Mathematical Aspects of Quantum Information Theory:

Lecture 1

Dario Trevisan
Università di Pisa
dario.trevisan@unipi.it

Plan

(1) Introduction to the course
(2) Postulates of Quantum Mechanics

- Classical physics and probability
- (Elementary) quantum systems and their states
- Measurements and observables

From classical to quantum information theory

Information theory studies the laws of storage and communication of information:

- Traditionally initiated as a field in the 1940 s by C. Shannon,
- a scientific field at the intersection of probability theory, statistics, computer science, statistical mechanics, information engineering, electrical engineering...

Quantum information theory:

- studies limitations and new possibilities by the quantum mechanical aspects of nature,
- independent research area since the 1990s,
- based on the postulates of quantum mechanics \rightarrow further mathematical tools, in particular functional analysis (operator theory).

Aim of this course

- An introduction to the main mathematical aspects of quantum information theory.
- Main result: quantify how information deteriorates when transmitted through a quantum noisy communication channel, via a quantum coding theorem, extending the classical Shannon fundamental limit.
- No prior knowledge in classical information theory, nor in quantum mechanics, is required.
- Target audience: mathematicians with a background in probability, analysis or mathematical physics.

Structure of the course

We plan in total 6 lectures (in the morning, 11:00-13:00) and 6 problem sessions, to discuss examples and exercises (in the afternoon, 14:30-15:30).
(1) 23/01 (Mon): postulates of Quantum mechanics
(2) 27/01 (Fri): Quantum channels
(3) 03/02 (Fri): Inequalities
(9) 08/02 (Thu): Distances between quantum states
(3) 13/02 (Mon): Quantum entropy
(17/02 (Fri): A coding theorem

Teaching material

The exposition selects from monographs from various authors (NielsenChuang, Holevo, Wilde, Alicki-Fannes, Meyer, ...)

At the webpage
http://people.dm.unipi.it/trevisan/teaching.html you can download
(1) Lecture notes (updated just before each lecture)
(2) Slides (also annotated after the lecture)
(3) Recordings (if possible)

I am also available for discussions online:

- email: dario.trevisan@unipi.it,
- Skype: dario-trevisan

If you plan to give the final exam, ask me about it!

Plan

(1) Introduction to the course
(2) Postulates of Quantum Mechanics

- Classical physics and probability
- (Elementary) quantum systems and their states
- Measurements and observables

Classical physics

A system is described via three mathematical objects:
(1) A set Ω (the phase space): $\omega \in \Omega$ represent a possible state of the system.
(2) Observables, i.e., $X: \Omega \rightarrow \mathcal{X}$, with possible outcomes \mathcal{X}, representing quantities obtained via physical measurements.
(3) Transformations $T_{t}: \Omega \rightarrow \Omega$ representing the time evolution of the system.

Elementary probability

Analogues of these three objects can be found:
(1) The (finite) set Ω (sample space), with $\omega \in \Omega$ describing the possible outcome of a random experiment.

However, states are probability distributions $\rho: \Omega \rightarrow[0,1]$, such that $\sum_{\omega \in \Omega} \rho(\omega)=1$.
(2) Random variables X on Ω, with values in \mathcal{X}. Events $V \subseteq \Omega$, model logical statements (i.e., either true or false) are naturally associated with indicator random variables 1_{v} with $\mathcal{X}=\{0,1\}$.
(3) Stochastic processes describe time evolutions of Ω, e.g. example Markov chains.

Quantum mechanics and its postulates

- Quantum mechanics is a physical theory, supported by a vast experimental evidence (~ 100 years old), describing accurately phenomena at very small scales (atoms, molecules, light),
- probabilistic features: it only predicts the odds that some event will occur.
- Its axioms describe three mathematical objects (states, observables, time evolution) following the above scheme, but with a twist (non-commutativity!)
- We first describe the elementary setting, i.e., finite-dimensional systems (roughly corresponding to Ω finite).
- We next introduce the C^{*}-algebra formalism to cover infinite-dimensional cases.

Plan

(1) Introduction to the course
(2) Postulates of Quantum Mechanics

- Classical physics and probability
- (Elementary) quantum systems and their states
- Measurements and observables

An elementary quantum system is described by a finite-dimensional complex Hilbert space $(H,\langle\cdot \mid \cdot\rangle)$.
(1) The scalar product is linear in the right variable and anti-linear in the left variable.
(2) We use Dirac's ket notation $|\psi\rangle \in H$,
(3) bra vectors $\langle\varphi| \in H^{*}$ denote

$$
\langle\varphi|: H \rightarrow \mathbb{C}, \quad|\psi\rangle \mapsto\langle\varphi \mid \psi\rangle .
$$

(9) Riesz map $|\psi\rangle \mapsto\langle\psi|$ is anti-linear
(6) Families of vectors $\left(\left|\psi_{i}\right\rangle_{i \in I}\right.$ will be often written as $(|i\rangle)_{i \in I}$.

Single qubit system

- When $H=\mathbb{C}^{d}$, the standard basis is written $|i\rangle_{i=1}^{d}$
- It is actually more common to count from 0 , i.e., $(|k\rangle)_{k=0}^{d-1}$, and call it the computational basis.
- For $d=2$, any vector is represented as
- The case $d=2$ is called single qubit system, for general d one uses the term qudit system.

State vectors

(1) Naively, H corresponds to Ω, but a less redundant description would be in terms of the complex projective space over H .
(2) It is more convenient to keep the linear structure of H and define as state vector any $|\psi\rangle \in H$ with unit norm, i.e.,

$$
\langle\psi \mid \psi\rangle=\|\psi\|^{2}=1 .
$$

(3) Physically, $|\psi\rangle$ will be indistinguishable from a multiple $e^{i \theta}|\psi\rangle$ with $\theta \in \mathbb{R}$ (called a phase).
(4) State vectors may be also called wave functions or slight improperly pure states.

Amplitudes and quantum superposition

- Even if H is finite dimensional, the set of state vectors is infinite.
- For an orthonormal basis $(|i\rangle)_{i \in I} \subseteq H$ any state vector can be represented as a quantum superposition

$$
|\psi\rangle=\sum_{i \in I} \alpha_{i}|i\rangle
$$

where $\alpha_{i}=\langle i \mid \psi\rangle \in \mathbb{C}$ are amplitudes satisfying

$$
\sum_{i \in I}\left|\alpha_{i}\right|^{2}=1 .
$$

- The squared moduli $\left|\alpha_{i}\right|^{2}=|\langle i \mid \psi\rangle|^{2}$ can be interpreted as probabilities,
- but $|\psi\rangle$ is not a classical probability distribution over the $|i\rangle$'s with density $\left|\alpha_{i}\right|^{2}$.
- Changing a single phase in an amplitude may give a different state vector!

Density operators

- Quantum analogues of probability distributions are density operators.
- Pure state associated to a state vector $|\psi\rangle \in H$: orthogonal projection

$$
P_{|\psi\rangle}
$$

- We then take convex combinations:

$$
\rho=\sum_{i \in I} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|
$$

with $\left|\psi_{i}\right\rangle \in H$ state vectors, and $p_{i} \in[0,1]$ a probability distribution, i.e., $\sum_{i \in I} p_{i}=1$.

Abstract characterization

Density operators $\rho \in \mathcal{S}(H)$ are
(1) self-adjoint (or Hermitian) $\rho^{*}=\rho$,
(2) positive $\rho \geq 0$,
(3) with unit $\operatorname{trace} \operatorname{tr}[\rho]=1$.

By spectral theorem (in finite dimensions):

Density matrix (with respect to a basis)

(1) Fix an orthonormal basis $(|i\rangle)_{i \in I} \subseteq($ with $|I|=d=\operatorname{dim}(H))$
(2) Any operator $A: H \rightarrow H$ can be represented as a matrix

$$
A_{i j}=\langle i \mid A j\rangle
$$

(3) A density operator corresponds to a density matrix $\left(\rho_{i j}\right)_{i, j \in I}$ such that
(9) The diagonal $\left(\rho_{i i}\right)_{i \in I}$ induces a classical probability distribution over I.
(3) We identify classical probability distributions with diagonal matrices (however it depends on the basis!).

Exercises

Exercise: (Hilbert-Schmidt scalar product) Let H be an elementary quantum system and $A, B \in \mathcal{L}(H)$. Prove that

$$
(A, B) \mapsto \operatorname{tr}\left[A^{*} B\right]
$$

defines a scalar product on $\mathcal{L}(H)$ (called Hilbert-Schmidt scalar product). By choosing an orthonormal basis $(|i\rangle)_{i \in 1}$, write explicitly its expression in terms of the matrices representing A and B.

Exercise: Given a density operator $\rho \in \mathcal{S}(H)$ on an elementary quantum system H, define its purity as $\operatorname{tr}\left[\rho^{2}\right]$.
(1) Prove that the purity always belongs to the interval $\left[\operatorname{dim}(H)^{-1}, 1\right] \subseteq(0,1]$.
(2) Prove that ρ is a pure state if and only if its purity equals 1 .

Plan

(1) Introduction to the course
(2) Postulates of Quantum Mechanics

- Classical physics and probability
- (Elementary) quantum systems and their states
- Measurements and observables

Observables

Aim: define the analogue of functions over a classical phase space, or of random variables on a sample space, taking values in a (finite) set \mathcal{X}. In brief:

- Observables $A \in \mathcal{O}(H)$ on a quantum system H are defined as self-adjoint operators A : $H \mapsto H$.
- The spectrum, i.e. the set of eigenvalues $\sigma(A) \subseteq \mathbb{R}$ plays the role of the "set of possible values' of the observable A when measured through a (hypothetical) device

These observables correspond to real-valued random variables. What about a general \mathcal{X} ?

Indicator observables

Let us follow a path akin to elementary probability theory: we model logical propositions ("events") about an elementary quantum system H as subspaces $V<H$:

- the 0-dimensional $V=\{0\}$ represents a false statement
- the whole $V=H$ represents a true statement
- One-dimensional subspaces spanned by a state vector $|\psi\rangle$ can be interpreted as the proposition

"the quantum system is in the state associated to $|\psi\rangle$ ".

To each V, we associate its indicator observable $\mathbb{1}_{V}: H \mapsto H$, the orthogonal projection operator on V, which is

- self-adjoint $\mathbb{1}_{V}=\mathbb{1}_{V}^{*}$,
- $\mathbb{1}_{V}^{2}=\mathbb{1}_{V}$,
- hence $\sigma\left(\mathbb{1}_{V}\right)=\{0,1\}$.

Measuring $\mathbb{1}_{V}$

The observable $\mathbb{1}_{V}$ is interpreted as a physical device that, when applied to the system, yields outcomes 1 if V holds or 0 if V does not hold, with some probability according to the state of the system $\rho \in \mathcal{S}(H)$.

We postulate that
(1) by measuring $\mathbb{1}_{V}$, the probability of observing that V holds (i.e., outcome is 1) is given by (Born's rule):

$$
\mathbb{P}_{\rho}(V)=\mathbb{P}\left(\mathbb{1}_{V}=1\right):=\operatorname{tr}\left[\mathbb{1}_{V \rho}\right] \in[0,1]
$$

If $\rho=|\psi\rangle\langle\psi|$ is a pure state, this equals

$$
\operatorname{tr}\left[\mathbb{1}_{V} \rho\right]=\operatorname{tr} \mathbb{1}_{V}|\psi\rangle\langle\psi|=\left\langle\psi \mid \mathbb{1}_{V} \psi\right\rangle=\left\|\mathbb{1}_{V} \psi\right\|^{2} .
$$

(2) having measured $\mathbb{1}_{V}$ and observed that V holds, the state of the system is updated from ρ to the density operator (collapse of the state):

$$
\rho_{V}=\frac{\mathbb{1}_{V \rho} \mathbb{1}_{V}}{\mathbb{P}_{\rho}(V)}
$$

Interpretation of Born's rule and collapse of the state

Compare

$$
\rho_{V}=\frac{\mathbb{1}_{V \rho} \mathbb{\mathbb { I }}_{V}}{\mathbb{P}_{\rho}(V)} \text { with the classical rule: } \mathbb{P}(\cdot \mid V)=\frac{\mathbb{P}(\cdot \text { and } V)}{\mathbb{P}(V)}
$$

- The interpretation of the measurement postulate can be various (akin to Bayesian vs frequentist in probability and statistics)
- What do states and probabilities in quantum mechanics represent? are they states of knowledge (subjective) or objective?
- We may (safely?) interpret that they describe relative frequencies in the ideal infinite limit of a repeated sequence of independent experiments, in a prepared situation (measurements yield classical i.i.d. sequences).

Example: projection on a state

- Let V be generated by a state vector $|\varphi\rangle \in H$, so that the indicator is $\mathbb{1}_{V}=|\varphi\rangle\langle\varphi| \in \mathcal{O}(H)$. Notice that it coincides with the associated density operator.
- $\mathbb{1}_{V}=|\varphi\rangle\langle\varphi| \in \mathcal{O}(H)$ yields therefore outcome 1 if "the quantum system is in the state associated to $|\psi\rangle$ ", with probability

$$
\mathbb{P}_{\rho}(V)=\operatorname{tr}[\rho|\varphi\rangle\langle\varphi|]=\langle\varphi, \rho \varphi \mid .\rangle
$$

In the classical case this would give probability either 0 or 1!

- After measuring $\mathbb{1}_{V}$ and observing outcome 1 , the state collapses to the pure state associated to $|\varphi\rangle$.

The case that measuring $\mathbb{1}_{V}$ yields outcome 0

What about measuring $\mathbb{1}_{V}$ yields outcome 0 , i.e. V does not hold?
(1) Write $\mathbb{1}_{V}=\mathbb{1}_{H}-\mathbb{1}_{V \perp}$, where $V^{\perp}<H$ is the orthogonal subspace (interpret V^{\perp} as the negation of V).
(2) Thus, it happens with probability

$$
\mathbb{P}_{\rho}\left(V^{\perp}\right)=\mathbb{P}_{\rho}\left(\mathbb{1}_{V}=0\right)=\operatorname{tr}\left[\mathbb{1}_{V \perp} \rho\right]=1-\operatorname{tr}\left[\mathbb{1}_{V} \rho\right]=1-\mathbb{P}_{\rho}(V),
$$

(3) The density operator updates in this case to

$$
\rho_{V \perp}=\frac{\mathbb{1}_{V \perp} \rho \mathbb{1}_{V \perp}}{\mathbb{P}_{\rho}\left(V^{\perp}\right)} .
$$

Measuring but not observing

Can we describe the state of the system after $\mathbb{1}_{V}$ has been measured but the outcome has been observed?

- We postulate it to be the convex combination

$$
\begin{equation*}
\rho_{V} \mathbb{P}_{\rho}(V)+\rho_{V \perp} \mathbb{P}_{\rho}\left(V^{\perp}\right)=\mathbb{1}_{V} I_{V}+\mathbb{1}_{V \perp} \rho_{V \perp} . \tag{1}
\end{equation*}
$$

- Compare with the law of total probability:

$$
\mathbb{P}(\cdot)=\mathbb{P}(\cdot \mid V) \mathbb{P}(V)+\mathbb{P}\left(\cdot \mid V^{c}\right) \mathbb{P}\left(V^{c}\right),
$$

- But in the quantum case the state is not ρ (in general).
- Intepretation: when $\mathbb{1}_{V}$ is measured, it interacts with the system, and perturbs its state (one cane give better description via so-called de-coherence phenomenon)

Joint measurements and compatibility

- Given $V, W<H$ with indicator observables $\mathbb{1}_{V}, \mathbb{1}_{W} \in \mathcal{O}(H)$, they are called compatible if they commute:

$$
\mathbb{1}_{V} \mathbb{1}_{W}=\mathbb{1}_{W} \mathbb{1}_{V} \quad \text { or } \quad\left[\mathbb{1}_{V}, \mathbb{1}_{W}\right]=0
$$

- In such a case, measuring first $\mathbb{1}_{V}$ and then $\mathbb{1}_{W}$ yields joint outcomes in $\{0,1\}^{2}$ with the same probability distribution as measuring in the opposite order:

$$
\mathbb{P}_{\rho}\left(\text { first } \mathbb{1}_{V}=1 \text {, then } \mathbb{1}_{W}=1\right)=\mathbb{P}_{\rho}(V) \mathbb{P}_{\rho_{V}}(W)=\operatorname{tr}\left[\rho \mathbb{1}_{V}\right] \cdot \frac{\operatorname{tr}\left[\mathbb{1}_{v \rho} \mathbb{1}_{v} \mathbb{1}_{w}\right]}{\operatorname{tr}\left[\rho \mathbb{1}_{V}\right]}
$$

- Moreover, the state also updates to a well-defined state, e.g. after observing that both V and W hold:

$$
\rho_{V, W}=\frac{\mathbb{1}_{W} \rho_{V} \mathbb{1}_{W}}{\mathbb{P}_{\rho_{V}}\left(\mathbb{1}_{W}=1\right)}=\frac{\mathbb{1}_{W} \mathbb{1}_{V \rho} \mathbb{1}_{V} \mathbb{1}_{W}}{\mathbb{P}_{\rho}(V, W)},
$$

- Notice that if V and W are orthogonal, $\mathbb{1}_{V} \mathbb{1} W=0$, they are compatible.

In the incompatible case, probabilities and the updated states may depend on the order in which the measurements are performed.

- Consider one-dimensional V, W, i.e.,

$$
\mathbb{1}_{V}=\left|\varphi_{0}\right\rangle\left\langle\varphi_{0}\right|, \quad \mathbb{1}_{W}=\left|\varphi_{1}\right\rangle\left\langle\varphi_{1}\right|,
$$

and assume that $\rho=|\psi\rangle\langle\psi|$.

- Then,

$$
\mathbb{P}_{|\psi\rangle}(\text { first } V \text {, then } W)=\operatorname{tr}\left[\rho \mathbb{1}_{V} I_{W} \mathbb{1}_{V}\right]=\left|\left\langle\varphi_{1} \mid \varphi_{0}\right\rangle\left\langle\varphi_{0} \mid \psi\right\rangle\right|^{2} .
$$

- Measuring first $\mathbb{1}_{W}$ and then $\mathbb{1}_{V}$ instead gives as observed outcomes that both W and V hold with probability

$$
\mathbb{P}_{|\psi\rangle}(\text { first } W \text {, then } V)=\left|\left\langle\varphi_{1} \mid \varphi_{0}\right\rangle\left\langle\varphi_{0} \mid \psi\right\rangle\right|^{2},
$$

which is different e.g. if $\left\langle\varphi_{0} \mid \varphi_{1}\right\rangle \neq 0,\left\langle\varphi_{0} \mid \psi\right\rangle \neq 0$ but $\left\langle\varphi_{1} \mid \psi\right\rangle=0$.

Measurements with outcomes in a (finite) set \mathcal{X}

- Recall that random variable X with values in \mathcal{X} can be identified with its system of alternatives $(\{X=x\})_{x \in \mathcal{X}}$.
- By considering the associated indicator variables, this amounts to require that

$$
1_{\{X=x\}} 1_{\{X=y\}}=0 \quad \text { for every } x \neq y \in \mathcal{X} \text {, and } \quad \sum_{x \in \mathcal{X}} 1_{\{X=x\}}=1_{\Omega} .
$$

- By analogy we define (elementary) measurement X on a quantum system H as a collection of closed subspaces $X=\left(V_{x}\right)_{x \in \mathcal{X}}$ - or indicator observables $X=\left(\mathbb{1}_{v_{x}}\right)_{x \in \mathcal{X}}$ - such that

$$
\mathbb{1}_{v_{x}} \mathbb{1} v_{y}=0 \quad \text { for every } x \neq y \in \mathcal{X} \text {, and } \quad \sum_{x \in \mathcal{X}} \mathbb{1}_{v_{x}}=\mathbb{1}_{H} .
$$

- Such a family of operators is an elementary instance of a projection-valued measure (PVM).

From

$$
\mathbb{1}_{v_{x}} \mathbb{1} v_{y}=0 \quad \text { for every } x \neq y \in \mathcal{X} \text {, and } \quad \sum_{x \in \mathcal{X}} \mathbb{1}_{v_{x}}=\mathbb{1}_{H},
$$

we see that

- the V_{x} 's are compatible, hence they can be measured in any order yielding the outcomes with well-defined probabilities.
- We refer to such operation as measuring X.
- if the system is in the state ρ and X is measured, the probability that V_{x} holds is
- The "distribution of X " is $\left(\mathbb{P}_{\rho}(X=x)\right)_{x \in \mathcal{X}}$.
- If X is measured but the outcome is not observed, the density operator ρ updates to

Compatible measurements

- We say that two measurements $X=\left(V_{x}\right)_{x \in \mathcal{X}}, Y=\left(W_{y}\right)_{y \in \mathcal{Y}}$ are compatible if $\mathbb{1} v_{x} \mathbb{1} w_{x}=\mathbb{1} w_{x} \mathbb{1} v_{x}$ for every $x \in \mathcal{X}, y \in \mathcal{Y}$.
- In such a case, measuring X and Y yields observed values x, y with a probability $\mathbb{P}_{\rho}(X=x, Y=y)$ which does not depend on the order of the measurements, and also a well-defined updated state $\rho_{\mid X=x, Y=y}$.

Observables as real-valued measurements

We identify quantum observables as measurements with values in $\mathcal{X} \subseteq \mathbb{R}$:

- Given $X=\left(V_{x}\right)_{x \in \mathcal{X}}$ with $\mathcal{X} \subseteq \mathbb{R}$, we define

$$
A_{X}=\sum_{x \in \mathcal{X}} x \mathbb{1}_{v_{x}} \in \mathcal{O}(H)
$$

so that $\sigma\left(A_{X}\right)=\mathcal{X}$.

- Viceversa, given $A \in \mathcal{O}(H)$, use the spectral theorem to represent

$$
A=\sum_{\lambda \in \sigma(A)} \lambda \mathbb{1}_{\{A=\lambda\}},
$$

where $\{\boldsymbol{A}=\lambda\}$ denotes the eigenspace associated to $\lambda \in \sigma(A)$.
The distribution of A is the collection of probabilities, for $\lambda \in \sigma(\boldsymbol{A})$,

$$
\mathbb{P}_{\rho}(\boldsymbol{A}=\lambda)=\operatorname{tr}\left[\rho \mathbb{1}_{A=\lambda}\right],
$$

and can be used to define/compute e.g. mean, variance etc. of A :

$$
(A)_{\rho}=\sum_{\lambda \in \sigma(A)} \lambda \mathbb{P}_{\rho}(A=\lambda)=\operatorname{tr}[\rho A]
$$

Functional calculus and compatible observables

- If $A \in \mathcal{O}(H)$, and $f: \sigma(A) \rightarrow \mathbb{R}$, define

$$
f(A)=\sum_{\lambda \in \sigma(A)} f(\lambda) \mathbb{1}_{\{A=\lambda\}} \in \mathcal{O}(H)
$$

- Then

$$
(f(A))_{\rho}=\sum_{\lambda \in \sigma(A)} f(\lambda) \mathbb{P}_{\rho}(A=\lambda)=\operatorname{tr}[\rho f(A)] .
$$

- Two observables $A, B \in \mathcal{O}(H)$ are compatible (in the sense that the associated measurements are compatible) if and only if they commute, $[A, B]=0$.

Exercises

Exercise: Let H be an elementary quantum system and $A, B \in \mathcal{L}(H)$. Discuss the validity of the following statements.
(1) If $A, B \in \mathcal{O}(H)$, then $\operatorname{tr}[A B] \in \mathbb{R}$.
(2) If $\operatorname{tr}[A B] \in \mathbb{R}$ for every $B \in \mathcal{O}(H)$, then necessarily $A \in \mathcal{O}(H)$.
(3) If $A, B \in \mathcal{O}_{\geq}(H)$, then $\operatorname{tr}[A B] \geq 0$.
(9) If $A \in \mathcal{O}(H)$ and $\operatorname{tr}[A B] \geq 0$ for every $B \in \mathcal{O}_{\geq}(H)$, then necessarily $A \geq 0$.

Exercises

Exercise (A quantum Jensen inequality) On an elementary quantum system H, consider an observable $A \in \mathcal{O}(H)$. Let $f: \sigma(A) \rightarrow \mathbb{R}$ be convex, i.e.

$$
f\left(\sum_{x \in \sigma(A)} x p_{x}\right) \leq \sum_{x \in \sigma(A)} f(x) p_{x}
$$

for every probability distribution $\left(p_{x}\right)_{x \in \sigma(A)}$.
For every density operator $\rho \in \mathcal{S}(H)$, prove the following inequality:

$$
f\left((A)_{\rho}\right) \leq(f(A))_{\rho}
$$

