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Setting of the problem

Let d ≥ 1, and consider 2n ≥ 1 i.i.d. random variables

(Xi )
n
i=1, (Yi )

n
i=1

taking values in [0, 1]d with uniform distribution, i.e.,

P(Xi ∈ A) = |A| =

∫
A

dx , for every A ⊆ [0, 1]d Borel,

The Random Euclidean Bipartite Matching Problem is defined as the
following random variational problem,

min
σ∈Sn

n∑
i=1

|Xi − Yσ(i)|,

where Sn denotes the set of permutations over {1, . . . , n}.

Variant: power of distance

For p ∈ (0,+∞), Bp,n := min
σ∈Sn

n∑
i=1

|Xi − Yσ(i)|p.



Simulations

Let us look at a simulation with n = 100, d = 2, p = 2.
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Related random combinatorial optimization problems

We can devise lots of variants:

1 Different domains

2 Different laws

3 Different distances (costs)

4 Different number of red/blue points: what is a matching?

Another related problem is the (monopartite) minimal matching problem:

Let (Xi )
2n
i=1 be i.i.d. uniform and define

Mp,n = min
σ∈S2n

n∑
i=1

|Xσ(i) − Xσ(n+i)|p,

that is, we forget about colouring of the points.

Exercise
Show that E [Mp,n] ≤ E [Bp,n].
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Heuristics and a conjecture

Heuristics
Points are “uniformly distributed” on [0, 1]d

⇒ for each Xi we find Yj at a distance ≈ n−1/d .

Considering the p-th power and summing upon n leads to

Bp,n ≈ n · 1
np/d = n1−p/d .

Conjecture

The limit (e.g. in probability)

lim
n→∞

Bp,n

n1−p/d

exists finite and strictly positive.



Simulations

Histograms of (simulatied) matching lengths with p = 1, n = 500 and
d ∈ {1, 2, 3}.
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Simulations: d = 2, p = 1, n = 500
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Simulations: d = 3, p = 1, n = 500
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A rigorous lower bound

Proposition

There exists c(d , p) > 0 such that for every n ≥ 1,

E [Bp,n] ≥ c(d , p)n1−p/d .

We use the following lemma.

Lemma
Let m ≥ 1 and (Xi )

m
i=1 i.i.d. on [0, 1]d with uniform distribution. Then, for every

x ∈ [0, 1]d ,

E
[

min
i=1,...,m

|Xi − x |p
]
≥ c(d , p)

mp/d ,

where c(d , p) > 0 is depends on d and p only.



A rigorous lower bound

Proposition

There exists c(d , p) > 0 such that for every n ≥ 1,

E [Bp,n] ≥ c(d , p)n1−p/d .

We use the following lemma.

Lemma
Let m ≥ 1 and (Xi )

m
i=1 i.i.d. on [0, 1]d with uniform distribution. Then, for every

x ∈ [0, 1]d ,

E
[

min
i=1,...,m

|Xi − x |p
]
≥ c(d , p)

mp/d ,

where c(d , p) > 0 is depends on d and p only.



Proof of Lemma

Consider the survival (or reliability) function, i.e., for t ∈ [0,∞),

P( min
i=1,...,m

|Xi − x |p > t) = P(|X1 − x | > t1/p)m by independence

= Ld
(

[0, 1]d \ B(x , t1/p)
)m

since the law is uniform

≥ (max
{

(1− ωd td/p), 0
}

)m

with ωd = |B(0, 1)|.

The general formula (for non-negative random variables Z )

E [Z ] =

∫ ∞
0

P(Z > t) dt

gives

E
[

min
i=1,...,m

|Xi − x |p
]

=

∫ ∞
0

P( min
i=1,...,m

|Xi − x |p > t) dt

≥
∫ ω

−p/d
d

0
(1− ωd td/p)m dt = ω

−p/d
d

∫ 1

0
(1− ud/p)m du

≥ ω−p/d
d

∫ m−p/d

0
(1− ud/p)m du ≥ ω−p/d

d

(
1− 1

m

)m

m−p/d .



Proof of lower bound

Given any σ ∈ Sn,
|Xi − Yσ(i)|p ≥ min

j=1,...,n
|Xi − Yj |p,

hence

Bp,n ≥
n∑

i=1

min
j=1,...,n

|Xi − Yj |p.

Taking expectation,

E [Bp,n] ≥ E

[
n∑

i=1

min
j=1,...,n

|Xi − Yj |p
]

=
n∑

i=1

E
[

min
j=1,...,n

|Xi − Yj |p
]

= nE
[

min
j=1,...,n

|X1 − Yj |p
]

the law of (Xi ,Y1, . . . ,Yn) does not depend on i

= n
∫
[0,1]d

E
[

min
j=1,...,n

|x − Yj |p
]

dx by independence of X1 and (Yj )j

≥ n · c(d , p)n−p/d by Lemma 1.
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Concentration inequalities

After studying E [Bp,n], it is natural to consider Var (Bp,n).

The general phenomenon of concentration of measure gives that Bp,n is very
close to its average because (as described by Talagrand)

the random variable depends in a “smooth” way on a large number of
independent variables

Other (better known) examples are

the law of large numbers, where 1
n

∑n
i=1 Xi → E [Xi ]

Kolmogorov 0-1 laws, yielding e.g. that lim supn→∞ Xn is a.s. constant



Let E be a set. A function f : Em → R has bounded differences if

for every i ∈ {1, . . . ,m} there exists di ≥ 0 such that

|f (x1, . . . , xi−1, xi , xi+1, . . . , xm)− f (x1, . . . , xi−1, x ′i , xi+1, . . . , xm)| ≤ di

for every x1, . . . , xi−1, xi , xi+1, . . . , xm, x ′i ∈ E .

Lemma (Azuma-Hoeffding-McDiarmid)

Let (E , E) be a measurable space, f : Em → R with bounded differences and
and let (Xi )

m
i=1 be independent random variables with values in E. Then,

Z = f (X1, . . . ,Xm) satisfies

P(|Z − E [Z ] | > r) ≤ 2 exp

(
− 2r 2∑m

i=1 d2
i

)
for every r > 0.



Bounded difference as Lipschitz regularity

Consider the distance on E given by d(x , y) = 1 if and only if x 6= y .

Then, the following are equivalent:

f : Em → R has bounded differences

for every i = 1, . . . ,m and x1, . . . , xi−1, xi+1, . . . xm ∈ E , the function

xi 7→ f (x1, . . . , xi−1, xi , xi+1, . . . , xm)

is Lipschitz.

Other concentration inequalities allow for Lipschitz regularity with respect to
different distances (e.g., the Euclidean distance on E if E ⊆ Rd ).

Lipschitz functions are stable w.r.t. many operations, e.g. pointwise minima
(with bounded constants).
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Let E = [0, 1]d . For any σ ∈ Sn we argue that

fσ(x1, . . . , xn, y1, . . . , yn) :=
n∑

i=1

|xi − yσ(i)|p

has bounded differences (with di = 2dp/2). The function minσ∈Sn fσ will also
have bounded differences.

Let i ∈ {1, . . . , 2n} and compute the difference of fσ when evaluated at two
points that may differ only for one component:

xi (if i ≤ n) or yi−n (if i > n),

We find ∣∣|xi − yσ(i)|p − |x ′i − yσ(i)|p
∣∣ ≤ 2dp/2

in the case i ≤ n and∣∣|xσ−1(i−n) − yi−n|p − |xσ−1(i−n) − y ′i−n|p
∣∣ ≤ 2dp/2

in the case i > n.



We apply the concentration inequality with m = 2n and the variables
(X1,X2, . . . ,Xn,Y1, . . .Yn).

Proposition

For every r > 0, one has

P(|Bp,n − E [Bp,n] | > r) ≤ 2 exp

(
− r 2

4dpn

)
,

or equivalently (replacing r with rn1−p/d ),

P
(∣∣∣∣ Bp,n

n1−p/d −
E [Bp,n]

n1−p/d

∣∣∣∣ > r
)
≤ 2 exp

(
− r 2n1−2p/d

4dp

)
.

In the last inequality the right hand side is infinitesimal (summable) as n→∞
provided that p < d

2 . Borel-Cantelli lemma yields:

if p <
d
2

and lim
n→∞

E [Bp,n] n1−p/d = βd exists (finite), then Bp,n → βd P-a.s.
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One-dimensional case

For d = 1 and p ≥ 1, the bipartite matching admits a simple solution.

0.0 0.2 0.4 0.6 0.8 1.0

 

re
d

bl
ue

(Matching of n = 30 pairs of i.i.d. uniform points on the unit interval, p = 1.1)



One-dimensional case

This is not the case for p < 1:
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(Matching of n = 30 pairs of i.i.d. uniform points on the unit interval, p = 0.9)
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Order statistics

Given n ≥ 1 (distinct) points (zi )
n
i=1 in R, we denote the k -th smallest value

among them by z(k), e.g.

z(1) = min
i
{zi} , z(n) = max

i
{zi} ,

and more generally, for k ∈ {1, . . . , n − 1}.

z(k+1) = min
{

zi : zi > z(k)
}
.

Order statistics
When zi = Xi are random, write X(k): these are also known order statistics (of
the sample).



Matching via order statistics

Proposition

Let n ≥ 1 and let (xi )
n
i=1, (yi )

n
i=1 be distinct points in R. Then there exists a

unique σ† ∈ Sn such that{
(xi , yσ†(i))

}n
i=1

=
{

(x(i), y(i))
}n

i=1 .

Moreover, for every p ≥ 1,

n∑
i=1

|xi − yσ†(i)|
p =

n∑
i=1

|x(i) − y(i)|p = min
σ∈Sn

n∑
i=1

|xi − yσ(i)|p.

Proof by induction using the inequality (which is just the case n = 2):
for any x < x ′, y < y ′, then

|x − y |p + |x ′ − y ′|p ≤ |x − y ′|p + |x ′ − y |p.
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Law of order statistics

Lemma
Let (Zi )

n
i=1 be i.i.d. random variables uniformly distributed on [0, 1]. Then for

every t ∈ [0, 1], k > 1,

P(Z(k) > t > Z(k−1)) =

(
n

k − 1

)
tk−1(1− t)n−k+1,

so that Z(k) has density Beta(k , n + 1− k)

fk (t) =
n!

(k − 1)!(n − k)!
tk−1(1− t)n−k .



A closed formula

Combining all these facts, we find the following result

Theorem
For n ≥ 1,

E [B2,n] =
1
3

n
n + 1

.

In particular,

lim
n→∞

E [B2,n] =
1
3
.

This shows that the general lower bound that reads in this case

E [B2,n] ≥ c(d , 2)n−1,

misses in fact the correct order.

As an exercise, try to argue similarly for B4,n.
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Self-Averaging

We describe an approach (due to various authors) to prove existence of

lim
n→∞

E [Bp,n]

n1−p/d ∈ (0,∞),

provided that

0 < p <
d
2

Use self-similarity of cube [0, 1]d :

1 Decompose it into smaller cubes

2 Find a local matching on each small cube

3 Glue them together to find a matching on the initial cube.

Good: cheaper to compute, one can iterate at multiple scales

Bad: on smaller cubes the number of red/blue points differ, the matching will
not be globally optimal



Simulations

Simulating n = 300 pair of points:

gluing local matchings at scales 2−k with k = 3, 2, 1, 0 (p = 1)
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Local matchings: notation

Given n ∈ N, x = (xi )
n
i=1 ⊆ Rd , write

I(x ; U) := {i ∈ {1, . . . , n} : xi ∈ U)} ,

n(x ; U) := ]I(x ; U).

For m ∈ N, y = (yi )
m
i=1 ⊆ Rd , a “local” matching in U is a relation

σ ⊆ I(x ; U)× I(y ; U) injective functions from the set with least elements:

if n(x ; U) ≤ n(y ; U), then σ : I(x ; U)→ I(y ; U) injective

if n(x ; U) ≥ n(y ; U), then σ : I(y ; U)→ I(y ; U) injective.

Let S(x , y ; U) be set of “local” matchings in U and define the local cost

bp(x , y ; U) := min
σ∈S(x,y ;U)

∑
(i,j)∈σ

|xi − yj |p.
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Lemma
Let n, m ∈ N x = (xi )

n
i=1, y = (yi )

m
i=1 ⊆ Rd , U ⊆ Rd Borel. Then,

1 bp is local, i.e., bp(x , y ; U) = bp((xi )i∈I(x ;U), (yi )i∈I(y ;U),U).

2 bp is translation invariant: if v ∈ Rd , then

bp(x + v , y + v ; U + v) = bp(x , y ; U),

where x + v = (xi + v)n
i=1, y + v = (yi + v)m

i=1, U + v = {u + v : u ∈ U}.
3 bp is p-homogeneous: if λ ∈ (0,∞), then

bp(λx , λy , λU) = λpbp(x , y ; U),

where λx = (λxi )
n
i=1, λy = (λyi )

m
i=1, λU = {λu : u ∈ U}.

4 bp is p-subadditive: for every (Borel) partition U =
⋃K

k=1 Uk , one has

bp(x , y ; U) ≤
K∑

k=1

bp(x , y ; Uk ) + |n(x ; Uk )− n(y ; Uk )| diam(U)p,

where diam(U) = sup {|x − y | : x , y ∈ U)}.
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Poissonization

Back to the random case: let X = (Xi )
n
i=1, Y = (Yi )

n
i=1 be i.i.d. uniform on

[0, 1]d . Then

n(X ; U) =
n∑

i=1

I{Xi∈U}

has law Bin(n, |U|). To obtain a self-similar model, we pick n to be also
random, with Poisson law, with intensity λ, i.e., we impose that

P(n(X ; [0, 1]d ) = k) =
λk

k !
e−λ for k ∈ N.



Rigorously: fix λ > 0, let NX be a Poisson random variables with intensity λ.
Let also (Xi )

∞
i=1 be i.i.d. uniform random variables in [0, 1]d , also independent

of NX . We define a Poisson point processes of intensity λ in [0, 1]d as

X := (Xi )
NX
i=1

(as a random variable with values in
⋃∞

i=1 R
d×i ).

Conditionally to {NX = k}, then X = (Xi )
k
i=1 i.i.d. on [0, 1]d uniformly.

We consider also an independent Poisson point process of same intensity λ

Y = (Yi )
NY
i=1.



Lemma
Let λ > 0 and let X = (Xi )

NX
i=1 be a Poisson point process of intensity λ on

[0, 1]d . For every U ⊆ [0, 1]d Borel with |U| > 0, then

the random variable
n(X ; U) = ]I(X ; U)

has Poisson law of parameter λ|U|,
conditionally to {n(X ; U) = k}, the k random variables (Xi )i∈I(X ;U) are
independent with uniform law on U.

Corollary

Let Q = [a, b]d ⊆ [0, 1]d . Then the process

((Xi − a)/(b − a))i∈I(X ;Q),

is a Poisson point process on [0, 1]d of intensity λ(b − a)d .



A monotonicity lemma

When we glue together local matching, we will not find exact monotonicity but
an approximate one.

Lemma
Let α > 0, c ≥ 0, f : [1,∞)→ [0,∞) be continuous and such that, for every
m ≥ 1 integer, λ ≥ 1 real,

f (mλ) ≤ f (λ) + cλ−α.

Then limλ→∞ f (λ) exists.
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A convergence result

Theorem
Let p ∈ (0, d/2), let Xλ, Yλ be independent Poisson point processes on
[0, 1]d with intensity λ. Then

lim
λ→∞

E
[
bp(Xλ,Yλ, [0, 1]d )

]
λ1−p/d ∈ (0,∞)

exists.



Asymptotics in d = 2, p = 1

We describe a recent approach to the case d = 2: one can show e.g., that

lim
n→∞

E [B2,n]

log(n)
=

1
2π
.

Again, the rate log(n) differs from the heuristic n1−p/d = n0. The following

problem is open:

does lim
n→∞

E [B1,n]√
n log(n)

exist?

We focus on the simpler bound, for p = 1,

lim sup
n→∞

E [B1,n]√
n log(n)

<∞.
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Optimal transport

The main ideas comes from a more general theory of optimal transport,
where one looks for efficient couplings between probability laws.

Matchings are particular (extreme) cases of couplings.

Analytical tools: duality formula

B1,n = max
f∈Lip(1)

{
n∑

i=1

f (Xi )− f (Yi )

}

where Lip(1) denotes the set of f : [0, 1]d → R such that
|f (x)− f (y)| ≤ |x − y | for every x , y ∈ [0, 1]d .



Duality for general p

Bp,n = max

{
n∑

i=1

f (Xi )− g(Yi ) : f (x)− g(y) ≤ |x − y |p ∀x , y

}

1 (Yi )
n
i=1 are factories (suppliers)

2 (Xi )
n
i=1 are buyers (cities)

3 |x − y |p is the cost to transport a unit of good from x to y

4 A company wants to take care of distribution of goods: buys at price
g(y) and sells at price f (x).

5 It is competitive if f (x)− g(y) ≤ |x − y |p.

6 The overall profit is
n∑

i=1

f (Xi )− g(Yi )

7 Duality reads max profit = min cost
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A random elliptic PDE

We solve the random elliptic partial differential equation (PDE)

−∆u =
n∑

i=1

(δXi − δYi ) in [0, 1]2,

where δx means the Dirac measure at the point x and use duality (for p = 1)

n∑
i=1

f (Xi )− f (Yi ) =

∫
[0,1]2

f d

(
n∑

i=1

(δXi − δYi )

)

= −
∫
[0,1]2

f (x)∆u(x) dx

=

∫
[0,1]2
∇f (x)∇u(x) dx ≤

∫
[0,1]2
|∇u(x)| dx

Taking expectation, we obtain the inequality

E [B1,n] ≤ E

[∫
[0,1]2
|∇u(x)| dx

]
≤ E

[∫
[0,1]2
|∇u(x)|2 dx

]1/2

.
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The advantage of the PDE with respect to the matching problem is linearity:
explicit formulas e.g. via Fourier series:

u(x1, x2) = 4
∑

m∈N2

am cos(m1πx1) cos(m2πx2),

where m = (m1,m2), |m| =
(
m2

1 + m2
2
)1/2

, a(0,0) = 0 and

am =
4

π2 |m|2
n∑

i=1

cos(m1πXi,1) cos(m2πXi,2)− cos(m1πYi,1) cos(m2πYi,2).

Fourier coefficients are random variables, with mean 0 and variance

E
[
a2

m

]
=

2n(
π2 |m|2

)2 .



Energy estimate

Recall
E
[
a2

m

]
=

2n(
π2 |m|2

)2 .

Plancherel identity gives∫
[0,1]2
|∇u(x)|2 dx =

∑
m∈N2

π2 |m|2 a2
m.

Taking expectation we obtain the series

E

[∫
[0,1]2
|∇u(x)|2 dx

]
=
∑

m∈N2

π2 |m|2 E
[
a2

m

]
=

2n
π2

∑
m∈N2

m 6=(0,0)

1
|m|2

≈ 2n
π2

∫ ∞
1

1
r

dr
π

2
=∞!



Renormalization

However, partial sums∑
1≤|m|≤a

1
|m|2

≈ π

2

∫ a

1
r dr =

π

2
log(a)

CLAIM: Only frequencies m with |m| ≤ n matter⇒

E [B1,n] ≤ c(d)
√

n log(n).

Difficult to make rigorous!
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