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Quantum channels

A completely positive, trace preserving (CPTP) map ¢ : £L(H) — L(K) is also
called a quantum channel from the system H to K.

Theorem (Kraus representation of quantum channels)

Let H, K be finite dimensional quantum systems. Any quantum channel &1
from H to K can be represented via a family of Kraus operators:

of(A) =Y B(AB; forevery Ac L(H).
XEX

One has |X| < dim(H)dim(K).

Strategy: factorize the dual map ¢ : £(K) — £(H) via an auxiliary system H:
P(A) = U'n(A)U,
where U is an isometry and = is a s-homomorphism.
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Proof (sketch)
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Stinespring representation

Up to isomorphism, one can let

Q@ H=KxC*,
e W(A):A(X)]lcx,
Q U) =1v)®]|0).

This yields the Stinespring representation of the quantum channel:
®¥(p) = e [V (p®10) (0]) V'],

where V: H® CY — K @ C¥ is unitary.
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Complete positivity on C*-algebra

@ Alinear map ¢ : A — B between C*-algebras is CP if
d
PRICEN
ij=1
is positive for every ()¢, C A, (b))%, CB,d > 1.
@ It coincides with the previous notion when A = L(H), B = L(K).
@ ¢ isunital if (1 4) = 15.

@ A state n: A — C defines a CP unital map:
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Quantum Channels (conclusion) CP maps on C*-algebras

Repeating the proof of the Kraus representation theorem (with some
technicalities because of infinite dimensions!) yields the following:

Theorem (Stinespring dilation)

Let A be a C*-algebra and H be a Hilbert space. Given any CP unital map
¢ : A — B(H), there exist

Q a Hilbert space H,

Q anisometry U : H — H,

© a«-homomorphism = : A — B(H),
such that, for every a € A,

®(a) = Ur(a)U,

and 3
{r(@)Uy : ae€ A,p € H} CH isdense.

Such a triple (H, U, ) is unique up to isomorphisms.
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The GNS construction

When applied to ®(a) = n(a) for a state n : A — C it yields the following
Theorem (Gelfand-Naimark-Segal)

Let A be a C*-algebra and letn : A — C be a state. Then, there exists
@ a Hilbert space H,
© a unit norm vector |) € H,
©Q and a x-homomorphism « : A — B(H)

such that, for every a € A,

n(a) = (Ylr(a)y),

and {m(a) [1)} .4 € H is dense.
Such a triple is unique up to isomorphisms.
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Quantum Channels (conclusion) Quantum Markov semigroups

@ By composing a quantum channel ¢ from H into itself, one obtains the
analogue of a Markov chain evolution

PO, Cb(po), ¢2(p)7 Cbs(p), s

@ For ®(p) = UpU* with U unitary, it is the analogue of a discrete-time
dynamical system.

@ Continuous-time dynamics are described by quantum Markov
semigroups (!)>o:
@ for every t > 0, &' is a quantum channel from H into itself,
© (semigroup law) for every s, t > 0, ®'dS = ST,
© (strong continuity) for every A € L(H), t — ®!(A) is continuous.
@ The generator L is defined as:

@ If His finite-dimensional, L is a bounded operator with an explicit
representation (the Lindblad form).
@ Stone’s theorem describes the generators of semigroups induced by
unitary maps:
L(A) = —i[H, A]
for a suitable Hamiltonian H (self-adjoint but possibly unbounded).
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Inequalities Uncertainty inequalities

@ Recall that that two compatible measurements can be performed in any
order and yield observed outcomes with well-defined joint probabilities.

@ Uncertainty inequalities quantify how much this cannot be done for
incompatible measurements.

@ Usually they are expressed as a lower bound on the product of the

standard deviations for uncompatible observables:

op(X)o,(Y) > L,
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Commutator and anti-commutator

@ Given X, Y € L(H), define the commutator and anti-commutator as

[X,Y]=XY - YX  {X,Y}=XY+YX,

@ Notice that ’ ’
XY = 5 {X,Y}+ E[X’ Y].

@ Both are bilinear expressions with respect to X and Y, and satisfy

X YT =[Y", X = =[X5 Y7, {X Y} ={X", Y}

@ Hence, if X, Y € O(H) are observables, then {X, Y},i[X, Y] € O(H).
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Covariance and commutation
@ Given p € S(H), with the notation (X), = tr[Xp], write
X=X-X)1ny, Y=Y—(Y),1n.

@ Define the covariance between X and Y as
1

Cov,(X,Y) = 2({)"(, ?})p.

@ Define the commutation

1,70 ¢ 1,
Com,(X, ¥) = 5(i [X. ¥]) = 51X, YD),
@ Notice the identity

Cov,(X, Y) —iCom,(X,Y) = tu[XYp]. (1)
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Uncertainty inequality in matrix form

@ Given (Xj)i=1,..n € O(H), introduce the two matrices
Cov,,, Com, € R"™",

given by
Cov, j = Cov,(Xj, Xj), Com, ;= Com,(Xj, Xj).

@ Notice that Cov, is symmetric, Com, is anti-symmetric.
@ The following inequalities hold:

Cov, > £iCom,,.

@ Proof:
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Schrddinger-Robertson uncertainty relation

@ Specializeton=2,i.e,,

( Cov,(X,X) Covy(X.Y) ) N ( 0 Com, (X, Y) )

Cov,(X,Y) Cov,(Y,Y) —Com,(X,Y) O

@ Equivalently

(5% % ) 2o

14
where b = Cov, (X, Y) —iCom,(X, Y).
@ Taking the determinant, we obtain

a2(X)a2(Y) > |b]* = |Cov,(X, Y)? +|Com,(X, Y)[.
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Inequalities Monotonicity inequalities
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Inequalities Monotonicity inequalities

@ Recall that quantum channels correspond to Markov kernels (N(w, -))xex:
we investigate analogues of standard functional inequalities.

@ Example: since N(w, ) is a probability density, given f : X — C,
Cauchy-Schwarz inequality yields

((NF)(w)|? < N(|f*)(w).
@ Question: does it hold
S(A) P(A) < d(A*A)

for CP unital maps ¢ : £(H) — £(H) and A € £(H)?
@ The above indeed holds and is called Kadison-Schwarz inequality.
@ To prove it, we use that  is CP and apply ® @ 1 (cz) to

AA A
M_<A ]1H)'

But why it is positive?
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A general criterion for positivity

Lemma

Let H be a finite dimensional Hilbert space, X, Y € O(H), K € L(H) with Y
positive and invertible. Then,
X K
M= (e ¥)

is positive if and only if its Schur complement
X — KY7'K* € O(H)

is positive.
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Inequalities Monotonicity inequalities

@ M s positive if and only if, for every pair |1o), |11) € H,

(Y| X1bo) + (11 |K*tbo) + (vo| K1) + (¥1] Y1) > 0. (2)

@ Assume that M is positive:

@ Viceversa, assume that the Schur complement is positive:
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Proof of Kadison-Schwarz inequality

@ The operator
A*A A*
we (488,
is positive since A*A— A*1,'A=0.
© By complete positivity,

< D(AA) B(AT) ) ~o.

o(A) 1

(also using (1) = 1p)
@ Use again the criterion to conclude.
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Inequalities Monotonicity inequalities

@ Beware: many “natural” inequalities valid for functions do not extend to
operators, e.g.
0<A<B = A<B

@ [t holds however
0<A<B = A'>B"

Proof:

@ Moreover,
0<A<B = +VA<VB.

(the proof is elementary but not very illuminating, please check the
lecture notes)
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Operator geometric means

@ For t € [0, 1], and positive operators A, B € O(H), define
AﬁtB _ A1 /2(A71/2BA71/2)tA1 /2’
@ If Aand B commute, then
AyB=A""1B"
(use that they can be simultaneously diagonalized)

@ For s, t €]0,1], one has

and
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Inequalities Monotonicity inequalities

Proposition (Monotonicity of operator means)

Let H, K be finite dimensional Hilbert spaces,
o let A A,B,B € O-(H),
@ and ¢ : L(H) — L(K) be CP.

Then, for any ¢ € [0, 1],

A>AB>B = A4B > A4B,

and
(A ®(B) > ®(At:B).
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Monotonicity inequalities
Proof (case t = 1/2)
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Monotonicity inequalities
Proof (general case)
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Inequalities Lieb’s concavity theorem

Theorem (Lieb’s concavity theorem, monotonicity version)

Let H, H be finite dimensional quantum systems,

e letd : L(H) — L(H)) be CP and unital
@ so that ®' is a quantum channel from H to H,

o let X, Y € O=(H) be positive, K € L(H).
Then, for every t € [0, 1],

a[d(K)* X ~'o(K) Y] < t[K* o (X)' Ko (V).
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Inequalities Lieb’s concavity theorem

Theorem (Lieb’s concavity theorem, monotonicity version)

Let H, H be finite dimensional quantum systems,

e letd : L(H) — L(H)) be CP and unital
@ so that ®' is a quantum channel from H to H,

o let X, Y € O=(H) be positive, K € L(H).
Then, for every t € [0, 1],

a[d(K)* X ~'o(K) Y] < t[K* o (X)' Ko (V).

In the case K = 14, we have ¢(14) = 1, hence the inequality becomes

Dario Trevisan (UNIPI) 03/02/2023

30/39



Remarks

@ The inequality
[T (XTIYD)] < o7 (X)) o (Y)Y
seems a Holder inequality p=1/(1 —t)and p’ = 1/t.
@ By monotonicity of operator means, we already have

(Xt Y) < & (X)8dT(Y),

@ But X and Y do not necessarily commute. The main idea is to move to a

“higher” level to partially restore commutativity.
@ The concavity version of Lieb’s theorem states that

(A, B) — tr[K* A"'KB']

is concave on O>q(H) x Oo(H). To deduce it from the monotonicity
version, use ®' = tre. on H ® C? with

(A O (B 0 (K O
(0 a) (o 8) x(o0 k)
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Inequalities Exercises
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Uncertainty inequality for Pauli operators

Consider a pure density operator p € S(C?) on a single qubit system.

@ Write explicitly the matrix uncertainty inequality for the Pauli operators, in
terms of the vector b = b(p) of the Bloch parametrization..

@ Investigate when equality may occur.

@ What about equality cases in the Schrédinger-Robertson inequality for a
pair of Pauli operators?
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Lieb-Ruskai monotonicity theorem

Let H, H be finite-dimensional quantum systems,
Q letd: £(H) — L(H) be CP,
Q@ Ke L(H)

@ X € O-o(H) be positive and invertible such that ®(X) is also invertible.

Then,
O(K)*O(X)"d(K) < d(K*X'K).
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A variant of the Schur complement lemma

Let H be a finite dimensional Hilbert space, X, Y € O (H), K € L(H). Then,
the operator M € O(H @ C?) represented by the block matrix

X K
(e v)

is positive if and only if there exists Z € £(H) with operator norm
1IZ|| <1, ie. Z*Z<1y

such that

K=vVXZVY.
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e Bl
Operator means with negative t

One can extend the definition of Af;B for any t € R, provided that A,
B € O-(H) are positive and invertible. In turns out that monotonicity
inequalities hold true also in the range t € [-1,0] U [1, 2] (with a reverse
inequality than the case t € [0, 1].

@ Show that, for every A, B,C € O~ (H), s, t € R,
CisA<CHB < Ci_sA>Ci A
@ Show that, for t € [0, 1], given A, B, T € O~ (H), the inequality
Al B<T
is equivalent to the following condition:

there exists W € O(H) such that Ag;:B > W and M = ( Z\_ ﬁv ) > 0.
(Hint: write At;B = At_1(At:B) and notice that A;B = AB='A.)
© Deduce that, for t € [-1,0] U [0, 1] and for every CP map
¢ : L(H) — L(K) and A, B € O~ (H), the inequality

®(A4:B) > ®(A)f:®(B)
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Lieb’s theorem for negative exponents

Let H, H be finite dimensional quantum systems, let

@ ®: L(H) — L£(H)) be a quantum channel from H to H

@ X, Y € O-(H) be positive,

@ Ke L(H)

@ and t € [0, 1].
Then,

tr[d(K)* (X)) Td(K)o(Y) '] < u[K* X IKYT],

provided that ®(X), ®(Y) are invertible.
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