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Distances (conclusion) Quantum optimal transport

Errata

Recall the quantum fidelity between two states ρ, σ ∈ S(H):

F (ρ, σ) = tr[
√√

ρσ
√
ρ]2.

Motivated by the analogy with the Bhattacharyya coefficient, the
analogue of the Hellinger distance is the Bures metric

DB(ρ, σ)2 = 2
(

1−
√

F (ρ, σ)
)
.

The Bures metric is an actual distance (check the updated notes,
reference e.g. in Holevo’s book).
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Distances (conclusion) Quantum optimal transport

OT via Lipschitz operators

In the classical case, we can use Kantorovich duality to define W d :

W d (p,q) = sup
f is 1-Lip

{∑
x∈X

f (x) (p(x)− q(x))

}
.

A similar strategy in the quantum setting dates back to Connes: define
first what are Lipschitz observables and obtain the cost via duality.
We proposed to consider the case of product systems

H =
⊗
i∈I

Hi ,

providing a quantum analogue of OT with respect to the Hamming
distance
Recall that on sets Πi∈IXi ,

dHam((xi )i∈I , (yi )i∈I) =
∑
i∈I

1{xi 6=yi}.
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Distances (conclusion) Quantum optimal transport

f : Πi∈IXi → R is (Hamming) 1-Lipschitz if and only if, for every i ∈ I,

|f (x)− f (y)| ≤ 1

whenever x , y differ only at the coordinate i (write x ∼i y ).

Equivalently, define the oscillation at i ∈ I as

∂i f = sup
x∼i y
|f (x)− f (y)| = 2 inf

gi
sup

x
|f (x)− gi (x)|

where gi does not depend upon the coordinate i . Then,

‖f‖Lip = max
i∈I

∂i f .
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Distances (conclusion) Quantum optimal transport

On a product system H =
⊗

i∈I Hi , for every i ∈ I and observable
A ∈ O(H), define

∂iA = inf

2 ‖A−Gi ⊗ 1Hi‖∞ : Gi ∈ O(
⊗
j 6=i

Hj )

 ,

The quantum Lipschitz constant of A ∈ O(H) is

‖A‖L := max
i∈I

∂iA.

The quantum Wasserstein distance of order 1 between ρ, σ ∈ S(H) is

‖ρ− σ‖W1 = sup {tr[A(ρ− σ)] : ‖A‖L ≤ 1}
= sup {(A)ρ − (A)σ : ‖A‖L ≤ 1}
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Distances (conclusion) Quantum optimal transport

Back to the classical case, forget about the product structure (i.e.,
consider the set X a single factor): then the Hamming distance is the
trivial distance and

W dtrivial (p,q) = ‖p − q‖TV .

Since
1{x 6=y} ≤

∑
i∈I

1{xi 6=yi} ≤ |I|1{x 6=y},

this leads to a comparison between OT distances.

Also in the quantum case, we can compare

Dtr(ρ, σ) ≤ ‖ρ− σ‖W1 ≤ |I|Dtr(ρ, σ).
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Distances (conclusion) Quantum optimal transport

For product states ρ = ⊗i∈Iρi , σ = ⊗i∈Iσi , then

‖ρ− σ‖W1 =
∑
i∈I

Dtr(ρi , σi ).

Exercise: Compute the Wasserstein distance of order 1 between any two
Bell states on the composite system H = C2 ⊗ C2, e.g.

ρ =
1
2

(|00〉+ |11〉) (〈00|+ 〈11|) ,

σ =
1
2

(|01〉+ |10〉) (〈01|+ 〈10|) .
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Entropy Classical entropy

Given a probability p over a set Ω, its Shannon entropy is

S(p) = −
∑
ω∈Ω

p(ω) log p(ω),

We assume 0 log 0 = 0 and that log = log2 (S is measured in bits)
S(p) ≥ 0, and p 7→ S(p) is concave.
Examples:

1 If p is uniform over n values,

S((1/n)n
i=1) = −n · 1

n
log(1/n) = log n.

2 For a probability distribution over two values (a Bernoulli law),

S((α, 1 − α)) = −α logα− (1 − α) log(1 − α) = h2(α).

α 7→ h2(α) is called binary entropy function.

Dario Trevisan (UNIPI) 13/02/2023 11 / 32



Entropy Classical entropy

Entropy as information content

The entropy of a random variable X : Ω 7→ X is

S(X ) = S((P(X = x))x∈X ) = −
∑
x∈X

P(X = x) log(P(X = x)).

To avoid(!) ambiguities, S(X ) = Sp(X ) (p is the low X or the probability
on Ω)
S(X ) measures the information content of a random variable X :

It holds 0 ≤ S(X ) ≤ log |X |.
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Entropy Classical entropy

Conditional entropy

If Bob observes another random variable Y (possibly correlated with X ),
how should he update the entropy of X?
After Bob observes Y = y , he updates the law of X , hence

S(X )P|Y =y = −
∑
x∈X

P(X = x |Y = y) logP(X = x |Y = y).

From the engineer’s viewpoint, we are more interested in the average
over the values Bob may observe. Hence the conditional entropy of X
given Y is

S(X |Y ) =
∑
y∈Y

S(X )P|Y =yP(Y = y).

Notice that S(X |Y ) ≥ 0
Moreover, S(X |Y ) = S((X ,Y ))− S(Y ), or equivalently the chain rule:

S(X ,Y ) = S(Y ) + S(X |Y ).
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Entropy Classical entropy

Lemma (Fano’s inequality)

Let X, X ′ be random variables and set p = P(X 6= X ′). Then,

S(X |X ′) ≤ h2(p) + p log(|X | − 1).

Sketch of proof:
Write S(X |X ′) =

∑
x∈X SP|X ′=x (X )P(X ′ = x).

For each x , use the chain rule

S(X )P|X ′=x = S(X , IX=x )P|X ′=x

= S(IX=x )P|X ′=x + S(X |IX=x )P|X ′=x

≤ h2(P(X = x |X ′ = x)) + log(|X | − 1)P(X 6= x |X ′ = x).

Summation over x and concavity of h2 yields the thesis.
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Entropy Classical entropy

Mutual information

How to quantify the average gain of information of Bob about X , after
receiving Y?
Shannon proposed the mutual information:

I(X ; Y ) = S(X )− S(X |Y ).

Intuitively, I(X ; Y ) ≥ 0 (proof later). By definition,

I(X ; Y ) = S(X )− (S(X ,Y )− S(Y )) = S(X ) + S(Y )− S(X ,Y )

= I(Y ; X ).

More explicit expression:

I(X ; Y ) =
∑

x∈X ,y∈Y
P(X = x ,Y = y) log

(
P(X = x ,Y = y)

P(X = x)P(Y = y)

)
.
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Entropy Classical entropy

Relative entropy

The last formula suggests replace the denominator with a general
probability density.
We define the relative entropy (or Kullback-Leibler divergence) of p with
respect to q (both defined on a set X ) as

DKL(p||q) =
∑
x∈X

p(x) log(p(x)/q(x))

=
∑
x∈X

p(x) (log p(x)− log q(x))

= −S(p) +
∑
x∈X

p(x) log q(x),

The above holds p << q, otherwise DKL(p||q) =∞.
The relative entropy can be conveniently thought as a “distance” between
p, however it is not symmetric,

DKL(p||q) 6= DKL(q||p) (in general).
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Entropy Classical entropy

DKL enjoys natural monotonicity and convexity properties.

Given Markov kernel N(x , y)x∈X ,y∈Y , from X to Y, the relative entropy
decreases:

DKL(N†p||N†q) ≤ DKL(p||q),

By taking any kernel such that N†p = N†q, we obtain

0 = DKL(N†p||N†q) ≤ DKL(p||q).

Monotonicity implies also that

(p,q) 7→ DKL(p||q) is jointly convex.
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Entropy Classical entropy

Maximum entropy distributions
Given E : X → R and for m ∈ R, what is the probability p on X which
maximizes Shannon’s entropy S(p), with the constraint∑

x∈X
E(x)p(x) = m?

For min E < m < max E , (the) answer is given by Gibbs distribution

pβ(x) = e−βE/z,

where β ∈ R is a parameter, and

z = z(β) =
∑
x∈X

e−βE(x)

is a normalization constant.
Why? for every p,

DKL(p||qβ) = −S(p) + βm + log z(β) ≥ 0.

Example: The uniform distribution maximizes the entropy (put E = 0):

S(p) ≤ log |X |.
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Entropy Classical entropy

The mutual information I(X ; Y ) is a special case of relative entropy:

I(X ; Y ) = DKL(PXY ||PX ⊗ PY ) ≥ 0

This can be rewritten as subadditivity

S(X ,Y ) ≤ S(X ) + S(Y ).

Data processing inequality: given a Markov chain (X ,Y ,Z ), i.e., X and Z
are conditionally independent given Y , it holds

I(X ; Z ) ≤ I(X ; Y ).

Interpretation: by further transforming Y , Bob cannot increase the
information received about X !
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Entropy Classical entropy

Proof of the data processing inequality

By assumption, the joint law factorizes

PXYZ (x , y , z) = PXY (x , y)N(y , z),

where N is a Markov kernel from Y to Z.

Extend N to a kernel from X × Y to X × Z by acting trivially on X ,

Ñ((x , y), (x ′, z)) = δx (x ′)N(y , z),

Check that

Ñ†(PXY ) = PXZ , Ñ†(PX ⊗ PY ) = PX ⊗ PZ .

Dario Trevisan (UNIPI) 13/02/2023 20 / 32



Entropy Classical entropy

Strong subadditivity

Consider the case Z = f (Y ). Then,

I(X ; f (Y )) ≤ I(X ; Y ).

Replacing Y with a joint variable (Y ,Z ) and letting f (y , z) = y , we obtain

I(X ; Y ) ≤ I(X ; (Y ,Z )).

The above is equivalent to

S(X |(Y ,Z )) ≤ S(X |Y ),

or to the strong subadditivity property of the Shannon entropy

S(X ,Y ,Z ) ≤ S(X ,Y ) + S(Y ,Z )− S(Y ),
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Entropy Quantum entropy

von Neumann entropy

Consider a finite-dimensional quantum system H and a state ρ ∈ S(H).
von Neumann defined its entropy as

S(ρ) = −tr[ρ log ρ],

where ρ log ρ is obtained via functional calculus.

S(ρ) is Shannon entropy of the probability distribution associated to the
spectrum of ρ (with multiplicities)

Hence, S(ρ) ≥ 0 with equality if and only if σ(ρ) ⊆ {0,1} is pure.

Notation: S(H)ρ or simply S(H) if the state ρ is understood.
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Entropy Quantum entropy

Quantum relative entropy

We introduce quantum relative entropy of ρ with respect to another state
σ ∈ S(H) as

S(ρ||σ) = tr[ρ(log ρ− log σ)],

where the operators ρ log ρ and log σ are defined via functional calculus.

The formula above requires that the kernel of σ is contained in the kernel
of ρ (recall that in the classical case we require p << q), we interpret

ρ(log ρ− log σ) = 0

on the kernel of ρ. Otherwise, S(ρ||σ) =∞.

If ρ and σ commute, then

S(ρ||σ) = DKL(p||q),

where p,q are probability distribution associated to the spectra of ρ, σ.
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Entropy Quantum entropy

Monotonicity of relative entropy

Theorem (data processing inequality, DPI)

Let
H, H̃ be quantum systems
Φ† be a quantum channel from H to H̃,
ρ, σ ∈ S(H).

Then, it holds
S(Φ†(ρ)||Φ†(σ)) ≤ S(ρ||σ).
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Entropy Quantum entropy

Proof

We use general differentiation trick (much employed in entropic
inequalities).
Let f ,g : [a,b]→ R be such that, for t ∈ [a,b]

f (t) ≤ g(t) and f (a) = g(a).

If both f and g are (right-)differentiable at t = a, then

f ′(a) ≤ g′(a).

Dario Trevisan (UNIPI) 13/02/2023 26 / 32



Entropy Quantum entropy

By Lieb’s concavity theorem, for K = 1H̃ , and X = ρ, Y = σ, t ∈ [0,1],

tr[ρ1−tσt ] ≤ tr[Φ†(ρ)1−t Φ†(σ)t ].

For t = 0, we have equality (Φ is trace preserving).
Assume for simplicity that ρ, σ, Φ†(ρ), Φ†(σ) are all invertible, then both
sides in the inequality are smooth functions of t .
We have

d
dt

∣∣∣∣
t=0+

tr[ρ1−tσt ] ≤ d
dt

∣∣∣∣
t=0+

tr[Φ†(ρ)1−t Φ†(σ)t ].

We compute

d
dt

∣∣∣∣
t=0+

tr[ρ1−tσt ] = tr[−ρ log ρ+ ρ log σ] = −S(ρ||σ),

and similarly for the right hand side.
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Entropy Quantum entropy

1 Consider any trivial channel that maps any state into the same state, e.g.
Φ†(ρ) = 1H/dim(H): then

S(ρ||σ) ≥ S(1H/dim(H);1H/dim(H)) = 0.

2 The quantum relative entropy is jointly convex, i.e.,

(ρ, σ) 7→ S(ρ||σ) is convex.

Apply the DPI to the partial trace channel Φ†(M) = tr2[M] to

ρ =

(
ρ0 0
0 ρ1

)
, σ =

(
σ0 0
0 σ1

)
.

3 For E ∈ O(H), Gibbs states ρβ = e−βH/z for β ∈ R, z = tr[e−βH ] > 0 are
a maximizer of von Neumann entropy (keeping fixed (H)ρ = tr[Eρβ]).

4 In particular, von Neumann entropy always satisfies the inequalities

0 ≤ S(H)ρ ≤ dim(H).
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Entropy Quantum entropy

Quantum conditional entropy

The analogue of S(X |Y ) is a delicate quantity, since a “quantum
conditional density” is not available.

We impose the validity of the chain rule: given ρ ∈ S(H ⊗ K ) with educed
density operator ρH = trK [ρ] ∈ S(H), its quantum conditional entropy is

S(K |H)ρ = S(ρ)− S(ρH) = S(H ⊗ K )ρ − S(H)ρH .

Notation S(HK )ρ = S(H ⊗ K )ρ.

Now the chain rule holds, but S(H|K ) may be strictly negative, because
of entangled states!
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Entropy Quantum entropy

Proposition (purification of a state)

Given ρ ∈ S(H), there exists an auxiliary quantum system K and a pure state
|Ψ〉 〈Ψ| ∈ S(H ⊗ K ) such that

trK [|Ψ〉 〈Ψ|] = ρ.

The chain rule implies

0 = S(H ⊗ K )|Ψ〉〈Ψ| = S(H)ρ + S(K |H)|Ψ〉〈Ψ|,

hence the relative entropy must be negative in this case!

This observation is turned into an indicator of entanglement
(entanglement entropy).
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Entropy Quantum entropy

Proof of purification

Let K = H∗ be the dual of H, and consider the isomorphism

H ⊗ H∗ 3 |ψ〉 ⊗ 〈ϕ| 7→ |ψ〉 〈ϕ| ∈ L(H).

The |Ψ〉 ∈ H ⊗ H∗ corresponding to
√
ρ ∈ L(H) is a purification of ρ.

Pick orthonormal basis (|i〉)i∈I of eigenvectors of ρ and write

√
ρ =

∑
i∈I

√
pi |i〉 〈i | ,

hence
|Ψ〉 =

∑
i∈I

√
pi |i〉 ⊗ 〈i | .

Since |Ψ〉 〈Ψ| =
∑

i,j∈I
√

pipj (|i〉 ⊗ 〈i |)(〈j | ⊗ |j〉), taking the partial trace

trK [|Ψ〉 〈Ψ|] =
∑
i∈I

pi |i〉 〈i | = ρ.
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Entropy Quantum entropy

Quantum mutual information
To define the quantum mutual information, we mimic the classical case:
given ρ ∈ S(H ⊗ K ) with reduced density operators ρH ∈ S(H),
ρK ∈ S(K ),

I(H; K )ρ = S(ρ||ρH ⊗ ρK )

= S(H)ρH − S(H|K )ρ

= S(H)ρH + S(K )ρK − S(H ⊗ K )ρ.

From the DPI: given ρ ∈ S(H ⊗ K ) and a quantum channel Φ† from K to
K̃ , then

I(H; K̃ )1L(H)⊗Φ†(ρ) ≤ I(H; K )ρ

Replace K with K ⊗ L and let Φ† = trL be the partial trace channel: for
every ρ ∈ S(H ⊗ K ⊗ L),

I(H; K )ρHK ≤ I(H; K ⊗ L)ρ,

which is equivalent to the strong subadditivity of von Neumann entropy

S(H ⊗ K ⊗ L) ≤ S(H ⊗ K ) + S(K ⊗ L)− S(K ).
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