# Mathematical Aspects of Quantum Information Theory:

Lecture 1

Dario Trevisan

Università di Pisa dario.trevisan@unipi.it

Dario Trevisan (UNIPI)





#### Introduction to the course



- Postulates of Quantum Mechanics
- Classical physics and probability
- (Elementary) quantum systems and their states
- Measurements and observables

# From classical to quantum information theory

Information theory studies the laws of storage and communication of information:

- Traditionally initiated as a field in the 1940s by C. Shannon,
- a scientific field at the intersection of probability theory, statistics, computer science, statistical mechanics, information engineering, electrical engineering...

Quantum information theory:

- studies limitations and new possibilities by the quantum mechanical aspects of nature,
- independent research area since the 1990s,
- based on the postulates of quantum mechanics  $\rightarrow$  further mathematical tools, in particular functional analysis (operator theory).

# Aim of this course

- An introduction to the main mathematical aspects of quantum information theory.
- Main result: quantify how information deteriorates when transmitted through a quantum noisy communication channel, via a quantum coding theorem, extending the classical Shannon fundamental limit.
- No prior knowledge in classical information theory, nor in quantum mechanics, is required.
- Target audience: mathematicians with a background in probability, analysis or mathematical physics.

# Structure of the course

We plan in total 6 lectures (in the morning, 11:00-13:00) and 6 problem sessions, to discuss examples and exercises (in the afternoon, 14:30-15:30).

- 23/01 (Mon): postulates of Quantum mechanics
- 27/01 (Fri): Quantum channels
- 3 03/02 (Fri): Inequalities
- 08/02 (Thu): Distances between quantum states
- 13/02 (Mon): Quantum entropy
- 17/02 (Fri): A coding theorem

# Teaching material

The exposition selects from monographs from various authors (Nielsen-Chuang, Holevo, Wilde, Alicki-Fannes, Meyer, ...)

#### At the webpage

http://people.dm.unipi.it/trevisan/teaching.html
you can download

- Lecture notes (updated just before each lecture)
- Slides (also annotated after the lecture)
- Recordings (if possible)

I am also available for discussions online:

- email: dario.trevisan@unipi.it,
- Skype: dario-trevisan

If you plan to give the final exam, ask me about it!

# Plan





### Postulates of Quantum Mechanics

- Classical physics and probability
- (Elementary) quantum systems and their states
- Measurements and observables

# **Classical physics**

A system is described via three mathematical objects:

• A set  $\Omega$  (the phase space):  $\omega \in \Omega$  represent a possible *state* of the system.

**Observables**, i.e.,  $X : \Omega \to \mathcal{X}$ , with possible outcomes  $\mathcal{X}$ , representing quantities obtained via physical measurements.

**③** Transformations  $T_t : \Omega \to \Omega$  representing the time evolution of the system.

# Elementary probability

Analogues of these three objects can be found:

• The (finite) set  $\Omega$  (sample space), with  $\omega \in \Omega$  describing the possible outcome of a random experiment.

However, states are probability distributions  $\rho : \Omega \to [0, 1]$ , such that  $\sum_{\omega \in \Omega} \rho(\omega) = 1$ .

- Pandom variables X on Ω, with values in X. Events V ⊆ Ω, model logical statements (i.e., either true or false) are naturally associated with indicator random variables 1<sub>V</sub> with X = {0,1}.
- Stochastic processes describe time evolutions of Ω, e.g. example Markov chains.

# Quantum mechanics and its postulates

- Quantum mechanics is a physical theory, supported by a vast experimental evidence (~ 100 years old), describing accurately phenomena at very small scales (atoms, molecules, light),
- probabilistic features: it only predicts the odds that some event will occur.
- Its axioms describe three mathematical objects (states, observables, time evolution) following the above scheme, but with a twist (non-commutativity!)
- We first describe the elementary setting, i.e., finite-dimensional systems (roughly corresponding to  $\Omega$  finite).
- We next introduce the *C*\*-algebra formalism to cover infinite-dimensional cases.

# Plan



### Introduction to the course



#### Postulates of Quantum Mechanics

- Classical physics and probability
- (Elementary) quantum systems and their states
- Measurements and observables

An elementary quantum system is described by a finite-dimensional complex Hilbert space  $(H, \langle \cdot | \cdot \rangle)$ .

- The scalar product is linear in the right variable and anti-linear in the left variable.
- 2 We use Dirac's ket notation  $|\psi\rangle \in H$ ,
- **3** bra vectors  $\langle \varphi | \in H^*$  denote

$$\langle \varphi | : H \to \mathbb{C}, \qquad |\psi\rangle \mapsto \langle \varphi |\psi\rangle.$$

**9** Riesz map 
$$|\psi
angle\mapsto\langle\psi|$$
 is anti-linear

S Families of vectors  $(|\psi_i\rangle_{i \in I})$  will be often written as  $(|i\rangle)_{i \in I}$ .

# Single qubit system

- When  $H = \mathbb{C}^d$ , the standard basis is written  $|i\rangle_{i=1}^d$
- It is actually more common to count from 0, i.e., (|k))<sup>d-1</sup><sub>k=0</sub>, and call it the computational basis.
- For d = 2, any vector is represented as

 The case d = 2 is called single qubit system, for general d one uses the term qudit system.

# State vectors

- Naively, *H* corresponds to  $\Omega$ , but a less redundant description would be in terms of the complex projective space over *H*.
- It is more convenient to keep the linear structure of *H* and define as state vector any |ψ⟩ ∈ *H* with unit norm, i.e.,

$$\langle \psi | \psi \rangle = \| \psi \|^2 = 1.$$

- Physically, |ψ⟩ will be indistinguishable from a multiple e<sup>iθ</sup> |ψ⟩ with θ ∈ ℝ (called a *phase*).
- State vectors may be also called wave functions or slight improperly pure states.

# Amplitudes and quantum superposition

- Even if *H* is finite dimensional, the set of state vectors is infinite.
- For an orthonormal basis (|*i*⟩)<sub>*i*∈*I*</sub> ⊆ *H* any state vector can be represented as a quantum superposition

$$\left|\psi\right\rangle = \sum_{i\in I} \alpha_{i} \left|i\right\rangle$$

where  $\alpha_i = \langle i | \psi \rangle \in \mathbb{C}$  are amplitudes satisfying

$$\sum_{i\in I} |\alpha_i|^2 = 1.$$

- The squared moduli  $|\alpha_i|^2 = |\langle i|\psi\rangle|^2$  can be interpreted as probabilities,
- but  $|\psi\rangle$  is *not* a classical probability distribution over the  $|i\rangle$ 's with density  $|\alpha_i|^2$ .
- Changing a single phase in an amplitude may give a different state vector!

# Density operators

- Quantum analogues of probability distributions are density operators.
- Pure state associated to a state vector  $|\psi\rangle \in H$ : orthogonal projection

 $P_{\ket{\psi}}$ 

• We then take convex combinations:

$$\rho = \sum_{i \in I} \mathbf{p}_i \ket{\psi_i} \langle \psi_i |,$$

with  $|\psi_i\rangle \in H$  state vectors, and  $p_i \in [0, 1]$  a probability distribution, i.e.,  $\sum_{i \in I} p_i = 1$ .

# Abstract characterization

#### Density operators $\rho \in \mathcal{S}(H)$ are

- **1** self-adjoint (or Hermitian)  $\rho^* = \rho$ ,
- 2 positive  $\rho \ge 0$ ,
- 3 with unit trace  $tr[\rho] = 1$ .

By spectral theorem (in finite dimensions):

# Density matrix (with respect to a basis)

- Fix an orthonormal basis  $(|i\rangle)_{i \in I} \subseteq (\text{with } |I| = d = \dim(H))$
- 2 Any operator  $A: H \rightarrow H$  can be represented as a matrix

$$A_{ij}=\langle i|Aj
angle$$
 .

Solution A density operator corresponds to a density matrix  $(\rho_{ij})_{i,j \in I}$  such that

- **9** The diagonal  $(\rho_{ii})_{i \in I}$  induces a classical probability distribution over *I*.
- We identify classical probability distributions with diagonal matrices (however it depends on the basis!).

# **Exercises**

Exercise: (Hilbert-Schmidt scalar product) Let *H* be an elementary quantum system and  $A, B \in \mathcal{L}(H)$ . Prove that

$$(A, B) \mapsto \operatorname{tr}[A^*B]$$

defines a scalar product on  $\mathcal{L}(H)$  (called Hilbert-Schmidt scalar product). By choosing an orthonormal basis  $(|i\rangle)_{i \in I}$ , write explicitly its expression in terms of the matrices representing *A* and *B*.

**Exercise:** Given a density operator  $\rho \in S(H)$  on an elementary quantum system *H*, define its *purity* as tr[ $\rho^2$ ].

- Prove that the purity always belongs to the interval  $[\dim(H)^{-1}, 1] \subseteq (0, 1]$ .
- 2 Prove that  $\rho$  is a pure state if and only if its purity equals 1.

# Plan





#### Postulates of Quantum Mechanics

- Classical physics and probability
- (Elementary) quantum systems and their states
- Measurements and observables

# Observables

Aim: define the analogue of functions over a classical phase space, or of random variables on a sample space, taking values in a (finite) set  $\mathcal{X}$ . In brief:

- Observables A ∈ O(H) on a quantum system H are defined as self-adjoint operators A : H → H.
- The spectrum, i.e. the set of eigenvalues  $\sigma(A) \subseteq \mathbb{R}$  plays the role of the "set of possible values" of the observable *A* when measured through a (hypothetical) device

These observables correspond to real-valued random variables. What about a general  $\mathcal{X}$ ?

# Indicator observables

Let us follow a path akin to elementary probability theory: we model logical propositions ("events") about an elementary quantum system H as subspaces V < H:

- the 0-dimensional  $V = \{0\}$  represents a false statement
- the whole V = H represents a true statement
- One-dimensional subspaces spanned by a state vector  $|\psi\rangle$  can be interpreted as the proposition

"the quantum system is in the state associated to  $|\psi
angle$ ".

To each *V*, we associate its indicator observable  $\mathbb{1}_V : H \mapsto H$ , the orthogonal projection operator on *V*, which is

- self-adjoint  $\mathbb{1}_V = \mathbb{1}_V^*$ ,
- $1_V^2 = 1_V$ ,
- hence  $\sigma(\mathbb{1}_{V}) = \{0, 1\}.$

# Measuring $1_V$

The observable  $\mathbb{1}_V$  is interpreted as a physical device that, when applied to the system, yields outcomes 1 if *V* holds or 0 if *V* does not hold, with some probability according to the state of the system  $\rho \in \mathcal{S}(H)$ .

### We postulate that

by measuring 1<sub>V</sub>, the probability of observing that V holds (i.e., outcome is 1) is given by (Born's rule):

$$\mathbb{P}_{\rho}(V) = \mathbb{P}(\mathbb{1}_{V} = 1) := \operatorname{tr}[\mathbb{1}_{V}\rho] \in [0, 1]$$

If  $ho = \left|\psi\right\rangle\left\langle\psi\right|$  is a pure state, this equals

$$\operatorname{tr}[\mathbb{1}_{V}\rho] = \operatorname{tr}\mathbb{1}_{V} |\psi\rangle \langle \psi| = \langle \psi|\mathbb{1}_{V}\psi\rangle = ||\mathbb{1}_{V}\psi||^{2}.$$

Aving measured 1<sub>V</sub> and observed that V holds, the state of the system is updated from ρ to the density operator (collapse of the state):

$$\rho_{\boldsymbol{V}} = \frac{\mathbbm{1}_{\boldsymbol{V}} \rho \mathbbm{1}_{\boldsymbol{V}}}{\mathbb{P}_{\rho}(\boldsymbol{V})}$$

# Interpretation of Born's rule and collapse of the state

Compare

$$\rho_{V} = \frac{\mathbb{1}_{V} \rho \mathbb{1}_{V}}{\mathbb{P}_{\rho}(V)} \quad \text{with the classical rule:} \quad \mathbb{P}(\cdot | V) = \frac{\mathbb{P}(\cdot \text{ and } V)}{\mathbb{P}(V)}.$$

- The interpretation of the measurement postulate can be various (akin to Bayesian vs frequentist in probability and statistics)
- What do states and probabilities in quantum mechanics represent? are they states of knowledge (subjective) or objective?
- We may (safely?) interpret that they describe relative frequencies in the ideal infinite limit of a repeated sequence of independent experiments, in a prepared situation (measurements yield classical i.i.d. sequences).

# Example: projection on a state

- Let V be generated by a state vector |φ⟩ ∈ H, so that the indicator is 1<sub>V</sub> = |φ⟩ ⟨φ| ∈ O(H). Notice that it coincides with the associated density operator.
- 1<sub>V</sub> = |φ⟩ ⟨φ| ∈ O(H) yields therefore outcome 1 if "the quantum system is in the state associated to |ψ⟩", with probability

$$\mathbb{P}_{\rho}(V) = \operatorname{tr}[\rho |\varphi\rangle \langle \varphi|] = \langle \varphi, \rho \varphi|.\rangle$$

In the classical case this would give probability either 0 or 1!

 After measuring 1 <sub>V</sub> and observing outcome 1, the state collapses to the pure state associated to |φ⟩.

# The case that measuring $\mathbb{1}_V$ yields outcome 0

What about measuring  $\mathbb{1}_V$  yields outcome 0, i.e. V does not hold?

- Write 1<sub>V</sub> = 1<sub>H</sub> − 1<sub>V<sup>⊥</sup></sub>, where V<sup>⊥</sup> < H is the orthogonal subspace (interpret V<sup>⊥</sup> as the negation of V).
- 2 Thus, it happens with probability

$$\mathbb{P}_{\rho}(V^{\perp}) = \mathbb{P}_{\rho}(\mathbb{1}_{V} = 0) = \operatorname{tr}\left[\mathbb{1}_{V^{\perp}}\rho\right] = 1 - \operatorname{tr}\left[\mathbb{1}_{V}\rho\right] = 1 - \mathbb{P}_{\rho}(V),$$

The density operator updates in this case to

$$\rho_{\boldsymbol{V}^{\perp}} = \frac{\mathbb{1}_{\boldsymbol{V}^{\perp}} \rho \mathbb{1}_{\boldsymbol{V}^{\perp}}}{\mathbb{P}_{\rho}(\boldsymbol{V}^{\perp})}.$$

#### Measurements and observables

# Measuring but not observing

Can we describe the state of the system after  $\mathbb{1}_V$  has been measured but the outcome has been observed?

• We postulate it to be the convex combination

$$\rho_{V}\mathbb{P}_{\rho}(V) + \rho_{V^{\perp}}\mathbb{P}_{\rho}(V^{\perp}) = \mathbb{1}_{V}\rho I_{V} + \mathbb{1}_{V^{\perp}}\rho I_{V^{\perp}}.$$
 (1)

Compare with the law of total probability:

$$\mathbb{P}(\cdot) = \mathbb{P}(\cdot | V) \mathbb{P}(V) + \mathbb{P}(\cdot | V^c) \mathbb{P}(V^c),$$

- But in the quantum case the state is not ρ (in general).
- Intepretation: when  $\mathbb{1}_V$  is measured, it interacts with the system, and perturbs its state (one cane give better description via so-called *de-coherence* phenomenon)

Dario Trevisan (UNIPI)

# Joint measurements and compatibility

Given V, W < H with indicator observables 1<sub>V</sub>, 1<sub>W</sub> ∈ O(H), they are called compatible if they commute:

$$1_V 1_W = 1_W 1_V$$
 or  $[1_V, 1_W] = 0.$ 

In such a case, measuring first 1<sub>V</sub> and then 1<sub>W</sub> yields joint outcomes in {0,1}<sup>2</sup> with the same probability distribution as measuring in the opposite order:

$$\mathbb{P}_{\rho}(\text{first } \mathbb{1}_{V} = 1, \text{ then } \mathbb{1}_{W} = 1) = \mathbb{P}_{\rho}(V)\mathbb{P}_{\rho_{V}}(W) = \text{tr}[\rho\mathbb{1}_{V}] \cdot \frac{\text{tr}[\mathbb{1}_{V}\rho\mathbb{1}_{V}\mathbb{1}_{W}]}{\text{tr}[\rho\mathbb{1}_{V}]}.$$

 Moreover, the state also updates to a well-defined state, e.g. after observing that both V and W hold:

$$\rho_{\mathbf{V},\mathbf{W}} = \frac{\mathbbm{1}_{\mathbf{W}}\rho_{\mathbf{V}}\mathbbm{1}_{\mathbf{W}}}{\mathbbm{P}_{\rho_{\mathbf{V}}}(\mathbbm{1}_{\mathbf{W}}=\mathbbm{1})} = \frac{\mathbbm{1}_{\mathbf{W}}\mathbbm{1}_{\mathbf{V}}\rho\mathbbm{1}_{\mathbf{V}}\mathbbm{1}_{\mathbf{W}}}{\mathbbm{P}_{\rho}(\mathbf{V},\mathbf{W})},$$

• Notice that if V and W are orthogonal,  $\mathbb{1}_V \mathbb{1}_W = 0$ , they are compatible.

In the incompatible case, probabilities and the updated states may depend on the order in which the measurements are performed.

• Consider one-dimensional V, W, i.e.,

$$\mathbbm{1}_{V} = \left|\varphi_{0}\right\rangle\left\langle\varphi_{0}\right|, \quad \mathbbm{1}_{W} = \left|\varphi_{1}\right\rangle\left\langle\varphi_{1}\right|,$$

and assume that  $\rho = |\psi\rangle \langle \psi|$ .

Then,

$$\mathbb{P}_{|\psi\rangle}(\text{first } V, \text{ then } W) = \operatorname{tr}[\rho \mathbb{1}_V I_W \mathbb{1}_V] = |\langle \varphi_1 | \varphi_0 \rangle \langle \varphi_0 | \psi \rangle|^2.$$

 Measuring first 1<sub>W</sub> and then 1<sub>V</sub> instead gives as observed outcomes that both W and V hold with probability

$$\mathbb{P}_{|\psi\rangle}$$
(first *W*, then *V*) =  $|\langle \varphi_1 | \varphi_0 \rangle \langle \varphi_0 | \psi \rangle|^2$ ,

which is different e.g. if  $\langle \varphi_0 | \varphi_1 \rangle \neq 0$ ,  $\langle \varphi_0 | \psi \rangle \neq 0$  but  $\langle \varphi_1 | \psi \rangle = 0$ .

# Measurements with outcomes in a (finite) set $\mathcal{X}$

- Recall that random variable X with values in X can be identified with its system of alternatives ({X = x})<sub>x∈X</sub>.
- By considering the associated indicator variables, this amounts to require that

$$1_{\{X=x\}}1_{\{X=y\}}=0$$
 for every  $x\neq y\in\mathcal{X},$  and  $\sum_{x\in\mathcal{X}}1_{\{X=x\}}=1_{\Omega}.$ 

By analogy we define (elementary) measurement X on a quantum system H as a collection of closed subspaces X = (V<sub>x</sub>)<sub>x∈X</sub> − or indicator observables X = (1<sub>V<sub>x</sub></sub>)<sub>x∈X</sub> − such that

$$\mathbbm{1}_{V_x}\mathbbm{1}_{V_y}=0 \quad \text{for every } x \neq y \in \mathcal{X} \text{, and} \quad \sum_{x \in \mathcal{X}} \mathbbm{1}_{V_x}=\mathbbm{1}_{H}.$$

 Such a family of operators is an elementary instance of a projection-valued measure (PVM).

Dario Trevisan (UNIPI)

From

$$\mathbbm{1}_{V_x}\mathbbm{1}_{V_y}=0 \quad \text{for every } x\neq y\in\mathcal{X}, \text{ and } \quad \sum_{x\in\mathcal{X}}\mathbbm{1}_{V_x}=\mathbbm{1}_H,$$

we see that

- the *V<sub>x</sub>*'s are *compatible*, hence they can be measured in any order yielding the outcomes with well-defined probabilities.
- We refer to such operation as *measuring X*.
- if the system is in the state *ρ* and X is measured, the probability that V<sub>x</sub> holds is
- The "distribution of X" is  $(\mathbb{P}_{\rho}(X = x))_{x \in \mathcal{X}}$ .
- If X is measured but the outcome is not observed, the density operator ρ updates to

# Compatible measurements

- We say that two measurements X = (V<sub>x</sub>)<sub>x∈X</sub>, Y = (W<sub>y</sub>)<sub>y∈Y</sub> are compatible if 1<sub>V<sub>x</sub></sub>1<sub>W<sub>x</sub></sub> = 1<sub>W<sub>x</sub></sub>1<sub>V<sub>x</sub></sub> for every x ∈ X, y ∈ Y.
- In such a case, measuring X and Y yields observed values x, y with a probability P<sub>ρ</sub>(X = x, Y = y) which does not depend on the order of the measurements, and also a well-defined updated state ρ<sub>|X=x,Y=y</sub>.

# Observables as real-valued measurements

We identify quantum observables as measurements with values in  $\mathcal{X} \subseteq \mathbb{R}$ :

• Given  $X = (V_x)_{x \in \mathcal{X}}$  with  $\mathcal{X} \subseteq \mathbb{R}$ , we define

$$A_X = \sum_{x \in \mathcal{X}} x \mathbb{1}_{V_x} \in \mathcal{O}(H),$$

so that  $\sigma(A_X) = \mathcal{X}$ .

• Viceversa, given  $A \in \mathcal{O}(H)$ , use the spectral theorem to represent

$$\mathsf{A} = \sum_{\lambda \in \sigma(\mathsf{A})} \lambda \mathbb{1}_{\{\mathsf{A} = \lambda\}},$$

where  $\{A = \lambda\}$  denotes the eigenspace associated to  $\lambda \in \sigma(A)$ . The distribution of A is the collection of probabilities, for  $\lambda \in \sigma(A)$ ,

$$\mathbb{P}_{\rho}(\boldsymbol{A}=\boldsymbol{\lambda})=\mathrm{tr}[\rho\mathbb{1}_{\boldsymbol{A}=\boldsymbol{\lambda}}],$$

and can be used to define/compute e.g. mean, variance etc. of A:

$$(\mathbf{A})_{\rho} = \sum_{\lambda \in \sigma(\mathbf{A})} \lambda \mathbb{P}_{\rho}(\mathbf{A} = \lambda) = \operatorname{tr}[\rho \mathbf{A}].$$

# Functional calculus and compatible observables

• If  $A \in \mathcal{O}(H)$ , and  $f : \sigma(A) \to \mathbb{R}$ , define

$$f(A) = \sum_{\lambda \in \sigma(A)} f(\lambda) \mathbb{1}_{\{A=\lambda\}} \in \mathcal{O}(H)$$

#### Then

$$(f(\mathbf{A}))_{\rho} = \sum_{\lambda \in \sigma(\mathbf{A})} f(\lambda) \mathbb{P}_{\rho}(\mathbf{A} = \lambda) = \operatorname{tr}[\rho f(\mathbf{A})].$$

Two observables A, B ∈ O(H) are compatible (in the sense that the associated measurements are compatible) if and only if they commute, [A, B] = 0.

# Exercises

Exercise: Let *H* be an elementary quantum system and  $A, B \in \mathcal{L}(H)$ . Discuss the validity of the following statements.

• If 
$$A, B \in \mathcal{O}(H)$$
, then tr[ $AB$ ]  $\in \mathbb{R}$ .

- ② If tr[*AB*] ∈  $\mathbb{R}$  for every *B* ∈  $\mathcal{O}(H)$ , then necessarily *A* ∈  $\mathcal{O}(H)$ .
- If  $A, B \in \mathcal{O}_{\geq}(H)$ , then tr[AB]  $\geq$  0.
- If  $A \in \mathcal{O}(H)$  and  $tr[AB] \ge 0$  for every  $B \in \mathcal{O}_{\ge}(H)$ , then necessarily  $A \ge 0$ .

# Exercises

Exercise (A quantum Jensen inequality) On an elementary quantum system H, consider an observable  $A \in \mathcal{O}(H)$ . Let  $f : \sigma(A) \to \mathbb{R}$  be convex, i.e.

$$f\left(\sum_{x\in\sigma(A)}xp_x\right)\leq\sum_{x\in\sigma(A)}f(x)p_x$$

for every probability distribution  $(p_x)_{x \in \sigma(A)}$ .

For every density operator  $\rho \in \mathcal{S}(H)$ , prove the following inequality:

 $f((\boldsymbol{A})_{\rho}) \leq (f(\boldsymbol{A}))_{\rho}.$