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Postulates of Quantum Mechanics (conclusion) C∗ -algebras approach

Infinite dimensional systems
The definitions (states, measurements and observables) are mathematically
elementary for we are restricted to finite dimensional quantum systems H.
(Heisenberg and) Schrödinger instead considered:

the quantum system of a single particle on a line is H = L2(R,dx),

state vectors are wave functions |ψ〉 = (ψ(x))x∈R

the fundamental observables are the pair position Q and momentum P:

(Qψ)(x) = xψ(x), (Pψ)(x) = −i
dψ
dx

(x).

The crucial property they satisfy is the canonical commutation relation
(CCR):

But these operators are not well-defined for every ψ ∈ L2(R,dx)! hence
the need of more general spectral theorems.
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Postulates of Quantum Mechanics (conclusion) C∗ -algebras approach

A different route: observables first!

One can instead search first for a family of bounded operators containing
all the useful information about P and Q and argue then by duality to
obtain the states of the quantum system.

The classical analogy is that probability distributions (states) can be
defined via Riesz theorem, as certain linear functionals over continuous
functions on a compact topological space (observables).

It turns out that the correct structure of such an abstract family is that of a
C∗-algebra A.
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Postulates of Quantum Mechanics (conclusion) C∗ -algebras approach

General definition

A C∗-algebra A is defined as follows:
A is a complex Banach space,

with an additional product operation (a,b) 7→ ab that yields a structure of
Banach algebra, i.e., it is

associative,
distributive with respect to the addition operation,
there exists an identity element 1
the norm satisfies ‖ab‖ ≤ ‖a‖ ‖b‖ for every a, b ∈ A

and with an additional anti-linear map ∗ : A → A, a 7→ a∗, that is
an involution (a∗)∗ = a
satisfying (ab)∗ = b∗a∗, for a, b ∈ A
and the C∗-identity holds:
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Postulates of Quantum Mechanics (conclusion) C∗ -algebras approach

Remarks

If A is a Banach algebra and ∗ is an enjoys all the properties but the
C∗-identity, it is enough to prove that

‖a∗a‖ ≥ ‖a‖2
.

A ∗-homomorphism between C∗-algebras A, B is a map π : a 7→ π(a)
which is well-behaved with respect to all the operations, i.e. it is a ring
homomorphism and π(a∗) = π(a)∗.

Two C∗-algebras as isomorphic if there exists an invertible
∗-homomorphism between them.
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Postulates of Quantum Mechanics (conclusion) C∗ -algebras approach

Examples
1 A = C(K ;C) (with K compact Hausdorff) is a C∗-algebra:

2 The space of d × d complex matrices A = Cd×d , endowed with the
natural matrix sum and product operations, the matrix norm

‖A‖2 = sup
v∈Cd\{0}

‖Av‖2

‖v‖2 = sup
v∈Cd\{0}

〈v |A∗Av〉
〈v |v〉

and A∗ being the conjugate transpose of A, is a C∗-algebra.

3 The space of linear bounded operators A = B(H) on a complex Hilbert
space H endowed with the operator norm and the adjoint A 7→ A∗ is also
a C∗-algebra.
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Postulates of Quantum Mechanics (conclusion) C∗ -algebras approach

Further definitions

We say that a ∈ A is
self-adjoint if a = a∗,
positive if there exists b ∈ A such that a = b∗b,
unitary if aa∗ = a∗a = 1.

The spectrum of a is λ ∈ C such that a− λ1 is not invertible (w.r.t. the product
operation).

Self-adjoint a ∈ A such that σ(a) ⊆ [0,∞) coincide with positive
elements, i.e., one can represent a = b∗b for some b ∈ A (this is not
trivial to prove).
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Postulates of Quantum Mechanics (conclusion) C∗ -algebras approach

The C∗-algebra axiomatization of quantum mechanics
We reverse the order from the elementary approach:

1 observables for a quantum system are the self-adjoint elements in a
C∗-algebra A

2 states are then defined as continuous linear functionals

η : A 7→ C

that are
positive, i.e. η(a) ≥ 0 for every positive a = b∗b
and η(1) = 1.

Elementary quantum systems H are recovered: let A = L(H) and

η(A) = tr[Aρ], for a density operator ρ ∈ S(H).

Any C∗-algebra is isomorphic to a sub-algebra of B(H) for some Hilbert
space (Gelfand-Naimark-Segal construction).
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Postulates of Quantum Mechanics (conclusion) C∗ -algebras approach

The Weyl algebra

How to describe the CCR with a suitable C∗-algebra?

instead of unbounded Q and P, we introduce the Weyl operators
(W (r , s))(r ,s)∈R2 formally given by

W (r , s) = ei(sQ−rP).

A rigorous definition as bounded operator on H = L2(R,dx) is

W (r , s)ψ(x) = eis(x−r/2)ψ(x − r).
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Postulates of Quantum Mechanics (conclusion) C∗ -algebras approach

The Weyl algebra is the C∗-algebra generated by the Weyl operators (as
a closed sub-algebra of B(L2(R,dx))).

From the definition:
W (r , s)∗ = W (−r ,−s)

and
W (r1, s1)W (r2, s2) = e−i(r1s2−r2s1)/2W (r1 + r2, s1 + s2),

which encodes the CCR.
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Postulates of Quantum Mechanics (conclusion) C∗ -algebras approach

Characteristic function of a state

The Weyl algebra has a rich structure and its study would require an entire
course on its own.

Given a state η on the Weyl algebra, its characteristic function is

R2 3 (r , s) 7→ η(W (r , s)) ∈ C.

A state η is a quantum (bosonic) Gaussian state if its characteristic
function is the exponential of a quadratic polynomial in the variables r , s
(with complex coefficients).

Any |ψ〉 ∈ L2(R; dx) with unit norm induces a state on the Weyl algebra via

η(W (r , s)) =

∫
R
ψ̄(x)W (r , s)ψ(x)dx .

Question: for which |ψ〉 the induced state is Gaussian?

Dario Trevisan (UNIPI) 27/01/2023 13 / 50



Postulates of Quantum Mechanics (conclusion) C∗ -algebras approach

Exercises

Exercise(CCR cannot be realized by bounded operators)

Prove that one cannot define two operators Q, P ∈ L(H) satisfying the CCR
on a finite dimensional Hilbert space H,

or ever as bounded operators, Q, P ∈ B(H) on a general Hilbert space H.

(Hint: compute [Q,Pn] and consider its operator norm as n→∞)
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Quantum Channels Tensor products

Consider finite dimensional Hilbert spaces H, K .
Write L(H; K ) for the space of linear operators A : H → K .
The adjoint operator A∗ : K → H is defined by requiring

〈ϕ|A∗ψ〉 = 〈Aϕ|ψ〉 , for every |ψ〉 ∈ K , ϕ ∈ H.

Write L(H) = L(H; H) endowed with the Hilbert-Schmidt scalar product

〈A|B〉 = tr[A∗B], for |A〉 , |B〉 ∈ L(H).

An isometry U : H → K is a linear map preserving the norms (or
equivalently the scalar products)

〈Uϕ|Uψ〉 = 〈ϕ|ψ〉 , for every |ϕ〉 , |ψ〉 ∈ H,

or equivalently, such that U∗U = 1H .

Dario Trevisan (UNIPI) 27/01/2023 16 / 50



Quantum Channels Tensor products

Tensor product

H ⊗ K : linear space generated by elementary tensors |ϕ〉 ⊗ |ψ〉
quotiented so that the expressions become bi-linear, e.g.,

Dirac’s notation: |ϕ〉 ⊗ |ψ〉 = |ϕ,ψ〉.
Scalar product:

〈ϕ0 ⊗ ψ0|ϕ0 ⊗ ψ0〉 = 〈ϕ0|ϕ1〉 〈ψ0|ψ1〉 .

dim(H ⊗ K ) = dim(H)dim(K ) with orthonormal basis is given by

(|i , j〉)i∈I,j∈J = (|i〉 ⊗ |j〉)i∈I,j∈J

for orthonormal bases (|i〉)i∈I ⊆ H, (|j〉)j∈J ⊆ K .

Dario Trevisan (UNIPI) 27/01/2023 17 / 50



Quantum Channels Tensor products

Composite systems

Tensor products are used in quantum mechanics to represent composite
systems made by “joining” two quantum systems H, K .

States on the composite system H ⊗ K are represented by density
operators ρ ∈ S(H ⊗ K ),

Observables are self-adjoint operators A ∈ O(H ⊗ K ).

Let us recall some basic facts on operators M ∈ L(H ⊗ K ), and in
particular the partial trace operation.
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Quantum Channels Tensor products

Tensor product of operators

The tensor product extends to operators: for A ∈ L(H; H̃), B ∈ L(K ; K̃ ),
the operator A⊗ B ∈ L(H ⊗ H; H̃ ⊗ K̃ ) is defined as

(A⊗ B) |ϕ〉 ⊗ |ψ〉 = |Aϕ〉 ⊗ |Bψ〉

One has (A⊗ B)∗ = A∗ ⊗ B∗, hence A⊗ B ∈ O(H ⊗ K ) if A ∈ O(H) and
B ∈ O(K ).

σ(A⊗ B) = σ(A) · σ(B) (all possible pairwise products).

A⊗ B ≥ 0 is positive if both A ≥ 0 and B ≥ 0
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Quantum Channels Tensor products

Block matrix representation
Choosing orthonormal bases (|i〉)i∈I ⊆ H, (|j〉)j∈J ⊆ K yields the
representation of any M ∈ L(H ⊗ K ):

M =
∑

i,j,k,`

Mij,k` |i , j〉 〈k , `| , (1)

with Mij,k` = 〈i ⊗ j |M(k ⊗ `)〉.
For fixed j and ` ∈ J, set

Mj,` =
∑
i,k

Mij,k` |i〉 〈k | ∈ L(H).

M is identified with the block matrix

M = (Mj,`)j,`∈J .

If K = Cd , such block matrix representation is always understood with
respect to the computational basis, e.g. M ∈ L(H ⊗ C2) is represented as

M =

(
M00 M01
M10 M11

)
.
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Quantum Channels Tensor products

Partial trace

On L(H ⊗ K ), the partial trace over H is the only operator

trH : L(H ⊗ K )→ L(K ), M 7→ trH [M]

such that, for every A ∈ L(K ), one has

tr[A∗trH [M]] = tr[(1H ⊗ A∗)M].

trH is the adjoint of the partial tensor product operation A 7→ 1H ⊗ A:

By representing M a block matrix one has the formulas

If M ∈ O(H ⊗ K ) so is trH [M] ∈ O(K )

If M = ρ ∈ S(H ⊗ K ), then trH [ρ] ∈ S(K ), the reduced density operator.
Similarly, one defines trK [M].
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Quantum Channels Tensor products

Separable and entangled states

We say that ρ ∈ S(H ⊗ K ) is separable if it can be represented as a
convex combination

ρ =
∑
x∈X

pxρx ⊗ σx ,

with ρx ∈ S(H), σx ∈ S(K ) and (px )x∈X a classical probability distribution
over a finite set X .

States ρ ∈ S(H ⊗ K ) that are not separable are called entangled.
Entangled states have no classical analogues (any classical joint
probability distribution is “separable”). Example (Bell state):
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Quantum Channels Markov kernels

A Markov kernel from Ω to X (finite sets) is N = (N(ω, ·))ω∈Ω such that

N(ω, x) ∈ [0,1] for all x ∈ X , and
∑
x∈X

N(ω, x) = 1.

Two natural operations associated to a kernel N:
1 given f : X → C:

N(f )(ω) =
∑
x∈X

f (x)N(ω, x),

2 given p : Ω→ C:
N†(p)(x) =

∑
ω

p(ω)N(ω, x).

Both operations are linear and dual to each other.
Both N and N† are positive, i.e. and

N(1Ω) = 1X ,
∑
x∈X

N†(p)(x) =
∑
ω∈Ω

p(ω).

N† maps probability distributions on Ω to probability distributions on X .
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Quantum Channels Kraus representation
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Quantum Channels Kraus representation

Non-sharp measurements
How build an analogue of N on a quantum system H?

First strategy:
replace each N(·, x) with an observable Nx ∈ O(H) such that

0 ≤ Nx ≤ 1H and
∑
x∈X

Nx = 1H .

These are (elementary) positive operator valued measure (POVM).

We are relaxing the sharp indicator observables 1Vx associated to a
measurement X = (1Vx )x∈X with the operators X = (Nx )x∈X .

How to transform ρ ∈ S(H)?

ρ 7→
∑
x∈X

√
Nxρ

√
Nx .
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Quantum Channels Kraus representation

Unitary evolutions
What about kernels N between two different systems H, K ?

Second strategy:
An isometry U : H → K “embeds” the state vector |ψ〉 on H into U |ψ〉 on
K . On density operators:

ρ ∈ S(H) 7→ UρU∗ ∈ S(K ).

When H = K , this actually describes the evolution of closed quantum
system (postulate). All the other transformations are evolutions of open
quantum systems.

Example: convex combinations over a family of isometries (Ux )x∈X
allows to define

ρ 7→
∑
x∈X

pxUxρU∗x .
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Quantum Channels Kraus representation

Kraus representation

We consider transformations Φ : L(H)→ L(K ) of the type

Φ(A) =
∑
x∈X

B∗x ABx ,

where (Bx )x∈X ⊆ L(K ; H) is a family of Kraus (or noise) operators.
The dual Φ† : L(K )→ L(H) is represented by the family of adjoints:

Φ (and Φ†) is positive, i.e.,

Φ is unital, Φ(1H) = 1K if and only if

Φ is unital if and only if Φ† is trace-preserving, tr[Φ†(A)] = tr[A].
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Quantum Channels Kraus representation

Examples

1 Consider Φ : L(C)(= C)→ L(H) given by

Φ(λ) = λ1H .

Clearly, it is positive and unital. we can write

for a given orthonormal basis (|x〉)x∈X .

2 The dual map Φ† : L(H)→ L(C) is then represented as

which is the trace map.
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Quantum Channels Kraus representation

Maps Φ represented by Kraus operators are stable
with respect to linear combinations (with positive coefficient)
with respect to composition.

Lemma

Let H, K be finite dimensional Hilbert spaces and let

Φ : L(K )→ L(H)

be a ∗-homomorphism, i.e., Φ is linear and

Φ(1K ) = 1H , Φ(AB) = Φ(A)Φ(B), Φ(A∗) = Φ(A)∗.

Then, there exist Kraus operators (Bx )x∈X ⊆ L(H; K ) representing Φ. One
has in particular |X | = dim(H)/dim(K ).
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Quantum Channels Kraus representation

Sketch of proof
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Quantum Channels Complete positivity

Question: is any linear and positive map Φ : L(H) → L(K ) represented by a
suitable family of Kraus operators?

This is not the case in general.
Φ : L(H)→ L(K ) is completely positive (CP) if, for every d ∈ N,

Φ⊗ 1L(Cd ) : L(H ⊗ Cd )→ L(K ⊗ Cd ) (2)

is positive.

By representing M ∈ L(H ⊗ Cd ) as block operator

M = (Mij )
d
i,j=1 ⊆ L(H),

we have that
Φ⊗ 1Cd (M) = (Φ(Mij ))d

i,j=1 ⊆ L(K ).

CP means:
M = (Mij )

d
i,j=1 ≥ 0⇒ (Φ(Mij ))d

i,j=1.
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Quantum Channels Complete positivity

Writing M = A∗A, with

A =
d∑

i,j=1

Aij ⊗ |i〉 〈j | , A∗ =
d∑

i,j=1

A∗ji ⊗ |i〉 〈j | ,

CP means:

Φ⊗ 1L(Cd )(A
∗A) =

d∑
i,j=1

d−1∑
k=0

Φ(A∗kiAkj ) |i〉 〈j | ≥ 0.

We specialize to “rank-one” block operators A =
∑d

j=1 Aj ⊗ |1〉 〈j |, so that

d∑
i,j=1

Φ(A∗i Aj ) |i〉 〈j | ≥ 0.

i.e., for every |ψi〉di=1 ⊆ K , testing with v =
∑d

i=1 |ψi〉 ⊗ |i〉,

〈v |Mv〉 =
d∑

i,j=1

〈ψi |Φ(A∗i Aj )ψj〉 ≥ 0
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Quantum Channels Complete positivity

Some elementary facts about CP maps:
1 Any ΦB(A) = B∗AB with B ∈ L(K ; H) is CP, since

ΦB ⊗ 1L(Cd ) = ΦB⊗1Cd .

2 linear combinations with positive coefficients of CP maps are CP
3 the dual of a CP map is also CP, since Φ† ⊗ 1L(Cd ) =

(
Φ⊗ 1L(Cd )

)†,
4 composition of CP maps is also CP.

Consequences:
any Φ represented via Kraus operators in CP
The trace map is CP, hence the partial trace

trH1 = tr⊗ 1L(H2) : L(H1 ⊗ H2)→ L(H2).

as well as the dual “partial tensoring” map

A ∈ L(H1) 7→ A⊗ 1H2 ∈ L(H1 ⊗ H2).
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Quantum Channels Complete positivity

Quantum channels

A completely positive, trace preserving (CPTP) map Φ : L(H)→ L(K ) is also
called a quantum channel from the system H to K .

Theorem (Kraus representation of quantum channels)

Let H, K be finite dimensional quantum systems. Any quantum channel Φ†

from H to K can be represented via a family of Kraus operators:

Φ†(A) =
∑
x∈X

BxAB∗x for every A ∈ L(H).

One has |X | ≤ dim(H)dim(K ).

Strategy: factorize the dual map Φ : L(K )→ L(H) via an auxiliary system H̃:

Φ(A) = U∗π(A)U,

where U is an isometry and π is a ∗-homomorphism.
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Quantum Channels Complete positivity

Proof (sketch)
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Quantum Channels Complete positivity
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Quantum Channels Complete positivity

Stinespring representation

Up to isomorphism, one can let
1 H̃ = K ⊗ CX ,
2 π(A) = A⊗ 1CX ,
3 U |ψ〉 = |ψ〉 ⊗ |0〉.

This yields the Stinespring representation of the quantum channel:

Φ†(ρ) = trCX [V (ρ⊗ |0〉 〈0|) V ∗],

where V : K ⊗ CX → K ⊗ CX is unitary.
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Quantum Channels CP maps on C∗ -algebras
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Quantum Channels CP maps on C∗ -algebras

Complete positivity on C∗-algebra

A linear map Φ : A → B between C∗-algebras is CP if

d∑
i,j=1

b∗i Φ(a∗i aj )bj

is positive for every (ai )
d
i=1 ⊆ A, (bi )

d
i=1 ⊆ B, d ≥ 1.

It coincides with the previous notion when A = L(H), B = L(K ).

Φ is unital if Φ(1A) = 1B.

A state η : A → C defines a CP unital map:
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Quantum Channels CP maps on C∗ -algebras

Repeating the proof of the Kraus representation theorem (with some
technicalities because of infinite dimensions!) yields the following:

Theorem (Stinespring dilation)

Let A be a C∗-algebra and H be a Hilbert space. Given any CP unital map
Φ : A → B(H), there exist

1 a Hilbert space H̃,
2 an isometry U : H → H̃,
3 a ∗-homomorphism π : A → B(H̃),

such that, for every a ∈ A,

Φ(a) = U∗π(a)U,

and
{π(a)Uψ : a ∈ A, ψ ∈ H} ⊆ H̃ is dense.

Such a triple (H̃,U, π) is unique up to isomorphisms.
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Quantum Channels CP maps on C∗ -algebras

The GNS construction

When applied to Φ(a) = η(a) for a state η : A → C it yields the following

Theorem (Gelfand-Naimark-Segal)

Let A be a C∗-algebra and let η : A → C be a state. Then, there exists
1 a Hilbert space H,
2 a unit norm vector |ψ〉 ∈ H,
3 and a ∗-homomorphism π : A → B(H)

such that, for every a ∈ A,

η(a) = 〈ψ|π(a)ψ〉 ,

and {π(a) |ψ〉}a∈A ⊆ H is dense.
Such a triple is unique up to isomorphisms.
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Quantum Channels Quantum Markov semigroups
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Quantum Channels Quantum Markov semigroups

By composing a quantum channel Φ from H into itself, one obtains the
analogue of a Markov chain evolution

ρ0,Φ(ρ0),Φ2(ρ),Φ3(ρ), . . . .

For Φ(ρ) = UρU∗ with U unitary, it is the analogue of a discrete-time
dynamical system.

Continuous-time dynamics are described by quantum Markov
semigroups (Φt )t≥0:

1 for every t ≥ 0, Φt is a quantum channel from H into itself,
2 (semigroup law) for every s, t ≥ 0, Φt Φs = Φs+t ,
3 (strong continuity) for every A ∈ L(H), t 7→ Φt (A) is continuous.

The generator L is defined as:

If H is finite-dimensional, L is a bounded operator with an explicit
representation (the Lindblad form).
Stone’s theorem describes the generators of semigroups induced by
unitary maps:

L(A) = −i[H,A]

for a suitable Hamiltonian H (self-adjoint but possibly unbounded).
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Quantum Channels Exercises
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Quantum Channels Exercises

Bell states

The simplest example of entangled states is provided by so-called Bell states
in a two-qubit composite system H = C2 ⊗ C2, defined as follows:∣∣Φ+

〉
= (|0,0〉+ |1,1〉) /

√
2,

∣∣Φ−〉 = (|0,0〉+ |1,1〉) /
√

2,∣∣Ψ+
〉

= (|0,1〉+ |1,0〉) /
√

2,
∣∣Ψ−〉 = (|0,1〉 − |1,0〉) /

√
2.

1 Show that the four state vectors provide an orthonormal basis for the
system.

2 Show that each of the four pure states corresponding to the Bell vectors
is not separable, hence entangled.
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Quantum Channels Exercises

Tensor product of Pauli operators

Consider the Pauli operators σx , σy on a single-qubit system C2.
1 Find the matrix representation (with respect to the computational basis in

C4 = C2 ⊗ C2) of the operators

A = σx ⊗ σy , and B = σy ⊗ σx .

2 Prove that A, B are self-adjoint operators and compute their spectra.
3 Compute [A,B].
4 Assume that the system is prepared in the Bell state |Φ+〉. What is the

probability of observing 1 if we measure A?
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Quantum Channels Exercises

Partial transpose
Given finite-dimensional quantum systems H, K and an operator A ∈ L(H; K )
define its transpose operator as Aτ : L(K ∗)→ L(H∗) as

τ(A) : 〈ϕ| 7→ τ(A)(〈ϕ|) := 〈ϕ|A,
i.e., τ(A)(〈ϕ|) = 〈ϕ|A is the linear functional on H given by

〈ϕ|A : |ψ〉 7→ 〈ϕ|Aψ〉 .

1 Fix orthonormal bases (|i〉)i∈I ⊆ K and (|j〉)j∈J ⊆ H. Write the associated
matrix representation

A = (Aij )i∈I,j∈J = (〈i |Aj〉)i∈I,j∈J

and compare it with the matrix representation of Aτ with respect to the
bases (〈i |)i∈I ⊆ K ∗, (〈j |)j∈J ⊆ H.

2 Prove that A 7→ τ(A) is linear, and if A ∈ O(H) is an observable, then
Aτ ∈ O(H∗), and moreover if A ≥ 0 then τ(A) ≥ 0 (i.e., the map τ is
positive).

3 Show that already if H = K = C2, then τ is not completely positive (the
partial transpose τ ⊗ 1L(C2) is not a positive map).
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Quantum Channels Exercises

PPT criterion

Let H, K be finite dimensonal quantum systems. Denoting by τ : L(H) →
L(H∗) the transpose map (defined in the previous exercise), prove that

if ρ ∈ S(H ⊗ K ) is separable, then its partial transpose τ ⊗ 1L(K ) is a
density operator (in particular, it is positive).
This motivates the so-called positive partial trace (PPT) sufficient criterion
for entanglement: a state ρ ∈ S(H ⊗ K ) is entangled if its partial
transpose τ ⊗ 1L(K )(ρ) is not positive.
Do Bell states satisfy the PPT criterion?
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