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Inequalities (conclusion) Lieb’s concavity theorem

Theorem (Lieb’s concavity theorem, monotonicity version)

Let H, H̃ be finite dimensional quantum systems,
let Φ : L(H̃)→ L(H)) be CP and unital
so that Φ† is a quantum channel from H to H̃,
let X , Y ∈ O≥(H) be positive, K ∈ L(H̃).

Then, for every t ∈ [0,1],

tr[Φ(K )∗X 1−t Φ(K )Y t ] ≤ tr[K ∗Φ†(X )1−tK Φ†(Y )t ].

In the case K = 1H , we have Φ(1H) = 1H̃ , hence the inequality becomes
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Inequalities (conclusion) Lieb’s concavity theorem

Remarks

The inequality
tr[Φ†(X 1−tY t )] ≤ tr[Φ†(X )1−t Φ†(Y )t ]

seems a Hölder inequality p = 1/(1− t) and p′ = 1/t .
By monotonicity of operator means, we already have

Φ†(X ]tY ) ≤ Φ†(X )]t Φ
†(Y ),

But X and Y do not necessarily commute. The main idea is to move to a
“higher” level to partially restore commutativity.
The concavity version of Lieb’s theorem states that

(A,B) 7→ tr[K ∗A1−tKBt ]

is concave on O≥0(H)×O≥0(H). To deduce it from the monotonicity
version, use Φ† = trC2 on H ⊗ C2 with

X =

(
A0 0
0 A1

)
, Y =

(
B0 0
0 B1

)
, K =

(
K 0
0 K

)
.
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Inequalities (conclusion) Lieb’s concavity theorem

Proof

For simplicity, consider H = H̃. Recall that L(H) is a Hilbert space
endowed with the Hilbert-Schmidt scalar product (〈A|B〉 = tr[A∗B])
(Dirac notation |X 〉 , |Y 〉 , |K 〉 ∈ L(H)).

The map Φ is linear from L(H) into itself, Φ |K 〉 = |Φ(K )〉.

Its adjoint is Φ∗ = Φ†.

We use Φ as a single Kraus operator to define a CP map

Φ̃ : L(L(H))→ L(L(H)), A 7→ Φ̃(A) = Φ∗AΦ.
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Inequalities (conclusion) Lieb’s concavity theorem

We introduce two further operators:
the left-multiplication by X ∈ L(H)

LX ∈ L(L(H)), LX : L(H) → L(H), LX |A〉 7→ |XA〉 ,

the right multiplication by Y ∈ L(H),

RY ∈ L(L(H)), RY : L(H) → L(H), RY |A〉 7→ |AY 〉 .

Basic properties:

LX LX ′ = LXX ′ , RY RY ′ = RY ′Y , L∗X = LX∗ , R∗Y = RY∗ .

Any operator LX commutes with any RY , since

Therefore,
(LX )]t (RY ) = L1−t

X Rt
Y = LX 1−t RY t .
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Inequalities (conclusion) Lieb’s concavity theorem

It holds LΦ†(X) ≥ Φ̃(LX ) = Φ∗LX Φ, since for every K ∈ L(H),

By the monotonicity of the operator mean,

To conclude, take the scalar product both sides with K ∈ L(H).
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Distances

Distances between classical probability distributions

How to compare two states of a quantum system? The answer of course
depends on the application and justifies a large variety of “distances”.

We discuss the quantum analogues of
1 the total variation distance ⇒ trace distance
2 the Hellinger distance, or Bhattacharyya coefficient ⇒ Fidelity
3 the Kantorovich-Wasserstein distance, ⇒ several analogues.
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Distances Trace distance

For probability distributions p, q over Ω, the total variation distance is

‖p − q‖TV =
1
2

∑
ω∈Ω

|p(ω)− q(ω)| ∈ [0,1],

Given a Markov kernel N = (N(ω, x))ω∈Ω,x∈X ,

‖(N†p)− (N†q)‖TV ≤ ‖p − q‖TV .

Dual representation:

‖p − q‖TV = sup
V⊆Ω

∑
ω∈V

p(ω)− q(ω).

(optimizer: V = {ω ∈ Ω : p(ω) > q(ω)})
We can further relax from sets to functions:

‖p − q‖TV = sup
a:Ω→[0,1]

∑
ω∈V

a(ω) (p(ω)− q(ω)) .
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Distances Trace distance

On a finite-dimensional quantum system H, given states ρ, σ ∈ S(H), one
defines their trace distance

Dtr(ρ, σ) =
1
2

tr|ρ− σ|

where |ρ− σ| is defined via spectral calculus on ρ− σ ∈ O(H).
It is a special case of p-Schatten norm

‖A‖p := tr[|A|p]1/p = tr[(A∗A)p/2]1/p.

If both ρ and σ are diagonal with respect to the same basis (|i〉)i∈I , i.e.,

ρ =
∑
i∈I

pi |i〉 〈i | , σ =
∑
i∈I

qi |i〉 〈i | ,

for classical probability densities (pi )i∈I , (qi )i∈I , then

Dtr(ρ, σ) = ‖p − q‖TV .

ρ = |ψ〉 〈ψ|, σ = |ϕ〉 〈ϕ| ∈ S(H) are pure states then,

Dtr(ρ, σ) =

√
1− |〈ψ|ϕ〉|2.
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Distances Trace distance

Dual representation

Dtr(ρ, σ) = sup
V<H

tr[1V (ρ− σ)] = sup
V<H

Pρ(V )− Pσ(V ),

and “relaxed” version

Dtr(ρ, σ) = sup
A∈O(H),σ(A)⊆[0,1]

(A)ρ − (A)σ.

Sketch of proof:

⇒ the triangle inequality and, for any quantum channel Φ†,

Dtr(Φ†(ρ),Φ†(σ)) ≤ Dtr(ρ, σ).

Examples: Dtr(trH [ρ], trH [σ]) ≤ Dtr(ρ, σ). ∀ρ, σ ∈ S(H ⊗ K ),

‖Pρ(X = ·)− Pσ(X = ·)‖TV ≤ Dtr(ρ, σ), for any X = (1Vx )x∈X .
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Distances Fidelity

The (squared) Hellinger distance between probability distributions p, q is

H2(p,q) =
1
2

∑
ω∈Ω

|
√

p(ω)−
√

q(ω)|2.

The Bhattacharyya coefficient is

BC(p,q) =
∑
ω∈Ω

√
p(ω)q(ω) ∈ [0,1],

so that
H(p,q) = 1− BC(p,q).

For every Markov kernel N,

H(N†p,N†q) ≤ H(p,q)

or equivalently
BC(N†p,N†q) ≥ BC(p,q).
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Distances Fidelity

In the quantum setting the analogues of H and BC have a natural
interpretation, in particular for pure states ρ = |ψ〉 〈ψ|.

The fidelity between ρ, σ ∈ S(H) is defined as

F (ρ, σ) =

(
tr[
√√

ρσ
√
ρ]

)2

.

The analogue of the Hellinger distance is the Bures metric

DB(ρ, σ)2 = 2
(

1−
√

F (ρ, σ)
)
,

For pure states ρ = |ψ〉 〈ψ|, σ = |ϕ〉 〈ϕ|, since
√
ρ = ρ,

F (ρ, σ) = |〈ψ|ϕ〉|2
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Distances Fidelity

Several equivalent ways to write the fidelity:

F (ρ, σ) = tr[
∣∣√ρ√σ∣∣2] =

1
2
(
tr[(ρ]1/2σ

−1)σ] + tr[(σ]1/2ρ
−1)ρ]

)
,

Fon any quantum channel Φ†,

F (Φ†(ρ),Φ†(σ)) ≥ F (ρ, σ),

The proof uses the variational representation

F (ρ, σ) = sup

{
|tr[X ]| : X ∈ L(H), such that M =

(
ρ X
X ∗ σ

)
≥ 0

}
.
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Distances Quantum optimal transport
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Distances Quantum optimal transport

The classical optimal transport problem (Monge-Kantorovich) searches
for the cheapest way to move two probability distributions p, q, with
respect to a displacement cost c.

The precise definition is given by the variational problem

W c(p,q) := inf
π∈C(p,q)

∑
x,y∈X

c(x , y)π(x , y),

where C(p,q) are the couplings between p, q, i.e., π = (π(x , y))x,y∈X ,

∀x , y ∈ X , 0 ≤ π(x , y) ≤ 1,∑
x∈X

π(x , y) = q(y),
∑
y∈X

π(x , y) = p(x).
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Distances Quantum optimal transport
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Distances Quantum optimal transport

We give a “dynamical” description via the conditional probabilities

N(x , y) = π(y |x) =
π(x , y)

p(x)
,

which define a Markov kernel such that N†p = q (a transport plan)

A further point of view is the dual formulation,

W c(p,q)

= sup

∑
x∈X

f (x)p(x) +
∑
y∈X

g(y)q(y) : f (x) + g(y) ≤ c(x , y) ∀x , y ∈ X

 .

When c(x , y) = d(x , y) is a distance the dual problem can be restricted
to 1-Lipschitz functions, i.e., the Kantorovich problem

W d (p,q) = sup
f is 1-Lip

{∑
x∈X

f (x) (p(x)− q(x))

}
.
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Distances Quantum optimal transport

Optimal transport is a fundamental problem in operation research and
combinatorial optimization, which in recent decades found applications in

PDE’s
Riemannian geometry
computer science
statistics and machine learning. . .

The first proposals for quantum optimal transport date back to the 1990’s
(Connes, Zyczkowski).

Recently, more formulations have been proposed: Agredo, Carlen-Maas,
Golse-Mouhot-Paul-Caglioti, . . . ).
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Distances Quantum optimal transport

OT via quantum couplings

This approach is considered by Golse, Mouhot, Paul and Caglioti.

Given a quantum system H, consider two copies H = H1 = H2, introduce
a cost operator as C ∈ O(H1 ⊗ H2), e.g. a sum of squares

C =
∑
i∈I

(Ai ⊗ 1H2 − 1H1 ⊗ Ai )
2.

Quantum couplings C(ρ, σ) are density operators Π ∈ S(H1 ⊗ H2) with

ρ = trH2 [Π], σ = trH1 [Π].

The optimal transport cost is

WC(ρ, σ) = inf
Π∈C(p,q)

tr[CΠ].
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Distances Quantum optimal transport

Many open questions: is
√

WC(ρ, σ) is an actual distance?

Given a quantum channel Φ†, determine how much it expands the cost:

WC(Φ†(ρ),Φ†(σ)) ≤ ‖Φ†‖WC WC(ρ, σ), for every ρ, σ ∈ S(H)?

This OT is used in the infinite-dimensional (CCR) setting to investigate
quantitatively semiclassical limits.

Dario Trevisan (UNIPI) 09/02/2023 25 / 33



Distances Quantum optimal transport

OT via quantum channels

With DePalma we proposed to use channels such that Φ†(ρ) = σ as
quantum plans. How to define a cost functional?

Consider the “sum of squares” case. In the classical case,∑
x,y∈X

c(x , y)π(x , y) =
∑
i∈I

∑
x,y∈X

(fi (x)− fi (y))2π(x , y)

=
∑
i∈I

∑
x∈X

f 2
i (x)p(x)−

∑
y∈X

f 2
i (y)− 2

∑
x,y∈X

fi (x)fi (y)π(x , y).

We rewrite using N(x , y) = π(y |x) instead of π,∑
x,y∈X

fi (x)fi (y)π(x , y) =
∑
x∈X

fi (x)p(x)(Nfi )(x).
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Distances Quantum optimal transport

As a quantum analogue of
∑

x∈X fi (x)p(x)(Nfi )(x), we propose

tr[Ai
√
ρΦ(Ai )

√
ρ] = tr[(

√
ρAi )

∗Φ(Ai )
√
ρ] = 〈√ρAi |Φ(Ai )

√
ρ〉 .

The full expression of the cost becomes

Cost(Φ, ρ, σ) =
∑
i∈I

tr[A2
i ρ] + tr[A2

i σ]− 2tr[Ai
√
ρΦ(Ai )

√
ρ].

We minimize with respect to quantum plans,

WP(ρ, σ) = inf
Φ†(ρ)=σ

Cost(Φ, ρ, σ).

An optimal plan between ρ and itself in the identity channel Φ = 1L(H) and

WP(ρ, σ) ≥ 1
2

(WP(ρ, ρ) + WP(σ, σ)) .

A modified triangle inequality holds:√
WP(ρ, τ) ≤

√
WP(ρ, σ) +

√
WP(σ, σ) +

√
WP(σ, τ).
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Distances Quantum optimal transport

Recalling the definition of the cost, inequality

WP(ρ, σ) ≥ 1
2

(WP(ρ, ρ) + WP(σ, σ)) ,

turns out to be equivalent to∑
i∈I

tr[Ai
√
ρΦ(Ai )

√
ρ] ≤ 1

2

∑
i∈I

tr[Ai
√
ρAi
√
ρ] + tr[Ai

√
σAi
√
σ]

for every plan Φ†(ρ) = σ.
Argue for each Ai = A. By Cauchy-Schwarz inequality,

tr[A
√
ρΦ(A)

√
ρ] = tr[(ρ1/4Aρ1/4)(ρ1/4Φ(A)ρ1/4)]

≤ 1
2

tr[A
√
ρA
√
ρ] +

1
2

tr[Φ(A)
√
ρΦ(A)

√
ρ]

By Lieb’s concavity theorem with t = 1/2,

tr[Φ(A)
√
ρΦ(A)

√
ρ] ≤ tr[A

√
Φ†(ρ)A

√
Φ†(ρ)].
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Distances Quantum optimal transport

OT via Lipschitz operators

In the classical case, we can use Kantorovich duality to define W d :

W d (p,q) = sup
f is 1-Lip

{∑
x∈X

f (x) (p(x)− q(x))

}
.

A similar strategy in the quantum setting dates back to Connes: define
first what are Lipschitz observables and obtain the cost via duality.
Recently, we proposed to consider the case of product systems

H =
⊗
i∈I

Hi ,

providing a quantum analogue of OT with respect to the Hamming
distance
Recall that on sets Πi∈IXi ,

dHam((xi )i∈I , (yi )i∈I) =
∑
i∈I

1{xi 6=yi}.
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Distances Quantum optimal transport

f : Πi∈IXi → R is (Hamming) 1-Lipschitz if and only if, for every i ∈ I,

|f (x)− f (y)| ≤ 1

whenever x , y differ only at the coordinate i (write x ∼i y ).

Equivalently, define the oscillation at i ∈ I as

∂i f = sup
x∼i y
|f (x)− f (y)| = 2 inf

gi
sup

x
|f (x)− gi (x)|

where gi does not depend upon the coordinate i . Then,

‖f‖Lip = max
i∈I

∂i f .
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Distances Quantum optimal transport

On a product system H =
⊗

i∈I Hi , for every i ∈ I and observable
A ∈ O(H), define

∂iA = sup

2 ‖A−Gi ⊗ 1Hi‖∞ : Gi ∈ O(
⊗
j 6=i

Hj )

 ,

The quantum Lipschitz constant of A ∈ O(H) is

‖A‖L := max
i∈I

∂iA.

The quantum Wasserstein distance of order 1 between ρ, σ ∈ S(H) is

‖ρ− σ‖W1 = sup {tr[A(ρ− σ)] : ‖A‖L ≤ 1}
= sup {(A)ρ − (A)σ : ‖A‖L ≤ 1}
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Distances Quantum optimal transport

Back to the classical case, forget about the product structure (i.e.,
considers the set X =

⊗1
i=1 X a single factor): then the Hamming

distance is the trivial distance and

W dtrivial (p,q) = ‖p − q‖TV .

Since
1{x 6=y} ≤

∑
i∈I

1{xi 6=yi} ≤ |I|1{x 6=y},

this leads to a comparison between OT distances.
Also in the quantum case, we can compare

Dtr(ρ, σ) ≤ ‖ρ− σ‖W1 ≤ |I|Dtr(ρ, σ).
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Distances Quantum optimal transport

For product states ρ = ⊗i∈Iρi , σ = ⊗i∈Iσi , then

‖ρ− σ‖W1 =
∑
i∈I

Dtr(ρi , σi ).

Exercise: Compute the Wasserstein distance of order 1 between any two
Bell states on the composite system H = C2 ⊗ C2, e.g.

ρ =
1
2

(|00〉+ |11〉) (〈00|+ 〈11|) ,

σ =
1
2

(|01〉+ |10〉) (〈01|+ 〈10|) .
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