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Introduction to the course

From classical to quantum information theory
Information theory studies the laws of storage and communication of
information:

Traditionally initiated as a field in the 1940s by C. Shannon,

a scientific field at the intersection of probability theory, statistics,
computer science, statistical mechanics, information engineering,
electrical engineering. . .

Quantum information theory:

studies limitations and new possibilities by the quantum mechanical
aspects of nature,

independent research area since the 1990s,

based on the postulates of quantum mechanics→ further mathematical
tools, in particular functional analysis (operator theory).
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Introduction to the course

Aim of this course

An introduction to the main mathematical aspects of quantum information
theory.

Main result: quantify how information deteriorates when transmitted
through a quantum noisy communication channel, via a quantum coding
theorem, extending the classical Shannon fundamental limit.

No prior knowledge in classical information theory, nor in quantum
mechanics, is required.

Target audience: mathematicians with a background in probability,
analysis or mathematical physics.
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Introduction to the course

Structure of the course

We plan in total 6 lectures (in the morning, 11:00-13:00) and 6 problem
sessions, to discuss examples and exercises (in the afternoon, 14:30-15:30).

1 23/01 (Mon): postulates of Quantum mechanics
2 27/01 (Fri): Quantum channels
3 03/02 (Fri): Inequalities
4 08/02 (Thu): Distances between quantum states
5 13/02 (Mon): Quantum entropy
6 17/02 (Fri): A coding theorem
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Introduction to the course

Teaching material

The exposition selects from monographs from various authors (Nielsen-
Chuang, Holevo, Wilde, Alicki-Fannes, Meyer, . . . )

At the webpage
http://people.dm.unipi.it/trevisan/teaching.html
you can download

1 Lecture notes (updated just before each lecture)
2 Slides (also annotated after the lecture)
3 Recordings (if possible)

I am also available for discussions online:
email: dario.trevisan@unipi.it,
Skype: dario-trevisan

If you plan to give the final exam, ask me about it!
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Postulates of Quantum Mechanics Classical physics and probability

Classical physics

A system is described via three mathematical objects:

1 A set Ω (the phase space): ω ∈ Ω represent a possible state of the
system.

2 Observables, i.e., X : Ω→ X , with possible outcomes X , representing
quantities obtained via physical measurements.

3 Transformations Tt : Ω→ Ω representing the time evolution of the system.
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Postulates of Quantum Mechanics Classical physics and probability

Elementary probability

Analogues of these three objects can be found:
1 The (finite) set Ω (sample space), with ω ∈ Ω describing the possible

outcome of a random experiment.

However, states are probability distributions ρ : Ω→ [0,1], such that∑
ω∈Ω ρ(ω) = 1.

2 Random variables X on Ω, with values in X . Events V ⊆ Ω, model logical
statements (i.e., either true or false) are naturally associated with
indicator random variables 1V with X = {0,1}.

3 Stochastic processes describe time evolutions of Ω, e.g. example Markov
chains.
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Postulates of Quantum Mechanics Classical physics and probability

Quantum mechanics and its postulates

Quantum mechanics is a physical theory, supported by a vast
experimental evidence (∼ 100 years old), describing accurately
phenomena at very small scales (atoms, molecules, light),

probabilistic features: it only predicts the odds that some event will occur.

Its axioms describe three mathematical objects (states, observables, time
evolution) following the above scheme, but with a twist
(non-commutativity!)

We first describe the elementary setting, i.e., finite-dimensional systems
(roughly corresponding to Ω finite).

We next introduce the C∗-algebra formalism to cover infinite-dimensional
cases.
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Postulates of Quantum Mechanics (Elementary) quantum systems and their states
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Postulates of Quantum Mechanics (Elementary) quantum systems and their states

An elementary quantum system is described by a finite-dimensional complex
Hilbert space (H, 〈·|·〉).

1 The scalar product is linear in the right variable and anti-linear in the left
variable.

2 We use Dirac’s ket notation |ψ〉 ∈ H,

3 bra vectors 〈ϕ| ∈ H∗ denote

〈ϕ| : H → C, |ψ〉 7→ 〈ϕ|ψ〉.

4 Riesz map |ψ〉 7→ 〈ψ| is anti-linear

5 Families of vectors (|ψi〉i∈I will be often written as (|i〉)i∈I .
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Postulates of Quantum Mechanics (Elementary) quantum systems and their states

Single qubit system

When H = Cd , the standard basis is written |i〉di=1

It is actually more common to count from 0, i.e., (|k〉)d−1
k=0 , and call it the

computational basis.

For d = 2, any vector is represented as

The case d = 2 is called single qubit system, for general d one uses the
term qudit system.
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Postulates of Quantum Mechanics (Elementary) quantum systems and their states

State vectors

1 Naively, H corresponds to Ω, but a less redundant description would be in
terms of the complex projective space over H.

2 It is more convenient to keep the linear structure of H and define as state
vector any |ψ〉 ∈ H with unit norm, i.e.,

〈ψ|ψ〉 = ‖ψ‖2 = 1.

3 Physically, |ψ〉 will be indistinguishable from a multiple eiθ |ψ〉 with θ ∈ R
(called a phase).

4 State vectors may be also called wave functions or slight improperly pure
states.
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Postulates of Quantum Mechanics (Elementary) quantum systems and their states

Amplitudes and quantum superposition

Even if H is finite dimensional, the set of state vectors is infinite.

For an orthonormal basis (|i〉)i∈I ⊆ H any state vector can be
represented as a quantum superposition

|ψ〉 =
∑
i∈I

αi |i〉

where αi = 〈i |ψ〉 ∈ C are amplitudes satisfying∑
i∈I

|αi |2 = 1.

The squared moduli |αi |2 = |〈i |ψ〉|2 can be interpreted as probabilities,

but |ψ〉 is not a classical probability distribution over the |i〉’s with density
|αi |2.

Changing a single phase in an amplitude may give a different state vector!
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Postulates of Quantum Mechanics (Elementary) quantum systems and their states

Density operators

Quantum analogues of probability distributions are density operators.

Pure state associated to a state vector |ψ〉 ∈ H: orthogonal projection

P|ψ〉

We then take convex combinations:

ρ =
∑
i∈I

pi |ψi〉 〈ψi | ,

with |ψi〉 ∈ H state vectors, and pi ∈ [0,1] a probability distribution, i.e.,∑
i∈I pi = 1.
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Postulates of Quantum Mechanics (Elementary) quantum systems and their states

Abstract characterization

Density operators ρ ∈ S(H) are
1 self-adjoint (or Hermitian) ρ∗ = ρ,
2 positive ρ ≥ 0,
3 with unit trace tr[ρ] = 1.

By spectral theorem (in finite dimensions):
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Postulates of Quantum Mechanics (Elementary) quantum systems and their states

Density matrix (with respect to a basis)

1 Fix an orthonormal basis (|i〉)i∈I ⊆ (with |I| = d = dim(H))

2 Any operator A : H → H can be represented as a matrix

Aij = 〈i |Aj〉 .

3 A density operator corresponds to a density matrix (ρij )i,j∈I such that

4 The diagonal (ρii )i∈I induces a classical probability distribution over I.

5 We identify classical probability distributions with diagonal matrices
(however it depends on the basis!).
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Postulates of Quantum Mechanics (Elementary) quantum systems and their states

Exercises

Exercise: (Hilbert-Schmidt scalar product) Let H be an elementary quantum
system and A,B ∈ L(H). Prove that

(A,B) 7→ tr[A∗B]

defines a scalar product on L(H) (called Hilbert-Schmidt scalar product). By
choosing an orthonormal basis (|i〉)i∈I , write explicitly its expression in terms
of the matrices representing A and B.

Exercise: Given a density operator ρ ∈ S(H) on an elementary quantum
system H, define its purity as tr[ρ2].

1 Prove that the purity always belongs to the interval [dim(H)−1,1] ⊆ (0,1].
2 Prove that ρ is a pure state if and only if its purity equals 1.
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Postulates of Quantum Mechanics Measurements and observables

Observables

Aim: define the analogue of functions over a classical phase space, or of
random variables on a sample space, taking values in a (finite) set X . In brief:

Observables A ∈ O(H) on a quantum system H are defined as
self-adjoint operators A : H 7→ H.

The spectrum, i.e. the set of eigenvalues σ(A) ⊆ R plays the role of the
“set of possible values’ of the observable A when measured through a
(hypothetical) device

These observables correspond to real-valued random variables. What about a
general X?
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Postulates of Quantum Mechanics Measurements and observables

Indicator observables
Let us follow a path akin to elementary probability theory: we model logical
propositions (“events”) about an elementary quantum system H as subspaces
V < H:

the 0-dimensional V = {0} represents a false statement

the whole V = H represents a true statement

One-dimensional subspaces spanned by a state vector |ψ〉 can be
interpreted as the proposition

“the quantum system is in the state associated to |ψ〉”.

To each V , we associate its indicator observable 1V : H 7→ H, the orthogonal
projection operator on V , which is

self-adjoint 1V = 1∗V ,
12

V = 1V ,
hence σ(1V ) = {0,1}.
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Postulates of Quantum Mechanics Measurements and observables

Measuring 1V

The observable 1V is interpreted as a physical device that, when applied to
the system, yields outcomes 1 if V holds or 0 if V does not hold, with some
probability according to the state of the system ρ ∈ S(H).

We postulate that
1 by measuring 1V , the probability of observing that V holds (i.e., outcome

is 1) is given by (Born’s rule):

Pρ(V ) = P(1V = 1) := tr[1Vρ] ∈ [0,1]

If ρ = |ψ〉 〈ψ| is a pure state, this equals

tr[1Vρ] = tr1V |ψ〉 〈ψ| = 〈ψ|1Vψ〉 = ‖1Vψ‖2
.

2 having measured 1V and observed that V holds, the state of the system
is updated from ρ to the density operator (collapse of the state):

ρV =
1Vρ1V

Pρ(V )
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Postulates of Quantum Mechanics Measurements and observables

Interpretation of Born’s rule and collapse of the state

Compare

ρV =
1Vρ1V

Pρ(V )
with the classical rule: P(·|V ) =

P(· and V )

P(V )
.

The interpretation of the measurement postulate can be various (akin to
Bayesian vs frequentist in probability and statistics)

What do states and probabilities in quantum mechanics represent? are
they states of knowledge (subjective) or objective?

We may (safely?) interpret that they describe relative frequencies in the
ideal infinite limit of a repeated sequence of independent experiments, in
a prepared situation (measurements yield classical i.i.d. sequences).
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Postulates of Quantum Mechanics Measurements and observables

Example: projection on a state

Let V be generated by a state vector |ϕ〉 ∈ H, so that the indicator is
1V = |ϕ〉 〈ϕ| ∈ O(H). Notice that it coincides with the associated density
operator.

1V = |ϕ〉 〈ϕ| ∈ O(H) yields therefore outcome 1 if “the quantum system is
in the state associated to |ψ〉”, with probability

Pρ(V ) = tr[ρ |ϕ〉 〈ϕ|] = 〈ϕ, ρϕ|.〉

In the classical case this would give probability either 0 or 1!

After measuring 1V and observing outcome 1, the state collapses to the
pure state associated to |ϕ〉.
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Postulates of Quantum Mechanics Measurements and observables

The case that measuring 1V yields outcome 0

What about measuring 1V yields outcome 0, i.e. V does not hold?

1 Write 1V = 1H − 1V⊥ , where V⊥ < H is the orthogonal subspace
(interpret V⊥ as the negation of V ).

2 Thus, it happens with probability

Pρ(V⊥) = Pρ(1V = 0) = tr [1V⊥ρ] = 1− tr [1Vρ] = 1− Pρ(V ),

3 The density operator updates in this case to

ρV⊥ =
1V⊥ρ1V⊥

Pρ(V⊥)
.
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Postulates of Quantum Mechanics Measurements and observables

Measuring but not observing
Can we describe the state of the system after 1V has been measured but the
outcome has been observed?

We postulate it to be the convex combination

ρVPρ(V ) + ρV⊥Pρ(V⊥) = 1VρIV + 1V⊥ρIV⊥ . (1)

Compare with the law of total probability:

P(·) = P(·|V )P(V ) + P(·|V c)P(V c),

But in the quantum case the state is not ρ (in general).

Intepretation: when 1V is measured, it interacts with the system, and
perturbs its state (one cane give better description via so-called
de-coherence phenomenon)
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Postulates of Quantum Mechanics Measurements and observables

Joint measurements and compatibility

Given V ,W < H with indicator observables 1V , 1W ∈ O(H), they are
called compatible if they commute:

1V1W = 1W1V or [1V ,1W ] = 0.

In such a case, measuring first 1V and then 1W yields joint outcomes in
{0,1}2 with the same probability distribution as measuring in the opposite
order:

Pρ(first 1V = 1, then 1W = 1) = Pρ(V )PρV (W ) = tr[ρ1V ] · tr[1Vρ1V1W ]

tr[ρ1V ]
.

Moreover, the state also updates to a well-defined state, e.g. after
observing that both V and W hold:

ρV ,W =
1WρV1W

PρV (1W = 1)
=
1W1Vρ1V1W

Pρ(V ,W )
,

Notice that if V and W are orthogonal, 1V1W = 0, they are compatible.
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Postulates of Quantum Mechanics Measurements and observables

In the incompatible case, probabilities and the updated states may depend on
the order in which the measurements are performed.

Consider one-dimensional V , W , i.e.,

1V = |ϕ0〉 〈ϕ0| , 1W = |ϕ1〉 〈ϕ1| ,

and assume that ρ = |ψ〉 〈ψ|.

Then,

P|ψ〉(first V , then W ) = tr[ρ1V IW1V ] = |〈ϕ1|ϕ0〉〈ϕ0|ψ〉|2 .

Measuring first 1W and then 1V instead gives as observed outcomes that
both W and V hold with probability

P|ψ〉(first W , then V ) = |〈ϕ1|ϕ0〉〈ϕ0|ψ〉|2 ,

which is different e.g. if 〈ϕ0|ϕ1〉 6= 0, 〈ϕ0|ψ〉 6= 0 but 〈ϕ1|ψ〉 = 0.
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Postulates of Quantum Mechanics Measurements and observables

Measurements with outcomes in a (finite) set X
Recall that random variable X with values in X can be identified with its
system of alternatives ({X = x})x∈X .

By considering the associated indicator variables, this amounts to require
that

1{X=x}1{X=y} = 0 for every x 6= y ∈ X , and
∑
x∈X

1{X=x} = 1Ω.

By analogy we define (elementary) measurement X on a quantum
system H as a collection of closed subspaces X = (Vx )x∈X – or indicator
observables X = (1Vx )x∈X – such that

1Vx1Vy = 0 for every x 6= y ∈ X , and
∑
x∈X

1Vx = 1H .

Such a family of operators is an elementary instance of a
projection-valued measure (PVM).
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Postulates of Quantum Mechanics Measurements and observables

From
1Vx1Vy = 0 for every x 6= y ∈ X , and

∑
x∈X

1Vx = 1H ,

we see that

the Vx ’s are compatible, hence they can be measured in any order
yielding the outcomes with well-defined probabilities.

We refer to such operation as measuring X .

if the system is in the state ρ and X is measured, the probability that Vx
holds is

The “distribution of X ” is (Pρ(X = x))x∈X .

If X is measured but the outcome is not observed, the density operator ρ
updates to
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Postulates of Quantum Mechanics Measurements and observables

Compatible measurements

We say that two measurements X = (Vx )x∈X , Y = (Wy )y∈Y are
compatible if 1Vx1Wx = 1Wx1Vx for every x ∈ X , y ∈ Y.

In such a case, measuring X and Y yields observed values x , y with a
probability Pρ(X = x ,Y = y) which does not depend on the order of the
measurements, and also a well-defined updated state ρ|X=x,Y =y .
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Postulates of Quantum Mechanics Measurements and observables

Observables as real-valued measurements
We identify quantum observables as measurements with values in X ⊆ R:

Given X = (Vx )x∈X with X ⊆ R, we define

AX =
∑
x∈X

x1Vx ∈ O(H),

so that σ(AX ) = X .
Viceversa, given A ∈ O(H), use the spectral theorem to represent

A =
∑

λ∈σ(A)

λ1{A=λ},

where {A = λ} denotes the eigenspace associated to λ ∈ σ(A).
The distribution of A is the collection of probabilities, for λ ∈ σ(A),

Pρ(A = λ) = tr[ρ1A=λ],

and can be used to define/compute e.g. mean, variance etc. of A:

(A)ρ =
∑

λ∈σ(A)

λPρ(A = λ) = tr[ρA].
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Postulates of Quantum Mechanics Measurements and observables

Functional calculus and compatible observables

If A ∈ O(H), and f : σ(A)→ R, define

f (A) =
∑

λ∈σ(A)

f (λ)1{A=λ} ∈ O(H)

Then
(f (A))ρ =

∑
λ∈σ(A)

f (λ)Pρ(A = λ) = tr[ρf (A)].

Two observables A, B ∈ O(H) are compatible (in the sense that the
associated measurements are compatible) if and only if they commute,
[A,B] = 0.
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Postulates of Quantum Mechanics Measurements and observables

Exercises

Exercise: Let H be an elementary quantum system and A,B ∈ L(H). Discuss
the validity of the following statements.

1 If A,B ∈ O(H), then tr[AB] ∈ R.

2 If tr[AB] ∈ R for every B ∈ O(H), then necessarily A ∈ O(H).

3 If A,B ∈ O≥(H), then tr[AB] ≥ 0.

4 If A ∈ O(H) and tr[AB] ≥ 0 for every B ∈ O≥(H), then necessarily A ≥ 0.
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Postulates of Quantum Mechanics Measurements and observables

Exercises

Exercise (A quantum Jensen inequality) On an elementary quantum system
H, consider an observable A ∈ O(H). Let f : σ(A)→ R be convex, i.e.

f

 ∑
x∈σ(A)

xpx

 ≤ ∑
x∈σ(A)

f (x)px

for every probability distribution (px )x∈σ(A).

For every density operator ρ ∈ S(H), prove the following inequality:

f ((A)ρ) ≤ (f (A))ρ.
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