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Infinite dimensional systems

The definitions (states, measurements and observables) are mathematically
elementary for we are restricted to finite dimensional quantum systems H.
(Heisenberg and) Schrédinger instead considered:

@ the quantum system of a single particle on a line is H = L2(R, dx),
@ state vectors are wave functions |) = (¢¥(X))xer

@ the fundamental observables are the pair position @ and momentum P:

(QU)(X) = xb(x),  (P)(x) = ~19 (x)

@ The crucial property they satisfy is the canonical commutation relation
(CCR):

@ But these operators are not well-defined for every ¢ € L3(R, dx)! hence
the need of more general spectral theorems.
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A different route: observables first!

@ One can instead search first for a family of bounded operators containing
all the useful information about P and Q and argue then by duality to
obtain the states of the quantum system.

@ The classical analogy is that probability distributions (states) can be
defined via Riesz theorem, as certain linear functionals over continuous
functions on a compact topological space (observables).

@ |t turns out that the correct structure of such an abstract family is that of a
C*-algebra A.
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General definition

A C*-algebra A is defined as follows:
@ Ais a complex Banach space,

@ with an additional product operation (a, b) — ab that yields a structure of
Banach algebra, i.e., itis

associative,

distributive with respect to the addition operation,

there exists an identity element 1

the norm satisfies ||ab|| < ||a|| ||b|| for every a,b € A

®© 6 06 ¢

@ and with an additional anti-linear map x : A — A, a— a*, thatis
@ aninvolution (a")* = a
o satisfying (ab)* = b*a*,fora,be A
@ and the C*-identity holds:
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Postulates of Quantum Mechanics (conclusion) C*-algebras approach

@ If Ais a Banach algebra and * is an enjoys all the properties but the
C*-identity, it is enough to prove that

2
la"al > [la]]” -

@ A x-homomorphism between C*-algebras A, Bisamap 7 : a— 7w(a)
which is well-behaved with respect to all the operations, i.e. it is a ring
homomorphism and =(a*) = =(a)*.

@ Two C*-algebras as isomorphic if there exists an invertible
x-homomorphism between them.
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Postulates of Quantum Mechanics (conclusion) C*-algebras approach

@ A= C(K;C) (with K compact Hausdorff) is a C*-algebra:

@ The space of d x d complex matrices A = C?*9, endowed with the
natural matrix sum and product operations, the matrix norm

|Av]® (v|A*Av)

vecn oy VI[P vecagoy  (VIV)

1A =

and A* being the conjugate transpose of A, is a C*-algebra.

© The space of linear bounded operators A = B(H) on a complex Hilbert
space H endowed with the operator norm and the adjoint A — A* is also
a C*-algebra.
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Further definitions

We say thatae A is
@ self-adjoint if a = a*,
@ positive if there exists b € A such that a = b*b,
@ unitary if aa* = a*a= 1.

The spectrum of ais A € C such that a — A1 is not invertible (w.r.t. the product
operation).

@ Self-adjoint a € A such that o(a) C [0, o) coincide with positive
elements, i.e., one can represent a = b*b for some b € A (this is not
trivial to prove).
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The C*-algebra axiomatization of quantum mechanics

We reverse the order from the elementary approach:

@ observables for a quantum system are the self-adjoint elements in a
C*-algebra A

@ states are then defined as continuous linear functionals

n: A—C
that are
@ positive, i.e. n(a) > 0 for every positive a = b*b
e and n(1) = 1.

@ Elementary quantum systems H are recovered: let A = £(H) and
n(A) = tr[Ap], for a density operator p € S(H).

@ Any C*-algebra is isomorphic to a sub-algebra of 5(H) for some Hilbert
space (Gelfand-Naimark-Segal construction).
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How to describe the CCR with a suitable C*-algebra?

@ instead of unbounded Q and P, we introduce the Weyl operators
(W(r,s))(r.s)cre formally given by

W(r,s) = esq="P),
@ A rigorous definition as bounded operator on H = L2(R, dx) is

W(r,s)u(x) = &2y (x ).

Dario Trevisan (UNIPI) 27/01/2023 11/50



Postulates of Quantum Mechanics (conclusion) C*-algebras approach

@ The Weyl algebra is the C*-algebra generated by the Weyl operators (as
a closed sub-algebra of B(L3(R, dx))).

@ From the definition:
W(r,s)" = W(-r,—5s)

and
W(r1,51)W(r2, sp) = e 1% 202 W(ry + 1y, 81 + 52),

which encodes the CCR.
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Characteristic function of a state

The Weyl algebra has a rich structure and its study would require an entire
course on its own.

@ Given a state n on the Weyl algebra, its characteristic function is
R? 5 (r,8) — n(W(r,s)) € C.
@ A state 5 is a quantum (bosonic) Gaussian state if its characteristic
function is the exponential of a quadratic polynomial in the variables r, s
(with complex coefficients).

Any |¢) € L?(R; dx) with unit norm induces a state on the Weyl algebra via

rs)f/w W(r, s)w(x)dx

Question: for which |¢) the induced state is Gaussian?
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Postulates of Quantum Mechanics (conclusion) C*-algebras approach

Exercises

Exercise(CCR cannot be realized by bounded operators)

Prove that one cannot define two operators Q, P € L(H) satisfying the CCR
on a finite dimensional Hilbert space H,

or ever as bounded operators, Q, P € B(H) on a general Hilbert space H.

(Hint: compute [Q, P"] and consider its operator norm as n — o)
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Quantum Channels Tensor products

@ Consider finite dimensional Hilbert spaces H, K.
@ Write £L(H; K) for the space of linear operators A: H — K.
@ The adjoint operator A* : K — H is defined by requiring

(plA™) = (Agly), forevery [¢) € K, ¢ € H.
@ Write £L(H) = L(H; H) endowed with the Hilbert-Schmidt scalar product
(A|B) = u[A*B], for|A),|B) € L(H).

@ Anisometry U : H — K is a linear map preserving the norms (or
equivalently the scalar products)

(Up|Utp) = (plv), forevery |¢),|v) € H,

or equivalently, such that U*U = 14.
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Tensor product

@ H® K: linear space generated by elementary tensors |¢) ® |¢)
quotiented so that the expressions become bi-linear, e.g.,

@ Dirac’s notation: |¢) ® [v)) = |, ¥).
@ Scalar product:

(0 ® toliwo @ o) = (polp1) (Yolthr) -
@ dim(H ® K) = dim(H)dim(K) with orthonormal basis is given by
(\i,j>)iel,jeJ =(Ih® |/'>)ie/,jeJ

for orthonormal bases (|/))ic; € H, (|)))jcs € K.
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Composite systems

@ Tensor products are used in quantum mechanics to represent composite
systems made by “joining” two quantum systems H, K.

@ States on the composite system H ® K are represented by density
operators p € S(H® K),

@ Observables are self-adjoint operators A € O(H ® K).

@ Let us recall some basic facts on operators M € £L(H @ K), and in
particular the partial trace operation.
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Tensor product of operators

@ The tensor product extends to operators: for A € L(H; H), B € L(K; K),
the operator A® B € L(H ® H; H® K) is defined as

(A® B)|p) @ |) = [Ap) @ |BY)

@ Onehas (A B)* =A*®@B*,hence Ao Be O(H® K) if Ac O(H) and
B € O(K).

@ 0(A® B) = o(A) - o(B) (all possible pairwise products).

@ A® B > 0is positive if both A>0and B > 0
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Block matrix representation

@ Choosing orthonormal bases (|/))ic; C H, (|)))jes € K yields the
representation of any M € L(H @ K):

M= " Mjkeli.j) k., (1)
ij,k,e
with Mj ke = (i ® jIM(k ® £)).
@ For fixed jand ¢ € J, set

Mo = Mje i) (k| € L(H).

ik
@ M is identified with the block matrix
M= (M;.0); 4ey-

@ If K = C9, such block matrix representation is always understood with
respect to the computational basis, e.g. M € L(H @ C?) is represented as

Moo Mos >
M= .
( Mo M,
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Partial trace

@ On £L(H ® K), the partial trace over H is the only operator
try : L(H® K) = L(K), M try[M]
such that, for every A € £(K), one has
r[A ey [M]] = t[(1y @ A )M].

@ try is the adjoint of the partial tensor product operation A+— 15 ® A:

@ By representing M a block matrix one has the formulas

@ IfMe O(H®K) sois try[M] € O(K)
@ If M=peS(H® K), then try[p] € S(K), the reduced density operator.
@ Similarly, one defines trx[M].
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Separable and entangled states

@ We say that p € S(H ® K) is separable if it can be represented as a
convex combination
p = Z Pxpx @ ox,
xeX
with px € S(H), ox € S(K) and (px)xex a classical probability distribution
over a finite set X.

@ States p € S(H ® K) that are not separable are called entangled.
Entangled states have no classical analogues (any classical joint
probability distribution is “separable”). Example (Bell state):
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Quantum Channels Markov kernels

@ A Markov kernel from Q to X (finite sets) is N = (N(w, -))weq such that

N(w,x) € [0,1] forallx e X,and ) N(w,x)=
XEX
@ Two natural operations associated to a kernel N:

Q gvenf: X - C:
=Y f(X)N(w, x

Q givenp: Q — C:
PIX) = 3 pIN: ).

Both operations are linear and dual to each other.
@ Both N and N are positive, i.e. and

N(1g) =1x. Y Ni(p)(x) =) p(w)

xXex weN

e N maps probability distributions on Q to probability distributions on X
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Quantum Channels Kraus representation
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Non-sharp measurements

How build an analogue of N on a quantum system H?

First strategy:
@ replace each N(-, x) with an observable N, € O(H) such that

0< N, <1y andZNX:]lH.
XEX

@ These are (elementary) positive operator valued measure (POVM).

@ We are relaxing the sharp indicator observables 1, associated to a
measurement X = (1, )xex With the operators X = (Nx)xex-

@ How to transform p € S(H)?

pr > /Nepy/Ny.

XeX
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Unitary evolutions

What about kernels N between two different systems H, K?

Second strategy:

@ Anisometry U : H — K “embeds” the state vector |¢)) on H into U |¢) on
K. On density operators:

p € S(H) — UpU* € S(K).

@ When H = K, this actually describes the evolution of closed quantum
system (postulate). All the other transformations are evolutions of open
quantum systems.

@ Example: convex combinations over a family of isometries (Uy)xex
allows to define

prr Y peUipU;.

xeX
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Kraus representation

@ We consider transformations ¢ : £(H) — L(K) of the type

®(A) = > B;AB;,

xeX
where (By)xex € L(K; H) is a family of Kraus (or noise) operators.
@ The dual ¢ : £(K) — L(H) is represented by the family of adjoints:
@ ¢ (and o) is positive, i.e.,
@ ¢ is unital, ®(1y) = 1, if and only if

@ & is unital if and only if ¢ is trace-preserving, tr[®T(A)] = tr[A].
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Examples

@ Consider ¢ : £(C)(= C) — L(H) given by
®(\) = Aly.

Clearly, it is positive and unital. we can write

for a given orthonormal basis (|x))xex-

@ The dual map ¢ : £L(H) — £(C) is then represented as

which is the trace map.
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Quantum Channels Kraus representation

Maps ¢ represented by Kraus operators are stable
@ with respect to linear combinations (with positive coefficient)
@ with respect to composition.

Lemma
Let H, K be finite dimensional Hilbert spaces and let
o L(K) — L(H)
be a x-homomorphism, i.e., ¢ is linear and
O(lk) =1y, P(AB) = d(A)d(B), P(A*) = d(A)*.

Then, there exist Kraus operators (Bx)xcx C L(H; K) representing . One
has in particular |X| = dim(H)/dim(K).
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Sketch of proof
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Quantum Channels Complete positivity
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Quantum Channels Complete positivity

Question: is any linear and positive map ¢ : £(H) — L(K) represented by a
suitable family of Kraus operators?

@ This is not the case in general.
@ & : L(H) — L(K) is completely positive (CP) if, for every d € N,

®® 1oy : L(H® CY) — L(K ® CY) (2)
is positive.
@ By representing M € £(H @ CY) as block operator
M = (Mi/)ff,-:1 C L(H),

we have that
O @ Lca(M) = (O(My))] =4 S L(K).

CP means:
M = (Mij),q:j:1 >0= (¢(Mi'))/€{j:1'
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@ Writing M = A*A, with

A= ZA,/®|I Z

ij=1 ij=1
CP means:
d d-—1
O @ Iy (A A) =D > O(ALA) i) (] > 0.
i,j=1k=0

@ We specialize to “rank-one” block operators A = Z]‘; A; ® [1) {j|, so that

Zch* (| > o.

hj=1
i.e., for every |w,->,q:1 C K, testing with v = ZL [vi) @ |iY,

d
WVIMY) = 3 (i 0(AT A)y) > 0

ij=1
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Quantum Channels Complete positivity

Some elementary facts about CP maps:
@ Any ¢g(A) = B*AB with B € L(K; H) is CP, since
¢B ® ﬂﬁ(cd) - q)B@]lcd.
@ linear combinations with positive coefficients of CP maps are CP
© the dual of a CP map is also CP, since ¢! @ 1 7(cay = (¢ ® llﬁ(cd))f,
© composition of CP maps is also CP.
Consequences:

@ any ¢ represented via Kraus operators in CP
@ The trace map is CP, hence the partial trace

g, = r ® Legry)  L(Hy @ H2) = L(H2).
as well as the dual “partial tensoring” map

Ac L(H)— A®1p, € L(H @ Ha).
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Quantum channels

A completely positive, trace preserving (CPTP) map ¢ : £L(H) — L(K) is also
called a quantum channel from the system H to K.

Theorem (Kraus representation of quantum channels)

Let H, K be finite dimensional quantum systems. Any quantum channel &1
from H to K can be represented via a family of Kraus operators:

of(A) =Y B(AB; forevery Ac L(H).
XEX

One has |X| < dim(H)dim(K).

Strategy: factorize the dual map ¢ : £(K) — £(H) via an auxiliary system H:
P(A) = U'n(A)U,
where U is an isometry and = is a s-homomorphism.
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Proof (sketch)
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Quantum Channels Complete positivity
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Stinespring representation

Up to isomorphism, one can let

Q@ H=KxC*,
e W(A):A(X)]lcx,
Q U) =1v)®]|0).

This yields the Stinespring representation of the quantum channel:
®¥(p) = e [V (p®10) (0]) V'],

where V: K@ CY — K @ C* is unitary.
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Quantum Channels CP maps on C* -algebras
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Complete positivity on C*-algebra

@ Alinear map ¢ : A — B between C*-algebras is CP if
d
PRICEN
ij=1
is positive for every ()¢, C A, (b))%, CB,d > 1.
@ It coincides with the previous notion when A = L(H), B = L(K).
@ ¢ isunital if (1 4) = 15.

@ A state n: A — C defines a CP unital map:
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Quantum Channels CP maps on C* -algebras

Repeating the proof of the Kraus representation theorem (with some
technicalities because of infinite dimensions!) yields the following:

Theorem (Stinespring dilation)

Let A be a C*-algebra and H be a Hilbert space. Given any CP unital map
¢ : A — B(H), there exist

Q a Hilbert space H,

Q anisometry U : H — H,

© a«-homomorphism = : A — B(H),
such that, for every a € A,

®(a) = Ur(a)U,

and 3
{r(@)Uy : ae€ A,p € H} CH isdense.

Such a triple (H, U, ) is unique up to isomorphisms.
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The GNS construction

When applied to ®(a) = n(a) for a state n : A — C it yields the following
Theorem (Gelfand-Naimark-Segal)

Let A be a C*-algebra and letn : A — C be a state. Then, there exists
@ a Hilbert space H,
© a unit norm vector |) € H,
©Q and a x-homomorphism « : A — B(H)

such that, for every a € A,

n(a) = (Ylr(a)y),

and {m(a) [1)} .4 € H is dense.
Such a triple is unique up to isomorphisms.
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Quantum Channels Quantum Markov semigroups

@ By composing a quantum channel ¢ from H into itself, one obtains the
analogue of a Markov chain evolution

PO, Cb(po), ¢2(p)7 Cbs(p), s

@ For ®(p) = UpU* with U unitary, it is the analogue of a discrete-time
dynamical system.

@ Continuous-time dynamics are described by quantum Markov
semigroups (!)>o:
@ for every t > 0, &' is a quantum channel from H into itself,
© (semigroup law) for every s, t > 0, ®'dS = ST,
© (strong continuity) for every A € L(H), t — ®!(A) is continuous.
@ The generator L is defined as:

@ If His finite-dimensional, L is a bounded operator with an explicit
representation (the Lindblad form).
@ Stone’s theorem describes the generators of semigroups induced by
unitary maps:
L(A) = —i[H, A]
for a suitable Hamiltonian H (self-adjoint but possibly unbounded).
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Bell states

The simplest example of entangled states is provided by so-called Bell states
in a two-qubit composite system H = C? ® C?, defined as follows:

|oF) = (10,0) +[1,1)) /vV2, [o7) =(]0,0) +[1,1)) /V2,
lwh) =(|0,1) +[1,0)) /v2, [w7)=(|0,1)—[1,0))/v2.

@ Show that the four state vectors provide an orthonormal basis for the
system.

@ Show that each of the four pure states corresponding to the Bell vectors
is not separable, hence entangled.
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Tensor product of Pauli operators

Consider the Pauli operators oy, o, on a single-qubit system C2.

@ Find the matrix representation (with respect to the computational basis in
C* = C? ® C?) of the operators

A=0x®0,, and B=o0,®oy.

@ Prove that A, B are self-adjoint operators and compute their spectra.

© Compute [A, B].

© Assume that the system is prepared in the Bell state |®*). What is the
probability of observing 1 if we measure A?
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Partial transpose

Given finite-dimensional quantum systems H, K and an operator A € L(H; K)
define its transpose operator as A™ : L(K*) — L(H*) as

7(A) : (el = T(A)({pl) = (ol A,
i.e., 7(A)({¢]) = (p| Ais the linear functional on H given by
(Pl A=) = (ol AY) .

@ Fix orthonormal bases (|))ic; € K and (|}))jes € H. Write the associated
matrix representation

A= (Apicrjes = ((1A))ictjed

and compare it with the matrix representation of A™ with respect to the
bases ((il)ics € K*, ((i))jes C H.

© Prove that A 7(A) is linear, and if A € O(H) is an observable, then
A™ € O(H*), and moreover if A > 0 then 7(A) > 0 (i.e., the map 7 is
positive).

© Show that already if H = K = C2, then T is not completely positive (the
partial transpose T ® 1 .2y is not a positive map).
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PPT criterion

Let H, K be finite dimensonal quantum systems. Denoting by 7 : L(H) —
L(H*) the transpose map (defined in the previous exercise), prove that

@ if p € S(H ® K) is separable, then its partial transpose 7 ® 1.k is a
density operator (in particular, it is positive).

@ This motivates the so-called positive partial trace (PPT) sufficient criterion
for entanglement: a state p € S(H ® K) is entangled if its partial
transpose 7 ® 1.(k)(p) is not positive.

@ Do Bell states satisfy the PPT criterion?
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