} + S(X|I_{X=x})_{\mathbb{P}|X'=x} \\ &\leq h_2(\mathbb{P}(X=x|X'=x)) + \log(|\mathcal{X}|-1)\mathbb{P}(X \neq x|X'=x). \end{split}$$

• Summation over x and concavity of h_2 yields the thesis.

Mutual information

- How to quantify the average gain of information of Bob about X, after receiving Y?
- Shannon proposed the mutual information:

$$I(X; Y) = S(X) - S(X|Y).$$

• Intuitively, $I(X; Y) \ge 0$ (proof later). By definition,

$$I(X; Y) = S(X) - (S(X, Y) - S(Y)) = S(X) + S(Y) - S(X, Y)$$

= $I(Y; X)$.

• More explicit expression:

$$I(X; Y) = \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \mathbb{P}(X = x, Y = y) \log \left(\frac{\mathbb{P}(X = x, Y = y)}{\mathbb{P}(X = x) \mathbb{P}(Y = y)} \right).$$

Relative entropy

- The last formula suggests replace the denominator with a general probability density.
- We define the relative entropy (or Kullback-Leibler divergence) of p with respect to q (both defined on a set \mathcal{X}) as

$$D_{KL}(p||q) = \sum_{x \in \mathcal{X}} p(x) \log(p(x)/q(x))$$

$$= \sum_{x \in \mathcal{X}} p(x) (\log p(x) - \log q(x))$$

$$= -S(p) + \sum_{x \in \mathcal{X}} p(x) \log q(x),$$

- The above holds $p \ll q$, otherwise $D_{KL}(p||q) = \infty$.
- The relative entropy can be conveniently thought as a "distance" between p, however it is not symmetric,

$$D_{\mathcal{K}l}(p||q) \neq D_{\mathcal{K}l}(q||p)$$
 (in general).

Dario Trevisan (UNIPI)

16/32

- D_{KL} enjoys natural monotonicity and convexity properties.
- Given Markov kernel $N(x, y)_{x \in \mathcal{X}, y \in \mathcal{Y}}$, from \mathcal{X} to \mathcal{Y} , the relative entropy decreases:

$$D_{\mathit{KL}}(N^{\dagger}p||N^{\dagger}q) \leq D_{\mathit{KL}}(p||q),$$

• By taking any kernel such that $N^{\dagger}p = N^{\dagger}q$, we obtain

$$0 = D_{\mathit{KL}}(N^{\dagger}p||N^{\dagger}q) \leq D_{\mathit{KL}}(p||q).$$

Monotonicity implies also that

$$(p,q)\mapsto D_{KL}(p||q)$$
 is jointly convex.

Maximum entropy distributions

• Given $E: \mathcal{X} \to \mathbb{R}$ and for $m \in \mathbb{R}$, what is the probability p on \mathcal{X} which maximizes Shannon's entropy S(p), with the constraint

$$\sum_{x\in\mathcal{X}}E(x)p(x)=m?$$

• For min $E < m < \max E$, (the) answer is given by Gibbs distribution

$$p_{\beta}(x) = e^{-\beta E}/z$$
,

where $\beta \in \mathbb{R}$ is a parameter, and

$$z = z(\beta) = \sum_{x \in \mathcal{X}} e^{-\beta E(x)}$$

is a normalization constant.

Why? for every p,

$$D_{KL}(\rho||q_{\beta}) = -S(\rho) + \beta m + \log z(\beta) \geq 0.$$

• Example: The uniform distribution maximizes the entropy (put E = 0):

$$S(p) \leq \log |\mathcal{X}|$$
.

• The mutual information I(X; Y) is a special case of relative entropy:

$$I(X; Y) = D_{KL}(\mathbb{P}_{XY}||\mathbb{P}_X \otimes \mathbb{P}_Y) \geq 0$$

This can be rewritten as subadditivity

$$S(X, Y) \leq S(X) + S(Y)$$
.

Data processing inequality: given a Markov chain (X, Y, Z), i.e., X and Z
are conditionally independent given Y, it holds

$$I(X; Z) \leq I(X; Y).$$

 Interpretation: by further transforming Y, Bob cannot increase the information received about X!

Proof of the data processing inequality

By assumption, the joint law factorizes

$$\mathbb{P}_{XYZ}(x,y,z) = \mathbb{P}_{XY}(x,y)N(y,z),$$

where N is a Markov kernel from \mathcal{Y} to \mathcal{Z} .

• Extend N to a kernel from $\mathcal{X} \times \mathcal{Y}$ to $\mathcal{X} \times \mathcal{Z}$ by acting trivially on \mathcal{X} ,

$$\tilde{N}((x,y),(x',z))=\delta_x(x')N(y,z),$$

Check that

$$ilde{\mathcal{N}}^\dagger(\mathbb{P}_{XY}) = \mathbb{P}_{XZ}, \quad ilde{\mathcal{N}}^\dagger(\mathbb{P}_X \otimes \mathbb{P}_Y) = \mathbb{P}_X \otimes \mathbb{P}_Z.$$

Strong subadditivity

• Consider the case Z = f(Y). Then,

$$I(X; f(Y)) \leq I(X; Y).$$

• Replacing Y with a joint variable (Y, Z) and letting f(y, z) = y, we obtain

$$I(X; Y) \leq I(X; (Y, Z)).$$

The above is equivalent to

$$S(X|(Y,Z)) \leq S(X|Y),$$

or to the strong subadditivity property of the Shannon entropy

$$S(X, Y, Z) \leq S(X, Y) + S(Y, Z) - S(Y),$$

Plan

- Distances (conclusion)
 - Quantum optimal transport

- 2 Entropy
 - Classical entropy
 - Quantum entropy

von Neumann entropy

Consider a finite-dimensional quantum system H and a state ρ ∈ S(H).
 von Neumann defined its entropy as

$$S(\rho) = -\text{tr}[\rho \log \rho],$$

where $\rho \log \rho$ is obtained via functional calculus.

- $S(\rho)$ is Shannon entropy of the probability distribution associated to the spectrum of ρ (with multiplicities)
- Hence, $S(\rho) \ge 0$ with equality if and only if $\sigma(\rho) \subseteq \{0,1\}$ is pure.
- Notation: $S(H)_{\rho}$ or simply S(H) if the state ρ is understood.

Quantum relative entropy

• We introduce quantum relative entropy of ρ with respect to another state $\sigma \in \mathcal{S}(H)$ as

$$S(\rho||\sigma) = tr[\rho(\log \rho - \log \sigma)],$$

where the operators $\rho \log \rho$ and $\log \sigma$ are defined via functional calculus.

• The formula above requires that the kernel of σ is contained in the kernel of ρ (recall that in the classical case we require $\rho << q$), we interpret

$$\rho(\log \rho - \log \sigma) = 0$$

on the kernel of ρ . Otherwise, $S(\rho||\sigma) = \infty$.

• If ρ and σ commute, then

$$S(\rho||\sigma) = D_{KL}(p||q),$$

where p, q are probability distribution associated to the spectra of ρ , σ .

Monotonicity of relative entropy

Theorem (data processing inequality, DPI)

Let

- H, H
 be quantum systems
- Φ^{\dagger} be a quantum channel from H to \tilde{H} ,
- ρ , $\sigma \in \mathcal{S}(H)$.

Then, it holds

$$\mathcal{S}(\Phi^{\dagger}(\rho)||\Phi^{\dagger}(\sigma)) \leq \mathcal{S}(\rho||\sigma).$$

Proof

- We use general differentiation trick (much employed in entropic inequalities).
- Let $f, g : [a, b] \to \mathbb{R}$ be such that, for $t \in [a, b]$

$$f(t) \leq g(t)$$
 and $f(a) = g(a)$.

• If both f and g are (right-)differentiable at t = a, then

$$f'(a) \leq g'(a)$$
.

• By Lieb's concavity theorem, for $K = 1_{\tilde{H}}$, and $X = \rho$, $Y = \sigma$, $t \in [0, 1]$,

$$\operatorname{tr}[\rho^{1-t}\sigma^t] \leq \operatorname{tr}[\Phi^{\dagger}(\rho)^{1-t}\Phi^{\dagger}(\sigma)^t].$$

- For t = 0, we have equality (Φ is trace preserving).
- Assume for simplicity that ρ , σ , $\Phi^{\dagger}(\rho)$, $\Phi^{\dagger}(\sigma)$ are all invertible, then both sides in the inequality are smooth functions of t.
- We have

$$\left. \frac{d}{dt} \right|_{t=0^+} \operatorname{tr}[\rho^{1-t}\sigma^t] \leq \left. \frac{d}{dt} \right|_{t=0^+} \operatorname{tr}[\Phi^{\dagger}(\rho)^{1-t}\Phi^{\dagger}(\sigma)^t].$$

We compute

$$\frac{d}{dt}\bigg|_{t=0^+} \operatorname{tr}[\rho^{1-t}\sigma^t] = \operatorname{tr}[-\rho\log\rho + \rho\log\sigma] = -S(\rho||\sigma),$$

and similarly for the right hand side.

Ocnsider any trivial channel that maps any state into the same state, e.g. $\Phi^{\dagger}(\rho) = \mathbb{1}_H/\dim(H)$: then

$$S(\rho||\sigma) \ge S(\mathbb{1}_H/\dim(H); \mathbb{1}_H/\dim(H)) = 0.$$

2 The quantum relative entropy is jointly convex, i.e.,

$$(\rho, \sigma) \mapsto S(\rho||\sigma)$$
 is convex.

Apply the DPI to the partial trace channel $\Phi^{\dagger}(M) = \operatorname{tr}_2[M]$ to

$$\rho = \left(\begin{array}{cc} \rho_0 & \mathbf{0} \\ \mathbf{0} & \rho_1 \end{array} \right), \quad \sigma = \left(\begin{array}{cc} \sigma_0 & \mathbf{0} \\ \mathbf{0} & \sigma_1 \end{array} \right).$$

- **3** For $E \in \mathcal{O}(H)$, Gibbs states $\rho_{\beta} = e^{-\beta H}/z$ for $\beta \in \mathbb{R}$, $z = \text{tr}[e^{-\beta H}] > 0$ are a maximizer of von Neumann entropy (keeping fixed $(H)_{\rho} = \text{tr}[E\rho_{\beta}]$).
- In particular, von Neumann entropy always satisfies the inequalities

$$0 \leq S(H)_{\rho} \leq \dim(H)$$
.

Quantum conditional entropy

- The analogue of S(X|Y) is a delicate quantity, since a "quantum conditional density" is not available.
- We impose the validity of the chain rule: given $\rho \in \mathcal{S}(H \otimes K)$ with educed density operator $\rho_H = \operatorname{tr}_K[\rho] \in \mathcal{S}(H)$, its *quantum conditional entropy* is

$$S(K|H)_{\rho} = S(\rho) - S(\rho_H) = S(H \otimes K)_{\rho} - S(H)_{\rho_H}.$$

- Notation $S(HK)_{\rho} = S(H \otimes K)_{\rho}$.
- Now the chain rule holds, but S(H|K) may be strictly negative, because of entangled states!

Proposition (purification of a state)

Given $\rho \in \mathcal{S}(H)$, there exists an auxiliary quantum system K and a pure state $|\Psi\rangle \langle \Psi| \in \mathcal{S}(H \otimes K)$ such that

$$\operatorname{tr}_{\mathcal{K}}[|\Psi\rangle\langle\Psi|] = \rho.$$

The chain rule implies

$$0 = \mathcal{S}(H \otimes K)_{|\Psi\rangle\langle\Psi|} = \mathcal{S}(H)_{
ho} + \mathcal{S}(K|H)_{|\Psi\rangle\langle\Psi|},$$

hence the relative entropy must be negative in this case!

 This observation is turned into an indicator of entanglement (entanglement entropy).

Proof of purification

• Let $K = H^*$ be the dual of H, and consider the isomorphism

$$H \otimes H^* \ni |\psi\rangle \otimes \langle \varphi| \quad \mapsto \quad |\psi\rangle \, \langle \varphi| \in \mathcal{L}(H).$$

- The $|\Psi\rangle \in H \otimes H^*$ corresponding to $\sqrt{\rho} \in \mathcal{L}(H)$ is a purification of ρ .
- Pick orthonormal basis $(|i\rangle)_{i\in I}$ of eigenvectors of ρ and write

$$\sqrt{\rho} = \sum_{i \in I} \sqrt{p_i} \ket{i} \bra{i},$$

hence

$$|\Psi
angle = \sum_{i\in I} \sqrt{p_i} |i
angle \otimes \langle i|.$$

• Since $|\Psi\rangle \langle \Psi| = \sum_{i,j \in I} \sqrt{p_i p_j} (|i\rangle \otimes \langle i|) (\langle j| \otimes |j\rangle)$, taking the partial trace

$$\operatorname{tr}_{\mathcal{K}}[|\Psi\rangle\langle\Psi|] = \sum_{i\in I} p_i |i\rangle\langle i| = \rho.$$

Quantum mutual information

• To define the quantum mutual information, we mimic the classical case: given $\rho \in \mathcal{S}(H \otimes K)$ with reduced density operators $\rho_H \in \mathcal{S}(H)$, $\rho_K \in \mathcal{S}(K)$,

$$I(H; K)_{\rho} = S(\rho || \rho_H \otimes \rho_K)$$

$$= S(H)_{\rho_H} - S(H|K)_{\rho}$$

$$= S(H)_{\rho_H} + S(K)_{\rho_K} - S(H \otimes K)_{\rho}.$$

• From the DPI: given $\rho \in \mathcal{S}(H \otimes K)$ and a quantum channel Φ^{\dagger} from K to \tilde{K} , then

$$I(H; \tilde{K})_{\mathbb{1}_{\mathcal{L}(H)} \otimes \Phi^{\dagger}(\rho)} \leq I(H; K)_{\rho}$$

• Replace K with $K \otimes L$ and let $\Phi^{\dagger} = \operatorname{tr}_{L}$ be the partial trace channel: for every $\rho \in \mathcal{S}(H \otimes K \otimes L)$,

$$I(H;K)_{\rho_{HK}} \leq I(H;K\otimes L)_{\rho},$$

which is equivalent to the strong subadditivity of von Neumann entropy

$$S(H \otimes K \otimes L) \leq S(H \otimes K) + S(K \otimes L) - S(K).$$

Dario Trevisan (UNIPI)

32/32