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Inequalities (conclusion) Lieb’s concavity theorem

Theorem (Lieb’s concavity theorem, monotonicity version)

Let H, H be finite dimensional quantum systems,

e letd : L(H) — L(H)) be CP and unital
@ so that ®' is a quantum channel from H to H,

o let X, Y € O=(H) be positive, K € L(H).
Then, for every t € [0, 1],

a[d(K)* X ~'o(K) Y] < t[K* o (X)' Ko (V).
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Theorem (Lieb’s concavity theorem, monotonicity version)

Let H, H be finite dimensional quantum systems,

e letd : L(H) — L(H)) be CP and unital
@ so that ®' is a quantum channel from H to H,

o let X, Y € O=(H) be positive, K € L(H).
Then, for every t € [0, 1],

a[d(K)* X ~'o(K) Y] < t[K* o (X)' Ko (V).

In the case K = 14, we have ¢(14) = 1, hence the inequality becomes
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Inequalities (conclusion) Lieb’s concavity theorem

@ The inequality
[T (XTIYD)] < o7 (X)) o (Y)Y
seems a Holder inequality p=1/(1 —t)and p’ = 1/t.
@ By monotonicity of operator means, we already have

(Xt Y) < & (X)8dT(Y),

@ But X and Y do not necessarily commute. The main idea is to move to a

“higher” level to partially restore commutativity.
@ The concavity version of Lieb’s theorem states that

(A, B) — tr[K* A"'KB']

is concave on O>q(H) x Oo(H). To deduce it from the monotonicity
version, use ®' = tre. on H ® C? with

(A O (B 0 (K O
(0 a) (o 8) x(o0 k)
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Inequalities (conclusion) Lieb’s concavity theorem

@ For simplicity, consider H = H. Recall that £(H) is a Hilbert space
endowed with the Hilbert-Schmidt scalar product ((A|B) = tr[A*B])
(Dirac notation |X) ,|Y), |K) € L(H)).

@ The map ¢ is linear from L(H) into itself, ¢ |K) = |P(K)).
@ lts adjoint is ®* = o,
@ We use ¢ as a single Kraus operator to define a CP map

®: L(L(H)) — L(L(H)), A~ O(A) = 0*Ad.
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@ We introduce two further operators:
o the left-multiplication by X € L(H)
Lx € L(L(H)), Lx:L(H)— L(H), Lx|A) — |XA),
o the right multiplication by Y € L(H),
Ry € L(L(H)), Ry:L(H)— L(H), RylA) — |AY).
@ Basic properties:
LxLx' = Lxx:, RyRy =Ry, Lx=Lx-, Ry=Ry-.

@ Any operator Lx commutes with any Ry, since

@ Therefore,
(LX)ﬁI(RY) = Ll(ith = Lyi—+Ry:.
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Inequalities (conclusion) Lieb’s concavity theorem

@ It holds Ly (x) > ®(Lx) = ®*Lx®, since for every K € L(H),

@ By the monotonicity of the operator mean,

@ To conclude, take the scalar product both sides with K € L(H).
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S - 222
Distances between classical probability distributions

How to compare two states of a quantum system? The answer of course
depends on the application and justifies a large variety of “distances”.

We discuss the quantum analogues of
@ the total variation distance = trace distance
@ the Hellinger distance, or Bhattacharyya coefficient = Fidelity
© the Kantorovich-Wasserstein distance, = several analogues.
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@ For probability distributions p, g over Q, the total variation distance is
lp—allrv=75 Z|P w)| €[0,1],
wEQ

@ Given a Markov kernel N = (N(w, X))wea xex,

[(NTp) — (NQ)|l7v < [lp — qll7v-

@ Dual representation:

lp—qllrv = sup > pw) — qw).

= weV

(optimizer: V = {w € Q : p(w) > q(w)})
@ We can further relax from sets to functions:

lp—qlrv="sup > aw)(pw)-qw)).

a0—[0,1] 2y
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@ On a finite-dimensional quantum system H, given states p, o € S(H), one
defines their trace distance

1
Du(p, o) = Etr\fo =g

where |p — o] is defined via spectral calculus on p — o € O(H).
@ ltis a special case of p-Schatten norm

1Allp = ul|APPT'/P = w[(AA)P/2)P.

@ If both p and o are diagonal with respect to the same basis (]i))ie/, i.€.,

p=Y"piliy(il, o= ali) i,

iel iel
for classical probability densities (p;)ics, (Gi)ies, then
Du(p,0) =P —qll7v.
@ p=|¢) (Y], 0 =lp)(p| € S(H) are pure states then,

Du(p,0) = /1 = |(w|p)]%.
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@ Dual representation
Du(p,0) = sup te[ly(p — o)] = sup P,(V) — P, (V),
V<H V<H

@ and “relaxed” version

Du(p,0) = sup (A)p = (A)o-
A€O(H),0(A)C[0,1]

@ Sketch of proof:

@ = the triangle inequality and, for any quantum channel ¢,
Du(®7(p), ®(0)) < Du(p, 0)-
@ Examples: Dy (try[p], try[o]) < Dy(p,0). Vp,0 € S(H® K),

[Bp(X =) =Po(X =)l[7v < Du(p,0), forany X = (Ly,)xex-
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@ The (squared) Hellinger distance between probability distributions p, g is

H(p.9) = 3 3 IV ~ Va@).

we

@ The Bhattacharyya coefficient is

BC(p,q) = > V/p(w)a(w) € [0, 1],

weN

so that
H(p,q) =1 - BC(p,q).

@ For every Markov kernel N,
H(N'p,N'q) < H(p,q)
or equivalently

BC(N'p,N'q) > BC(p, q).
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@ In the quantum setting the analogues of H and BC have a natural
interpretation, in particular for pure states p = [¢) (¢].

@ The fidelity between p, o € S(H) is defined as

F(p.0) = (tr[Wl)z .

@ The analogue of the Hellinger distance is the Bures metric

De(p.0)* =2 (1 - VF(p.0)) .
@ For pure states p = [¢) (¢, o = |¢) (¢|, since \/p = p,

Fp, o) = |(¥|p)?

Dario Trevisan (UNIPI) 09/02/2023

16/33



@ Several equivalent ways to write the fidelity:

F(p.0) = tllvval] = 3 (isl(pts 20~ )o] + tl(ot1 20~ )o)).
@ Fon any quantum channel ¢,
F('(p), ®'(0)) = F(p,0),

@ The proof uses the variational representation

F(p,0) :sup{|tr[X]| : X € L(H), such thatM = ( 5)(* i( ) > 0}.
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@ The classical optimal transport problem (Monge-Kantorovich) searches
for the cheapest way to move two probability distributions p, g, with
respect to a displacement cost c.

@ The precise definition is given by the variational problem

We(p.q):= inf > c(x,y)m(x,y),

-rreC(p,q)X yex

where C(p, q) are the couplings between p, g, i.e., 7 = (7(X, ¥))x,yex>

Vx,ye X, 0<m(x,y)<1,

> orxy)=aly), > w(xy) = p(x).

xeX yex

Dario Trevisan (UNIPI) 09/02/2023

19/33



1.0 A )
X [ ]
X ° X x X °
X X
e X ]
X x )? % X
0.8 1 . XX XXX ® .X
e *Xo
L4 % ) ) ® °
°
0.6 1 X .. x ° ) &
)
X ™Y X ® [ ] X
® . ° o
0.4 x o OX x ¢ Ve
XX
X % X x®
° o X X )
0.2 A X
® X
(L4 ® X X
X L] X
°
X
00{ X ®
0.0 0.2 0.4 0.6 0.8 1.0

Dario Trevisan (UNIPI) 09/02/2023 20/33






@ We give a “dynamical” description via the conditional probabilities

N(x,y) = m(ylx) =
which define a Markov kernel such that Nfp = g (a transport plan)

@ A further point of view is the dual formulation,

We(p, q)

=sup { D )P() + Y 9)aly) - f(x) +9(y) < c(x,y) Vx,y € X} :

xeX yex

@ When c(x,y) = d(x, y) is a distance the dual problem can be restricted
to 1-Lipschitz functions, i.e., the Kantorovich problem

W(p.q) = sup {Z F(x) (p(x) — q(x))} .

fis 1-Lip
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@ Optimal transport is a fundamental problem in operation research and
combinatorial optimization, which in recent decades found applications in

e PDE’s

@ Riemannian geometry

@ computer science

o statistics and machine learning. ..

@ The first proposals for quantum optimal transport date back to the 1990’s
(Connes, Zyczkowski).

@ Recently, more formulations have been proposed: Agredo, Carlen-Maas,
Golse-Mouhot-Paul-Caglioti, .. .).
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OT via quantum couplings

@ This approach is considered by Golse, Mouhot, Paul and Caglioti.

@ Given a quantum system H, consider two copies H = H; = H,, introduce
a cost operator as C € O(H; ® H.), e.g. a sum of squares

C= Z(A, @1y, — 14, ®A,‘)2.

iel

@ Quantum couplings C(p, o) are density operators M € S(H; ® Ho) with

p=trp,[M], o =try[N].

@ The optimal transport cost is

We(p,0) = nelcr}f),q) a[CN].
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@ Many open questions: is \/W¢(p, o) is an actual distance?

@ Given a quantum channel ¢, determine how much it expands the cost:

We(®'(p), 87(0)) < [0 [lw, Welp, ), for every p,o € S(H)?

@ This OT is used in the infinite-dimensional (CCR) setting to investigate
quantitatively semiclassical limits.
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OT via quantum channels

@ With DePalma we proposed to use channels such that ®f(p) = o as
quantum plans. How to define a cost functional?

@ Consider the “sum of squares” case. In the classical case,

Y e yrey) =3 S (f 2r(x,y)

X,yex i€l x,yeXx
=D D ) = DRy -2 Y fRy)a(x.y).
iel xex yex X,yeX

@ We rewrite using N(x, y) = n(y|x) instead of ,

Z fi(x m(x,y) = Zf(x Y(NFR)(x).

X, yex xeX
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@ As a quantum analogue of » . fi(x)p(x)(Nf;)(x), we propose

tr[Ai/p®(A)\/p] = t[(\/pA) S(A) /ol = (VA P(A) /D) -

@ The full expression of the cost becomes

Cost(®, p,0) = Ztr[A,?p] + tr[AZ0] — 2tr{Ai/p® (A1) /7).
iel
@ We minimize with respect to quantum plans,

Whe(p, o) = ¢Ti(2)f:a Cost(®, p, 7).

@ An optimal plan between p and itself in the identity channel ® = 1,4, and

Wo(p.0) > & (Welp. ) + Wa(o,)).

@ A modified triangle inequality holds:
VWe(p,7) < V/We(p,0) + /We(0,0) + /We(a, 7).
00/02/2023  27/33




@ Recalling the definition of the cost, inequality

1

We(p, o) > 5 (We(p, p) + Wp(a,0)),

N

turns out to be equivalent to

> uAn/pP(A)/A] < %Z t[Ai/pAi/p) + t[AiV/oAiv/a]

i€l iel

for every plan ¢7(p) = 0.
@ Argue for each A; = A. By Cauchy-Schwarz inequality,

u[Aypd(A)y/p] = ul(p'/*Ap"/*) (p! /40 (A)p! /)]
1 1
< SlAVPAVZ] + ul®(A)y/pP(A) /7]
@ By Lieb’s concavity theorem with t = 1/2,
t{®(A)y/pP(A)/7] < trfAy/ @1 (p)Ay/ 1 ()]
09/02/2023
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OT via Lipschitz operators

@ In the classical case, we can use Kantorovich duality to define W¢:

W p,q) = sup {Zf(X)(p(X)—q(X))}

fis 1-Lip

@ A similar strategy in the quantum setting dates back to Connes: define
first what are Lipschitz observables and obtain the cost via duality.

@ Recently, we proposed to consider the case of product systems
H=QH.
iel

providing a quantum analogue of OT with respect to the Hamming
distance

@ Recall that on sets N, A},

dHam((Xl i€l yl IE/ 21{X17’5}’:

iel
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@ f:MNije;Xi — Ris (Hamming) 1-Lipschitz if and only if, for every i € I,
[f(x) = f(y)l <1

whenever x, y differ only at the coordinate i (write x ~; y).

@ Equivalently, define the oscillation at i € I as

0if = sup [f(x) — H(y)| = 2inf sup [f(x) — gi(x)|

X~y
where g; does not depend upon the coordinate i. Then,

||f||Lip = ”I‘SIX oif.
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@ On a product system H = ), H;, for every i € | and observable
A € O(H), define

OiA = sup {2 |A-G @1pll, : Gi€ (9(® H,)} )
j#i
@ The quantum Lipschitz constant of A € O(H) is
1All := max ;A.
@ The quantum Wasserstein distance of order 1 between p,o € S(H) is

lo = ollw, = sup {ulA(p —o)] = Al <1}
= sup{(A), = (A)s : [IAll, <1}
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@ Back to the classical case, forget about the product structure (i.e.,
considers the set X = ®}:1 X a single factor): then the Hamming
distance is the trivial distance and

W (p,q) = lIp - gl rv-

@ Since

Ty O iy < Uy
iel

this leads to a comparison between OT distances.
@ Also in the quantum case, we can compare

Du(p.o) < llo — olw, < 1Dulp.0).
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@ For product states p = ®jcipi, 0 = ®jcioi, then
lp = ollw, =Y Dulpi 7).
iel

@ Exercise: Compute the Wasserstein distance of order 1 between any two
Bell states on the composite system H = C? ® C?, e.g.

p= %(|oo>+|11>)(<00|+<11|)’
o= 1(101) + [10)) ((01] + (10]) .

N
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