Mathematical Aspects of Quantum Information Theory:

Lecture 2

Dario Trevisan

Università di Pisa dario.trevisan@unipi.it

Dario Trevisan (UNIPI)

Postulates of Quantum Mechanics (conclusion)

C*-algebras approach

Quantum Channels

- Tensor products
- Markov kernels
- Kraus representation
- Complete positivity
- CP maps on C*-algebras
- Quantum Markov semigroups
- Exercises

Plan

Postulates of Quantum Mechanics (conclusion) C*-algebras approach

Quantum Channels

- Tensor products
- Markov kernels
- Kraus representation
- Complete positivity
- CP maps on C*-algebras
- Quantum Markov semigroups
- Exercises

C* -algebras approach

Infinite dimensional systems

The definitions (states, measurements and observables) are mathematically elementary for we are restricted to finite dimensional quantum systems *H*. (Heisenberg and) Schrödinger instead considered:

- the quantum system of a single particle on a line is $H = L^2(\mathbb{R}, dx)$,
- state vectors are wave functions |ψ⟩ = (ψ(x))_{x∈ℝ}
- the fundamental observables are the pair position *Q* and momentum *P*:

$$(Q\psi)(x) = x\psi(x), \quad (P\psi)(x) = -i\frac{d\psi}{dx}(x).$$

• The crucial property they satisfy is the *canonical commutation relation* (CCR):

 But these operators are not well-defined for every ψ ∈ L²(ℝ, dx)! hence the need of more general spectral theorems.

A different route: observables first!

- One can instead search first for a family of bounded operators containing all the useful information about *P* and *Q* and argue then by duality to obtain the states of the quantum system.
- The classical analogy is that probability distributions (states) can be defined via Riesz theorem, as certain linear functionals over continuous functions on a compact topological space (observables).
- It turns out that the correct structure of such an abstract family is that of a *C**-algebra *A*.

General definition

- A C^* -algebra \mathcal{A} is defined as follows:
 - A is a complex Banach space,
 - with an additional product operation (a, b) → ab that yields a structure of Banach algebra, i.e., it is
 - associative,
 - distributive with respect to the addition operation,
 - there exists an identity element 1
 - the norm satisfies $||ab|| \le ||a|| ||b||$ for every $a, b \in A$
 - and with an additional anti-linear map $* : A \rightarrow A, a \mapsto a^*$, that is
 - an involution $(a^*)^* = a$
 - satisfying $(ab)^* = b^*a^*$, for $a, b \in A$
 - and the C*-identity holds:

C*-algebras approach

Remarks

• If A is a Banach algebra and * is an enjoys all the properties but the C^* -identity, it is enough to prove that

$$\|a^*a\|\geq\|a\|^2.$$

- A *-homomorphism between C*-algebras A, B is a map π : a → π(a) which is well-behaved with respect to all the operations, i.e. it is a ring homomorphism and π(a*) = π(a)*.
- Two *C**-algebras as isomorphic if there exists an invertible *-homomorphism between them.

Examples

• $\mathcal{A} = C(K; \mathbb{C})$ (with K compact Hausdorff) is a C*-algebra:

② The space of $d \times d$ complex matrices $\mathcal{A} = \mathbb{C}^{d \times d}$, endowed with the natural matrix sum and product operations, the matrix norm

$$\|\boldsymbol{A}\|^{2} = \sup_{\boldsymbol{\nu} \in \mathbb{C}^{d} \setminus \{0\}} \frac{\|\boldsymbol{A}\boldsymbol{\nu}\|^{2}}{\|\boldsymbol{\nu}\|^{2}} = \sup_{\boldsymbol{\nu} \in \mathbb{C}^{d} \setminus \{0\}} \frac{\langle \boldsymbol{\nu} | \boldsymbol{A}^{*} \boldsymbol{A} \boldsymbol{\nu} \rangle}{\langle \boldsymbol{\nu} | \boldsymbol{\nu} \rangle}$$

and A^* being the conjugate transpose of A, is a C^* -algebra.

The space of linear bounded operators A = B(H) on a complex Hilbert space H endowed with the operator norm and the adjoint A → A* is also a C*-algebra.

Further definitions

We say that $a \in A$ is

- self-adjoint if $a = a^*$,
- positive if there exists $b \in A$ such that $a = b^*b$,
- unitary if $aa^* = a^*a = 1$.

The spectrum of *a* is $\lambda \in \mathbb{C}$ such that $a - \lambda \mathbb{1}$ is not invertible (w.r.t. the product operation).

Self-adjoint a ∈ A such that σ(a) ⊆ [0,∞) coincide with positive elements, i.e., one can represent a = b*b for some b ∈ A (this is not trivial to prove).

The C^* -algebra axiomatization of quantum mechanics

We reverse the order from the elementary approach:

- observables for a quantum system are the self-adjoint elements in a C*-algebra A
- states are then defined as continuous linear functionals

$$\eta:\mathcal{A}\mapsto\mathbb{C}$$

that are

- positive, i.e. $\eta(a) \ge 0$ for every positive $a = b^*b$
- and $\eta(1) = 1$.
- Elementary quantum systems H are recovered: let $A = \mathcal{L}(H)$ and

 $\eta(A) = tr[A\rho], \text{ for a density operator } \rho \in \mathcal{S}(H).$

• Any C^* -algebra is isomorphic to a sub-algebra of $\mathcal{B}(H)$ for some Hilbert space (Gelfand-Naimark-Segal construction).

The Weyl algebra

How to describe the CCR with a suitable C^* -algebra?

instead of unbounded Q and P, we introduce the Weyl operators (W(r, s))_{(r,s)∈ℝ²} formally given by

$$W(r,s) = e^{i(sQ-rP)}.$$

• A rigorous definition as bounded operator on $H = L^2(\mathbb{R}, dx)$ is

$$W(r,s)\psi(x)=e^{is(x-r/2)}\psi(x-r).$$

- The Weyl algebra is the C*-algebra generated by the Weyl operators (as a closed sub-algebra of B(L²(ℝ, dx))).
- From the definition:

$$W(r,s)^* = W(-r,-s)$$

and

$$W(r_1, s_1)W(r_2, s_2) = e^{-i(r_1s_2-r_2s_1)/2}W(r_1+r_2, s_1+s_2),$$

which encodes the CCR.

Characteristic function of a state

The Weyl algebra has a rich structure and its study would require an entire course on its own.

• Given a state η on the Weyl algebra, its characteristic function is

$$\mathbb{R}^2 \ni (\mathbf{r}, \mathbf{s}) \mapsto \eta(\mathbf{W}(\mathbf{r}, \mathbf{s})) \in \mathbb{C}.$$

 A state η is a quantum (bosonic) Gaussian state if its characteristic function is the exponential of a quadratic polynomial in the variables r, s (with complex coefficients).

Any $|\psi\rangle \in L^2(\mathbb{R}; dx)$ with unit norm induces a state on the Weyl algebra via

$$\eta(W(r,s)) = \int_{\mathbb{R}} \overline{\psi}(x)W(r,s)\psi(x)dx.$$

Question: for which $|\psi\rangle$ the induced state is Gaussian?

Exercises

Exercise(CCR cannot be realized by bounded operators)

Prove that one cannot define two operators $Q, P \in \mathcal{L}(H)$ satisfying the CCR on a finite dimensional Hilbert space H,

or ever as bounded operators, $Q, P \in \mathcal{B}(H)$ on a general Hilbert space H.

(Hint: compute $[Q, P^n]$ and consider its operator norm as $n \to \infty$)

Tensor products

Plan

Postulates of Quantum Mechanics (conclusion)

C*-algebras approach

Quantum Channels Tensor products

- Markov kernels
- Kraus representation
- Complete positivity
- CP maps on C*-algebras
- Quantum Markov semigroups
- Exercises

- Consider finite dimensional Hilbert spaces H, K.
- Write $\mathcal{L}(H; K)$ for the space of linear operators $A : H \to K$.
- The adjoint operator $A^* : K \to H$ is defined by requiring

 $\langle \varphi | \mathbf{A}^* \psi \rangle = \langle \mathbf{A} \varphi | \psi \rangle$, for every $| \psi \rangle \in \mathbf{K}, \, \varphi \in \mathbf{H}$.

• Write $\mathcal{L}(H) = \mathcal{L}(H; H)$ endowed with the Hilbert-Schmidt scalar product

$$\langle A|B\rangle = \operatorname{tr}[A^*B], \text{ for } |A\rangle, |B\rangle \in \mathcal{L}(H).$$

 An isometry U : H → K is a linear map preserving the norms (or equivalently the scalar products)

$$\langle U\varphi|U\psi\rangle = \langle \varphi|\psi\rangle, \text{ for every } |\varphi\rangle, |\psi\rangle \in H,$$

or equivalently, such that $U^*U = \mathbb{1}_H$.

Tensor product

H ⊗ *K*: linear space generated by elementary tensors |φ⟩ ⊗ |ψ⟩ quotiented so that the expressions become bi-linear, e.g.,

- Dirac's notation: $|\varphi\rangle \otimes |\psi\rangle = |\varphi, \psi\rangle$.
- Scalar product:

$$\left\langle \varphi_{0}\otimes\psi_{0}|\varphi_{0}\otimes\psi_{0}\right\rangle =\left\langle \varphi_{0}|\varphi_{1}\right\rangle \left\langle \psi_{0}|\psi_{1}\right\rangle .$$

• $\dim(H \otimes K) = \dim(H)\dim(K)$ with orthonormal basis is given by

$$(|i,j\rangle)_{i\in I,j\in J} = (|i\rangle \otimes |j\rangle)_{i\in I,j\in J}$$

for orthonormal bases $(|i\rangle)_{i\in I} \subseteq H$, $(|j\rangle)_{j\in J} \subseteq K$.

Composite systems

- Tensor products are used in quantum mechanics to represent composite systems made by "joining" two quantum systems *H*, *K*.
- States on the composite system H ⊗ K are represented by density operators ρ ∈ S(H ⊗ K),
- Observables are self-adjoint operators $A \in \mathcal{O}(H \otimes K)$.
- Let us recall some basic facts on operators $M \in \mathcal{L}(H \otimes K)$, and in particular the partial trace operation.

Tensor product of operators

The tensor product extends to operators: for A ∈ L(H; H̃), B ∈ L(K; K̃), the operator A ⊗ B ∈ L(H ⊗ H; H̃ ⊗ K̃) is defined as

 $oldsymbol{(A\otimes B)}\ket{arphi}\otimes\ket{\psi}=\ket{\pmb{A}arphi}\otimes\ket{\pmb{B}\psi}$

- One has $(A \otimes B)^* = A^* \otimes B^*$, hence $A \otimes B \in \mathcal{O}(H \otimes K)$ if $A \in \mathcal{O}(H)$ and $B \in \mathcal{O}(K)$.
- $\sigma(A \otimes B) = \sigma(A) \cdot \sigma(B)$ (all possible pairwise products).
- $A \otimes B \ge 0$ is positive if both $A \ge 0$ and $B \ge 0$

Block matrix representation

Choosing orthonormal bases (|*i*⟩)_{*i*∈*I*} ⊆ *H*, (|*j*⟩)_{*j*∈*J*} ⊆ *K* yields the representation of any *M* ∈ L(*H* ⊗ *K*):

$$M = \sum_{i,j,k,\ell} M_{ij,k\ell} |i,j\rangle \langle k,\ell|, \qquad (1)$$

with
$$M_{ij,k\ell} = \langle i \otimes j | M(k \otimes \ell) \rangle$$
.
• For fixed *j* and $\ell \in J$, set

$$M_{j,\ell} = \sum_{i,k} M_{ij,k\ell} \ket{i} \langle k \mid \in \mathcal{L}(H).$$

• *M* is identified with the block matrix

$$M=(M_{j,\ell})_{j,\ell\in J}.$$

 If K = C^d, such block matrix representation is always understood with respect to the computational basis, e.g. M ∈ L(H ⊗ C²) is represented as

$$M=\left(egin{array}{cc} M_{00} & M_{01} \ M_{10} & M_{11} \end{array}
ight).$$

Partial trace

• On $\mathcal{L}(H \otimes K)$, the partial trace over *H* is the only operator

 $\operatorname{tr}_H : \mathcal{L}(H \otimes K) \to \mathcal{L}(K), \quad M \mapsto \operatorname{tr}_H[M]$

such that, for every $A \in \mathcal{L}(K)$, one has

$$\mathrm{tr}[A^*\mathrm{tr}_H[M]] = \mathrm{tr}[(\mathbb{1}_H \otimes A^*)M].$$

- tr_{*H*} is the adjoint of the partial tensor product operation $A \mapsto \mathbb{1}_H \otimes A$:
- By representing M a block matrix one has the formulas
- If $M \in \mathcal{O}(H \otimes K)$ so is $\operatorname{tr}_H[M] \in \mathcal{O}(K)$
- If $M = \rho \in \mathcal{S}(H \otimes K)$, then $\operatorname{tr}_{H}[\rho] \in \mathcal{S}(K)$, the reduced density operator.
- Similarly, one defines $tr_{\mathcal{K}}[M]$.

Separable and entangled states

We say that *ρ* ∈ S(H ⊗ K) is separable if it can be represented as a convex combination

$$\rho = \sum_{\mathbf{x}\in\mathcal{X}} \mathbf{p}_{\mathbf{x}} \rho_{\mathbf{x}} \otimes \sigma_{\mathbf{x}},$$

with $\rho_x \in \mathcal{S}(H)$, $\sigma_x \in \mathcal{S}(K)$ and $(p_x)_{x \in \mathcal{X}}$ a classical probability distribution over a finite set \mathcal{X} .

 States ρ ∈ S(H ⊗ K) that are not separable are called entangled. Entangled states have no classical analogues (any classical joint probability distribution is "separable"). Example (Bell state):

Markov kernels

Plan

Postulates of Quantum Mechanics (conclusion)

C*-algebras approach

2

Quantum Channels

- Tensor products
- Markov kernels
- Kraus representation
- Complete positivity
- CP maps on C*-algebras
- Quantum Markov semigroups
- Exercises

• A Markov kernel from Ω to \mathcal{X} (finite sets) is $N = (N(\omega, \cdot))_{\omega \in \Omega}$ such that

$$N(\omega, x) \in [0, 1]$$
 for all $x \in \mathcal{X}$, and $\sum_{x \in \mathcal{X}} N(\omega, x) = 1$.

Two natural operations associated to a kernel N:
 given f : X → C:

$$N(f)(\omega) = \sum_{x \in \mathcal{X}} f(x) N(\omega, x),$$

2 given
$$p: \Omega \to \mathbb{C}$$
:
 $N^{\dagger}(p)(x) = \sum_{\omega} p(\omega)N(\omega, x).$

Both operations are linear and dual to each other.

Both N and N[†] are positive, i.e. and

$$N(1_{\Omega}) = 1_{\mathcal{X}}, \quad \sum_{x \in \mathcal{X}} N^{\dagger}(p)(x) = \sum_{\omega \in \Omega} p(\omega).$$

• N^{\dagger} maps probability distributions on Ω to probability distributions on \mathcal{X} .

Kraus representation

Plan

Postulates of Quantum Mechanics (conclusion)

C*-algebras approach

Quantum Channels

- Tensor products
- Markov kernels

Kraus representation

- Complete positivity
- CP maps on C*-algebras
- Quantum Markov semigroups
- Exercises

Non-sharp measurements

How build an analogue of N on a quantum system H?

First strategy:

• replace each $N(\cdot, x)$ with an observable $N_x \in \mathcal{O}(H)$ such that

$$0 \leq N_x \leq \mathbb{1}_H$$
 and $\sum_{x \in \mathcal{X}} N_x = \mathbb{1}_H$.

- These are (elementary) positive operator valued measure (POVM).
- We are relaxing the sharp indicator observables 1_{V_x} associated to a measurement X = (1_{V_x})_{x∈X} with the operators X = (N_x)_{x∈X}.
- How to transform $\rho \in \mathcal{S}(H)$?

$$\rho\mapsto \sum_{\mathbf{x}\in\mathcal{X}}\sqrt{N_{\mathbf{x}}}\rho\sqrt{N_{\mathbf{x}}}.$$

Unitary evolutions

What about kernels N between two different systems H, K?

Second strategy:

• An isometry $U : H \to K$ "embeds" the state vector $|\psi\rangle$ on H into $U |\psi\rangle$ on K. On density operators:

$$\rho \in \mathcal{S}(H) \mapsto U\rho U^* \in \mathcal{S}(K).$$

- When H = K, this actually describes the evolution of closed quantum system (postulate). All the other transformations are evolutions of open quantum systems.
- Example: convex combinations over a family of isometries $(U_x)_{x \in \mathcal{X}}$ allows to define

$$\rho \mapsto \sum_{x \in \mathcal{X}} p_x U_x \rho U_x^*.$$

Kraus representation

• We consider transformations $\Phi : \mathcal{L}(H) \to \mathcal{L}(K)$ of the type

$$\Phi(A) = \sum_{x \in \mathcal{X}} B_x^* A B_x,$$

where $(B_x)_{x \in \mathcal{X}} \subseteq \mathcal{L}(K; H)$ is a family of Kraus (or noise) operators.

- The dual $\Phi^{\dagger} : \mathcal{L}(K) \to \mathcal{L}(H)$ is represented by the family of adjoints:
- Φ (and Φ^{\dagger}) is positive, i.e.,
- Φ is unital, $\Phi(\mathbb{1}_H) = \mathbb{1}_K$ if and only if
- Φ is unital if and only if Φ^{\dagger} is trace-preserving, tr[$\Phi^{\dagger}(A)$] = tr[A].

Kraus representation

Examples

() Consider $\Phi : \mathcal{L}(\mathbb{C})(=\mathbb{C}) \to \mathcal{L}(H)$ given by

 $\Phi(\lambda) = \lambda \mathbb{1}_{H}.$

Clearly, it is positive and unital. we can write

for a given orthonormal basis $(|x\rangle)_{x \in \mathcal{X}}$.

2 The dual map $\Phi^{\dagger} : \mathcal{L}(H) \to \mathcal{L}(\mathbb{C})$ is then represented as

which is the trace map.

Maps Φ represented by Kraus operators are stable

- with respect to linear combinations (with positive coefficient)
- with respect to composition.

Lemma

Let H, K be finite dimensional Hilbert spaces and let

 $\Phi:\mathcal{L}(K)\to\mathcal{L}(H)$

be a *-homomorphism, i.e., Φ is linear and

$$\Phi(\mathbb{1}_{K})=\mathbb{1}_{H}, \quad \Phi(AB)=\Phi(A)\Phi(B), \quad \Phi(A^{*})=\Phi(A)^{*}.$$

Then, there exist Kraus operators $(B_x)_{x \in \mathcal{X}} \subseteq \mathcal{L}(H; K)$ representing Φ . One has in particular $|\mathcal{X}| = \dim(H)/\dim(K)$.

Sketch of proof

Complete positivity

Plan

Postulates of Quantum Mechanics (conclusion)

• C*-algebras approach

Quantum Channels

- Tensor products
- Kraus representation
- Complete positivity
- •
- Quantum Markov semigroups
- Exercises

Question: is any linear and positive map $\Phi : \mathcal{L}(H) \to \mathcal{L}(K)$ represented by a suitable family of Kraus operators?

- This is not the case in general.
- $\Phi : \mathcal{L}(H) \to \mathcal{L}(K)$ is completely positive (CP) if, for every $d \in \mathbb{N}$,

$$\Phi \otimes \mathbb{1}_{\mathcal{L}(\mathbb{C}^d)} : \mathcal{L}(H \otimes \mathbb{C}^d) \to \mathcal{L}(K \otimes \mathbb{C}^d)$$
(2)

is positive.

• By representing $M \in \mathcal{L}(H \otimes \mathbb{C}^d)$ as block operator

$$M=(M_{ij})_{i,j=1}^{d}\subseteq \mathcal{L}(H),$$

we have that

$$\Phi\otimes \mathbb{1}_{\mathbb{C}^d}(M) = (\Phi(M_{ij}))_{i,j=1}^d \subseteq \mathcal{L}(K).$$

CP means:

$$M = (M_{ij})_{i,j=1}^d \geq 0 \Rightarrow (\Phi(M_{ij}))_{i,j=1}^d.$$

Complete positivity

• Writing $M = A^*A$, with

$$A = \sum_{i,j=1}^{d} A_{ij} \otimes \ket{i} ig\langle j
vert, \quad A^* = \sum_{i,j=1}^{d} A^*_{ji} \otimes \ket{i} ig\langle j
vert,$$

CP means:

$$\Phi\otimes \mathbb{1}_{\mathcal{L}(\mathbb{C}^d)}(A^*A) = \sum_{i,j=1}^d \sum_{k=0}^{d-1} \Phi(A^*_{ki}A_{kj}) \ket{i} ig\langle j
vert \geq 0.$$

• We specialize to "rank-one" block operators $A = \sum_{j=1}^{d} A_j \otimes |1\rangle \langle j|$, so that

$$\sum_{i,j=1}^{d} \Phi(A_i^*A_j) \ket{i} \bra{j} \ge 0.$$

i.e., for every $|\psi_i\rangle_{i=1}^d \subseteq K$, testing with $v = \sum_{i=1}^d |\psi_i\rangle \otimes |i\rangle$,

$$\langle \mathbf{v} | \mathbf{M} \mathbf{v} \rangle = \sum_{i,j=1}^{d} \langle \psi_i | \Phi(\mathbf{A}_i^* \mathbf{A}_j) \psi_j \rangle \geq 0$$

Some elementary facts about CP maps:

• Any $\Phi_B(A) = B^*AB$ with $B \in \mathcal{L}(K; H)$ is CP, since

$$\Phi_B \otimes \mathbb{1}_{\mathcal{L}(\mathbb{C}^d)} = \Phi_{B \otimes \mathbb{1}_{\mathbb{C}^d}}$$

- Inear combinations with positive coefficients of CP maps are CP
- the dual of a CP map is also CP, since $\Phi^{\dagger} \otimes \mathbb{1}_{\mathcal{L}(\mathbb{C}^d)} = (\Phi \otimes \mathbb{1}_{\mathcal{L}(\mathbb{C}^d)})^{\dagger}$,
- composition of CP maps is also CP.

Consequences:

- any Φ represented via Kraus operators in CP
- The trace map is CP, hence the partial trace

$$\operatorname{tr}_{H_1} = \operatorname{tr} \otimes \mathbb{1}_{\mathcal{L}(H_2)} : \mathcal{L}(H_1 \otimes H_2) \to \mathcal{L}(H_2).$$

as well as the dual "partial tensoring" map

$$A \in \mathcal{L}(H_1) \mapsto A \otimes \mathbb{1}_{H_2} \in \mathcal{L}(H_1 \otimes H_2).$$

Quantum channels

A completely positive, trace preserving (CPTP) map $\Phi : \mathcal{L}(H) \to \mathcal{L}(K)$ is also called a quantum channel from the system *H* to *K*.

Theorem (Kraus representation of quantum channels)

Let H, K be finite dimensional quantum systems. Any quantum channel Φ^{\dagger} from H to K can be represented via a family of Kraus operators:

$$\Phi^{\dagger}(A) = \sum_{x \in \mathcal{X}} B_x A B_x^*$$
 for every $A \in \mathcal{L}(H)$.

One has $|\mathcal{X}| \leq \dim(H)\dim(K)$.

Strategy: factorize the dual map $\Phi : \mathcal{L}(K) \to \mathcal{L}(H)$ via an auxiliary system \tilde{H} :

$$\Phi(A) = U^* \pi(A) U,$$

where U is an isometry and π is a *-homomorphism.

Proof (sketch)

Stinespring representation

Up to isomorphism, one can let

- $\bullet \quad \tilde{H}=K\otimes \mathbb{C}^{\mathcal{X}},$
- $(\mathbf{A}) = \mathbf{A} \otimes \mathbb{1}_{\mathbb{C}^{\mathcal{X}}},$
- $U |\psi\rangle = |\psi\rangle \otimes |\mathbf{0}\rangle.$

This yields the Stinespring representation of the quantum channel:

$$\Phi^{\dagger}(\rho) = \operatorname{tr}_{\mathbb{C}^{\mathcal{X}}}[V(\rho \otimes |\mathbf{0}\rangle \langle \mathbf{0}|) \ V^{*}],$$

where $V: K \otimes \mathbb{C}^{\mathcal{X}} \to K \otimes \mathbb{C}^{\mathcal{X}}$ is unitary.

Plan

Postulates of Quantum Mechanics (conclusion)

C*-algebras approach

Quantum Channels

- Tensor products
- Markov kernels
- Kraus representation
- Complete positivity
- CP maps on C*-algebras
- Quantum Markov semigroups
- Exercises

Complete positivity on *C**-algebra

• A linear map $\Phi : \mathcal{A} \to \mathcal{B}$ between C^* -algebras is CP if

$$\sum_{i,j=1}^d b_i^* \Phi(a_i^*a_j) b_j$$

is positive for every $(a_i)_{i=1}^d \subseteq \mathcal{A}, (b_i)_{i=1}^d \subseteq \mathcal{B}, d \ge 1.$

- It coincides with the previous notion when $\mathcal{A} = \mathcal{L}(H)$, $\mathcal{B} = \mathcal{L}(K)$.
- Φ is unital if $\Phi(\mathbb{1}_{\mathcal{A}}) = \mathbb{1}_{\mathcal{B}}$.
- A state $\eta : \mathcal{A} \to \mathbb{C}$ defines a CP unital map:

Repeating the proof of the Kraus representation theorem (with some technicalities because of infinite dimensions!) yields the following:

Theorem (Stinespring dilation)

Let A be a C^* -algebra and H be a Hilbert space. Given any CP unital map $\Phi : A \to B(H)$, there exist

- a Hilbert space H,
- 2 an isometry $U: H \rightarrow \tilde{H}$,
- 3 *a* *-homomorphism $\pi : \mathcal{A} \to \mathcal{B}(\tilde{H})$,

such that, for every $a \in A$,

$$\Phi(a) = U^* \pi(a) U,$$

and

$$\{\pi(a)U\psi : a \in \mathcal{A}, \psi \in H\} \subseteq \tilde{H}$$
 is dense.

Such a triple (\tilde{H}, U, π) is unique up to isomorphisms.

CP maps on C*-algebras

The GNS construction

When applied to $\Phi(a) = \eta(a)$ for a state $\eta : \mathcal{A} \to \mathbb{C}$ it yields the following

Theorem (Gelfand-Naimark-Segal)

Let \mathcal{A} be a C^* -algebra and let $\eta : \mathcal{A} \to \mathbb{C}$ be a state. Then, there exists

- a Hilbert space H,
- 2 a unit norm vector $|\psi\rangle \in H$,
- **3** and a *-homomorphism $\pi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$

such that, for every $a \in A$,

 $\eta(\mathbf{a}) = \langle \psi | \pi(\mathbf{a}) \psi \rangle,$

and $\{\pi(a) | \psi \rangle\}_{a \in A} \subseteq H$ is dense. Such a triple is unique up to isomorphisms.

Plan

Postulates of Quantum Mechanics (conclusion)

C*-algebras approach

2

Quantum Channels

- Tensor products
- Markov kernels
- Kraus representation
- Complete positivity
- CP maps on C*-algebras
- Quantum Markov semigroups
- Exercises

 By composing a quantum channel Φ from H into itself, one obtains the analogue of a Markov chain evolution

$$\rho_0, \Phi(\rho_0), \Phi^2(\rho), \Phi^3(\rho), \ldots$$

- For Φ(ρ) = UρU* with U unitary, it is the analogue of a discrete-time dynamical system.
- Continuous-time dynamics are described by quantum Markov semigroups (Φ^t)_{t≥0}:
 - for every $t \ge 0$, Φ^t is a quantum channel from *H* into itself,
 - 2 (semigroup law) for every $s, t \ge 0, \Phi^t \Phi^s = \Phi^{s+t}$,
 - **③** (strong continuity) for every *A* ∈ $\mathcal{L}(H)$, *t* → $\Phi^t(A)$ is continuous.
- The generator *L* is defined as:
- If *H* is finite-dimensional, *L* is a bounded operator with an explicit representation (the Lindblad form).
- Stone's theorem describes the generators of semigroups induced by unitary maps:

$$L(A) = -i[H, A]$$

for a suitable Hamiltonian H (self-adjoint but possibly unbounded).

Exercises

Plan

Postulates of Quantum Mechanics (conclusion)

C*-algebras approach

2

Quantum Channels

- Tensor products
- Markov kernels
- Kraus representation
- Complete positivity
- CP maps on C*-algebras
- Quantum Markov semigroups
- Exercises

Exercises

Bell states

The simplest example of *entangled* states is provided by so-called Bell states in a two-qubit composite system $H = \mathbb{C}^2 \otimes \mathbb{C}^2$, defined as follows:

$$\left|\Phi^{+}\right\rangle = \left(\left|0,0\right\rangle + \left|1,1\right\rangle\right)/\sqrt{2}, \quad \left|\Phi^{-}\right\rangle = \left(\left|0,0\right\rangle + \left|1,1\right\rangle\right)/\sqrt{2},$$

$$\left|\Psi^{+}
ight
angle=\left(\left|0,1
ight
angle+\left|1,0
ight
angle
ight)/\sqrt{2},\quad\left|\Psi^{-}
ight
angle=\left(\left|0,1
ight
angle-\left|1,0
ight
angle
ight)/\sqrt{2}.$$

- Show that the four state vectors provide an orthonormal basis for the system.
- Show that each of the four pure states corresponding to the Bell vectors is not separable, hence entangled.

Tensor product of Pauli operators

Consider the Pauli operators σ_x , σ_y on a single-qubit system \mathbb{C}^2 .

• Find the matrix representation (with respect to the computational basis in $\mathbb{C}^4 = \mathbb{C}^2 \otimes \mathbb{C}^2$) of the operators

$$A = \sigma_x \otimes \sigma_y$$
, and $B = \sigma_y \otimes \sigma_x$.

- 2 Prove that A, B are self-adjoint operators and compute their spectra.
- Compute [A, B].
- Assume that the system is prepared in the Bell state |Φ⁺⟩. What is the probability of observing 1 if we measure A?

Exercises

Partial transpose

Given finite-dimensional quantum systems H, K and an operator $A \in \mathcal{L}(H; K)$ define its *transpose* operator as $A^{\tau} : \mathcal{L}(K^*) \to \mathcal{L}(H^*)$ as

$$au(\mathbf{A}):\langle arphi|\mapsto au(\mathbf{A})(\langle arphi|):=\langle arphi|\,\mathbf{A},$$

i.e., $\tau(A)(\langle \varphi |) = \langle \varphi | A$ is the linear functional on H given by

 $\langle \varphi | \mathbf{A} : | \psi \rangle \mapsto \langle \varphi | \mathbf{A} \psi \rangle.$

1 Fix orthonormal bases $(|i\rangle)_{i \in I} \subseteq K$ and $(|j\rangle)_{i \in J} \subseteq H$. Write the associated matrix representation

$$\mathbf{A} = (\mathbf{A}_{ij})_{i \in I, j \in J} = (\langle i | \mathbf{A} j \rangle)_{i \in I, j \in J}$$

and compare it with the matrix representation of A^{τ} with respect to the bases $(\langle i |)_{i \in I} \subseteq K^*, (\langle j |)_{i \in J} \subseteq H.$

- 2 Prove that $A \mapsto \tau(A)$ is linear, and if $A \in \mathcal{O}(H)$ is an observable, then $A^{\tau} \in \mathcal{O}(H^*)$, and moreover if A > 0 then $\tau(A) > 0$ (i.e., the map τ is positive).
- Show that already if $H = K = \mathbb{C}^2$, then τ is not completely positive (the partial transpose $\tau \otimes \mathbb{1}_{\mathcal{L}(\mathbb{C}^2)}$ is not a positive map).

Dario Trevisan (UNIPI)

PPT criterion

Let H, K be finite dimensional quantum systems. Denoting by $\tau : \mathcal{L}(H) \rightarrow \mathcal{L}(H)$ $\mathcal{L}(H^*)$ the transpose map (defined in the previous exercise), prove that

- if $\rho \in \mathcal{S}(H \otimes K)$ is separable, then its partial transpose $\tau \otimes \mathbb{1}_{\mathcal{L}(K)}$ is a density operator (in particular, it is positive).
- This motivates the so-called positive partial trace (PPT) sufficient criterion for entanglement: a state $\rho \in \mathcal{S}(H \otimes K)$ is entangled if its partial transpose $\tau \otimes \mathbb{1}_{\mathcal{L}(K)}(\rho)$ is not positive.
- Do Bell states satisfy the PPT criterion?