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From classical to quantum information theory

Information theory studies the laws of storage and communication of
information:

@ Traditionally initiated as a field in the 1940s by C. Shannon,

@ a scientific field at the intersection of probability theory, statistics,
computer science, statistical mechanics, information engineering,
electrical engineering. ..

Quantum information theory:

@ studies limitations and new possibilities by the quantum mechanical
aspects of nature,

@ independent research area since the 1990s,

@ based on the postulates of quantum mechanics — further mathematical
tools, in particular functional analysis (operator theory).
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Aim of this course

@ An introduction to the main mathematical aspects of quantum information
theory.

@ Main result: quantify how information deteriorates when transmitted
through a quantum noisy communication channel, via a quantum coding
theorem, extending the classical Shannon fundamental limit.

@ No prior knowledge in classical information theory, nor in quantum
mechanics, is required.

@ Target audience: mathematicians with a background in probability,
analysis or mathematical physics.
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Structure of the course

We plan in total 6 lectures (in the morning, 11:00-13:00) and 6 problem
sessions, to discuss examples and exercises (in the afternoon, 14:30-15:30).

@ 23/01 (Mon): postulates of Quantum mechanics
@ 27/01 (Fri): Quantum channels

@ 03/02 (Fri): Inequalities

© 08/02 (Thu): Distances between quantum states
@ 13/02 (Mon): Quantum entropy

@ 17/02 (Fri): A coding theorem
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Teaching material

The exposition selects from monographs from various authors (Nielsen-
Chuang, Holevo, Wilde, Alicki-Fannes, Meyer, .. .)

At the webpage

http://people.dm.unipi.it/trevisan/teaching.html
you can download

@ Lecture notes (updated just before each lecture)
© Slides (also annotated after the lecture)
© Recordings (if possible)

| am also available for discussions online:
@ email: dario.trevisan@unipi.it,

@ Skype: dario-trevisan

If you plan to give the final exam, ask me about it!
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Postulates of Quantum Mechanics Classical physics and probability

e Introduction to the course

e Postulates of Quantum Mechanics
@ Classical physics and probability
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Classical physics

A system is described via three mathematical objects:

@ A set Q (the phase space): w € Q represent a possible state of the
system.

@ Observables, i.e., X : Q@ — X, with possible outcomes X, representing
quantities obtained via physical measurements.

© Transformations T; : Q — Q representing the time evolution of the system.
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Classical physics and probability
Elementary probability

Analogues of these three objects can be found:

@ The (finite) set Q (sample space), with w € Q describing the possible
outcome of a random experiment.

However, states are probability distributions p : Q — [0, 1], such that

Ywea P(w) = 1.

@ Random variables X on Q, with values in X. Events V C Q, model logical
statements (i.e., either true or false) are naturally associated with
indicator random variables 1y with X = {0, 1}.

© Stochastic processes describe time evolutions of €2, e.g. example Markov
chains.
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Classical physics and probability
Quantum mechanics and its postulates

@ Quantum mechanics is a physical theory, supported by a vast
experimental evidence (~ 100 years old), describing accurately
phenomena at very small scales (atoms, molecules, light),

@ probabilistic features: it only predicts the odds that some event will occur.
@ Its axioms describe three mathematical objects (states, observables, time
evolution) following the above scheme, but with a twist

(non-commutativity!)

@ We first describe the elementary setting, i.e., finite-dimensional systems
(roughly corresponding to  finite).

@ We next introduce the C*-algebra formalism to cover infinite-dimensional
cases.
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Postulates of Quantum Mechanics (Elementary) quantum systems and their states

e Introduction to the course

e Postulates of Quantum Mechanics

@ (Elementary) quantum systems and their states
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Postulates of Quantum Mechanics (Elementary) quantum systems and their states

An elementary quantum system is described by a finite-dimensional complex
Hilbert space (H, {:|-)).

@ The scalar product is linear in the right variable and anti-linear in the left
variable.

@ We use Dirac’s ket notation |¢) € H,

@ bra vectors (p| € H* denote

(pl:H=C,  [9) = (pl9).

© Riesz map |¢) — (¢] is anti-linear

© Families of vectors (|1););., will be often written as (|/))ie; -
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Single qubit system

@ When H = C9, the standard basis is written \i>f’:1

@ Itis actually more common to count from 0, i.e., (\k))f;&, and call it the
computational basis.

@ For d = 2, any vector is represented as

@ The case d = 2 is called single qubit system, for general d one uses the
term qudit system.
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State vectors

@ Naively, H corresponds to Q, but a less redundant description would be in
terms of the complex projective space over H.

@ It is more convenient to keep the linear structure of H and define as state
vector any |¢) € H with unit norm, i.e.,

(W) = ||[|° = 1.

@ Physically, |+/) will be indistinguishable from a multiple e |¢)) with § € R
(called a phase).

© State vectors may be also called wave functions or slight improperly pure
states.
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Postulates of Quantum Mechanics (Elementary) quantum systems and their states

Amplitudes and quantum superposition

@ Even if H is finite dimensional, the set of state vectors is infinite.

@ For an orthonormal basis (|i});c; € H any state vector can be
represented as a quantum superposition

) = aili)
iel
where «; = (i|y)) € C are amplitudes satisfying
> oi? =1.
iel

@ The squared moduli |a;|? = |(i|:)|* can be interpreted as probabilities,

@ but |¢) is not a classical probability distribution over the |i)’s with density
2.
@ Changing a single phase in an amplitude may give a different state vector!
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Density operators

@ Quantum analogues of probability distributions are density operators.

@ Pure state associated to a state vector |) € H: orthogonal projection

Piy)

@ We then take convex combinations:

p="Y_pilvn) (Wil

iel

with |¢;) € H state vectors, and p; € [0, 1] a probability distribution, i.e.,
diciPi=1.
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(Elementary) quantum systems and their states
Abstract characterization

Density operators p € S(H) are

@ self-adjoint (or Hermitian) p* = p,
Q positive p > 0,

© with unit trace tr[p] = 1.

By spectral theorem (in finite dimensions):
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(Elementary) quantum systems and their states
Density matrix (with respect to a basis)
@ Fix an orthonormal basis (|i))jc; C (with |/| = d = dim(H))

@ Any operator A: H — H can be represented as a matrix

Aj = (i Aj) .

© A density operator corresponds to a density matrix (pj)i je/ such that

© The diagonal (pji)ic; induces a classical probability distribution over /.

@ We identify classical probability distributions with diagonal matrices
(however it depends on the basis!).
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ol il b iiadl] (E'ementary) quantum systems and their states
Exercises

Exercise: (Hilbert-Schmidt scalar product) Let H be an elementary quantum
system and A, B € £L(H). Prove that

(A, B) — tr[A*B]

defines a scalar product on £(H) (called Hilbert-Schmidt scalar product). By
choosing an orthonormal basis (|/)),.,, write explicitly its expression in terms
of the matrices representing A and B.

Exercise: Given a density operator p € S(H) on an elementary quantum
system H, define its purity as tr[p?].

@ Prove that the purity always belongs to the interval [dim(H)~', 1] C (0, 1].
@ Prove that p is a pure state if and only if its purity equals 1.
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Postulates of Quantum Mechanics Measurements and observables

e Introduction to the course

e Postulates of Quantum Mechanics

@ Measurements and observables
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Observables

Aim: define the analogue of functions over a classical phase space, or of
random variables on a sample space, taking values in a (finite) set X. In brief:

@ Observables A € O(H) on a quantum system H are defined as
self-adjoint operators A: H — H.

@ The spectrum, i.e. the set of eigenvalues o(A) C R plays the role of the
“set of possible values’ of the observable A when measured through a
(hypothetical) device

These observables correspond to real-valued random variables. What about a
general X?
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Measurements and observables
Indicator observables

Let us follow a path akin to elementary probability theory: we model logical
propositions (“events”) about an elementary quantum system H as subspaces
V < H:

@ the 0-dimensional V = {0} represents a false statement
@ the whole V = H represents a true statement

@ One-dimensional subspaces spanned by a state vector |¢)) can be
interpreted as the proposition

“the quantum system is in the state associated to |)”.

To each V, we associate its indicator observable 1y : H — H, the orthogonal
projection operator on V, which is

@ self-adjoint 1y = 17,
° 12 =1y,
@ hence o(1y) = {0,1}.
23/01/2023  22/36



Measuring 1y

The observable 1y is interpreted as a physical device that, when applied to
the system, yields outcomes 1 if V holds or 0 if V does not hold, with some
probability according to the state of the system p € S(H).

We postulate that

@ by measuring 1y, the probability of observing that V holds (i.e., outcome
is 1) is given by (Born’s rule):

P,(V)=P(1y =1) :=tr[Lyp] € [0,1]
If p = |¢) (| is a pure state, this equals

tw[Lyp] = trly [9) (] = (Y[Lve) = Ly

© having measured 1 and observed that V holds, the state of the system
is updated from p to the density operator (collapse of the state):

_ Lyply
P,(V)

14%
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Measurements and observables
Interpretation of Born’s rule and collapse of the state

Compare

P(- and V)
P(V)

_ Lyply

py = with the classical rule: P(:|V) =
P, (V) (V)

@ The interpretation of the measurement postulate can be various (akin to
Bayesian vs frequentist in probability and statistics)

@ What do states and probabilities in quantum mechanics represent? are
they states of knowledge (subjective) or objective?

@ We may (safely?) interpret that they describe relative frequencies in the

ideal infinite limit of a repeated sequence of independent experiments, in
a prepared situation (measurements yield classical i.i.d. sequences).
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Measurements and observables
Example: projection on a state

@ Let V be generated by a state vector |p) € H, so that the indicator is
1y = |p) (p] € O(H). Notice that it coincides with the associated density
operator.

@ 1y = |p) (¢| € O(H) yields therefore outcome 1 if “the quantum system is
in the state associated to [¢)”, with probability

P,(V) = trp|p) (pl] = (p, pol.)

In the classical case this would give probability either O or 1!

@ After measuring 1y and observing outcome 1, the state collapses to the
pure state associated to |¢).

Dario Trevisan (UNIPI) 23/01/2023 25/36



Measurements and observables
The case that measuring 1 yields outcome 0

What about measuring 1y yields outcome 0, i.e. V does not hold?

@ Write 1y = 14 — 1., where V+ < H is the orthogonal subspace
(interpret V+ as the negation of V).

@ Thus, it happens with probability

Py(V5) =P,(ly =0) = tr[Lyspl =1 —tr[lyp] = 1 —B,(V),
@ The density operator updates in this case to

o ]].Vip]]. Vi
TRV
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Measurements and observables
Measuring but not observing

Can we describe the state of the system after 1 has been measured but the
outcome has been observed?

@ We postulate it to be the convex combination

VB (V) + puB,(VE) = Lyply + Ty plys. (1)

@ Compare with the law of total probability:

P() = P(|V)P(V) + P(-[VE)P(V®),

@ But in the quantum case the state is not p (in general).

@ Intepretation: when 1 is measured, it interacts with the system, and
perturbs its state (one cane give better description via so-called
de-coherence phenomenon)
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Measurements and observables
Joint measurements and compatibility

@ Given V, W < H with indicator observables 1y, 1,y € O(H), they are
called compatible if they commute:

1ylw=1w1y, or []l\/,]lw]:O.

@ In such a case, measuring first 1, and then 1 yields joint outcomes in
{0,1 }2 with the same probability distribution as measuring in the opposite
order:

tr[IL vplyl W]

Py(first 1y =1, then Ly = 1) = P,(V)P,, (W) = trply] - tr[ply]

@ Moreover, the state also updates to a well-defined state, e.g. after
observing that both V and W hold:

oy = Twoviw _ Twlvplvlw
’ Po,(Iw =1) P,(V,W) ~

@ Notice that if V and W are orthogonal, 11w = 0, they are compatible.

Dario Trevisan (UNIPI) 23/01/2023 28/36




Postulates of Quantum Mechanics Measurements and observables

In the incompatible case, probabilities and the updated states may depend on
the order in which the measurements are performed.

@ Consider one-dimensional V, W, i.e.,

Tv = [po) (pol, Tw = [p1) (¢1l,

and assume that p = |¢) (¥].
@ Then,

Py, (first V, then W) = tr[plly lwilv] = |{1]0) (ol )

@ Measuring first 1,y and then 1y instead gives as observed outcomes that
both W and V hold with probability

P (first W, then V) = |(1]00) (pol¥) [,

which is different e.g. if {(wo|@1) # 0, (polt) # 0 but (p1]y) = 0.
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Measurements and observables
Measurements with outcomes in a (finite) set X

@ Recall that random variable X with values in X can be identified with its
system of alternatives ({X = x})xecx-

@ By considering the associated indicator variables, this amounts to require
that

Tix=x}1{x=yy =0 forevery x #y € X, and Z 1ix=x) = 1o
xeX

@ By analogy we define (elementary) measurement X on a quantum
system H as a collection of closed subspaces X = (Vy)xex — or indicator
observables X = (1, )xex — such that

Ty 1y, =0 foreveryx#ye &, and Z]IVX:]IH-
xex

@ Such a family of operators is an elementary instance of a
projection-valued measure (PVM).
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Postulates of Quantum Mechanics Measurements and observables

From
Ty 1y, =0 foreveryx#ye &, and Z]lvx:]]'f‘h
xXexXx
we see that

@ the V,’s are compatible, hence they can be measured in any order
yielding the outcomes with well-defined probabilities.

@ We refer to such operation as measuring X.

@ if the system is in the state p and X is measured, the probability that V
holds is

@ The “distribution of X" is (P,(X = X))xex-

@ If X is measured but the outcome is not observed, the density operator p
updates to
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Measurements and observables
Compatible measurements

@ We say that two measurements X = (Vy)xex, Y = (W,),cy are
compatible if 1y, 1w, = 1w, 1y, forevery x € X, y € ).

@ In such a case, measuring X and Y yields observed values x, y with a

probability P,(X = x, Y = y) which does not depend on the order of the
measurements, and also a well-defined updated state pjx_,y—,.
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Measurements and observables
Observables as real-valued measurements

We identify quantum observables as measurements with values in X C R:

@ Given X = (Vy)xex with X C R, we define
Ax =Y xly, € O(H),

xeX

so that o(Ax) = X.
@ Viceversa, given A € O(H), use the spectral theorem to represent

A= Z Mya—ry,

A€o (A)

where {A = A} denotes the eigenspace associated to A € o(A).
The distribution of A is the collection of probabilities, for A € o(A),

Py(A=A) = tr[pla-n],
and can be used to define/compute e.g. mean, variance etc. of A:

(A)y= D AP,(A= ) =rt]pA]
A€o (A)
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Measurements and observables
Functional calculus and compatible observables

@ IfAc O(H),and f: o(A) — R, define

f(A)= Y f(Mlasy € O(H)
Aea(A)

@ Then

D= > fVB(A=A) = tulpf(A)].

AEo(A)

@ Two observables A, B € O(H) are compatible (in the sense that the

associated measurements are compatible) if and only if they commute,

[A.B] =0
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Exercises

Exercise: Let H be an elementary quantum system and A, B € L(H). Discuss
the validity of the following statements.

Q If A, B € O(H), then tr[AB] € R.
Q If w[AB] € R for every B € O(H), then necessarily A € O(H).
Q If A, B € O>(H), then tr[AB] > 0.

Q If Ac O(H) and t[AB] > 0 for every B € O (H), then necessarily A > 0.
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Exercises

Exercise (A quantum Jensen inequality) On an elementary quantum system
H, consider an observable A € O(H). Let f: o(A) — R be convex, i.e.

fl > xoc] < f(x)px
x€o(A) x€a(A)

for every probability distribution (px)xeo(4)-

For every density operator p € S(H), prove the following inequality:

f((A),) < (F(A)),-
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