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Setting of the problem

Let d > 1, and consider 2n > 1 i.i.d. random variables
()(i)ln:h (Y/)771
taking values in [0, 1] with uniform distribution, i.e.,

P(Xi € A) = |A = /dx7 for every A C [0, 1]° Borel,
A

The Random Euclidean Bipartite Matching Problem is defined as the
following random variational problem,

i Xi—Y.
gggnnZl 0]

where 8" denotes the set of permutations over {1,..., n}.

Variant: power of distance

n
For p € (0, +0), Bo,n = ;‘;‘g‘n; 1Xi — Yo P



Simulations

Let us look at a simulation with n =100, d =2, p = 2.
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Related random combinatorial optimization problems

We can devise lots of variants:
Different domains
Different laws
Different distances (costs)
Different number of red/blue points: what is a matching?

Another related problem is the (monopartite) minimal matching problem:

Let (X))?"; be i.i.d. uniform and define
n
Mo.n = Jmin, ; [ Xot) = Xotnii)|”

that is, we forget about colouring of the points.

Exercise
Show that E [Mp.n] < E [Bp.n).



Lower bounds
m Heuristics



Heuristics and a conjecture

Heuristics

Points are “uniformly distributed” on [0, 1]°

= for each X; we find Y; at a distance ~ n~'/°.

Considering the p-th power and summing upon n leads to

1 1—
~n. — p/d
Bpn=n np/d*” .

Conjecture

The limit (e.g. in probability)
F Bp,n
nLn;o nt—-p/d

exists finite and strictly positive.



Simulations

Histograms of (simulatied) matching lengths with p = 1, n = 500 and
de{1,2,3}.



Simulations: d =1, p =1, n =500
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Simulations: d =2, p =1, n =500
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Simulations: d =3, p=1, n =500
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Lower bounds

m A rigorous result



A rigorous lower bound

Proposition

There exists ¢(d, p) > 0 such that for every n > 1,

E[Bp,n] > c(d, p)n' /7.



A rigorous lower bound

Proposition

There exists ¢(d, p) > 0 such that for every n > 1,

E[Bp,n] > c(d, p)n' /7.

We use the following lemma.

Lemma
Letm > 1 and (X;)™, i.i.d. on [0, 1]° with uniform distribution. Then, for every

x €[0,1]9,
IE{ min |)(/—x|p] > M
m

.....

where c(d, p) > 0 is depends on d and p only.



Proof of Lemma

Consider the survival (or reliability) function, i.e., for t € [0, c0),

P(,_min 1X — x|P > t) = P(|X; — x| > t'/P)™ by independence
m

.....

=r° ([0, 11° \W)m since the law is uniform
> (max { (1 - wat*/?),0})"
with wg = |B(0, 1)|.
The general formula (for non-negative random variables 2)
E[Z] =/0°°P(2> f)dt
gives

E { min |X,'—X\p} :/ P( min |X; —x|P > t)dt
i=1 m 0 i=1 m

,,,,,,,,,,

wip/d 1
2/ e —wdtd/P)mdtzw;P/d/ (1 — u"Py"du
0 0

m—p/d 1 m
Zw;p/d/ (A —u"PY"du > w,P? (1_E> mP/9,
0



Proof of lower bound

Givenany o € 8",
|Xi — Yg(,-)|p > r1nin | Xi — Y,-|p,
j n

.....

hence
n

Bon>S" min |X - Y.
n

:::::

Taking expectation,

- /=

i=1

E[Bps] > E [Z,-G“i" X mp}

[
(]
&
:3.

=
x

!
=

=1,...,

.....

nE [ min |Xi — Yj\p} the law of (Xj, Y1, ..., Y») does not depend on i
n

n/ E { min |x — Y,-|”} dx by independence of X; and (Y));
[0,1¢ j=1,..., n

>n-c(d,p)n"? by Lemma 1.



Concentration inequalities
m Concentration inequalities



Concentration inequalities

After studying E [By,s], it is natural to consider Var (Bp, ).

The general phenomenon of concentration of measure gives that By » is very
close to its average because (as described by Talagrand)

the random variable depends in a “smooth” way on a large number of
independent variables

Other (better known) examples are
m the law of large numbers, where 2 3°7 . X; — E [X]]
m Kolmogorov 0-1 laws, yielding e.g. that limsup,,_, .. X» is a.s. constant



Let E be a set. A function f : E™ — R has bounded differences if

forevery i € {1,..., m} there exists d; > 0 such that
(X1, oy Ximt, Xty Xy ooy Xm) — F(X1, ooy Ximt, Xy Xivt, -+ Xm)| <
for every xi,...,Xi—1,Xi, Xit1, .-, Xm, X; € E.

Lemma (Azuma-Hoeffding-McDiarmid)

Let (E, &) be a measurable space, f : E™ — R with bounded differences and
and let (X;)iZ, be independent random variables with values in E. Then,
Z = f(Xi,...,Xm) satisfies

2
P(|IZ-E[Z]| >r) <2exp (—ﬁ) forevery r > 0.
i=1 i



Bounded difference as Lipschitz regularity

Consider the distance on E given by d(x, y) = 1 if and only if x # y.

Then, the following are equivalent:
® f: E” — R has bounded differences
m foreveryi=1,...,mand x1,...,Xi—1, Xit1, ... Xm € E, the function

Xi = F(X1, .o Xict, Xi, Xty - oy Xm)

is Lipschitz.

Other concentration inequalities allow for Lipschitz regularity with respect to
different distances (e.g., the Euclidean distance on E if E C RY).

Lipschitz functions are stable w.r.t. many operations, e.g. pointwise minima
(with bounded constants).



Concentration inequalities

m Application to matching problems



Let E =[0,1]°. For any o € S" we argue that
n
fU'(X1a"'aXn7y1a"'ayn) = Z‘X" 7y0(/)|p
i=1
has bounded differences (with d; = 2dp/2). The function min,csn f, will also

have bounded differences.

Leti e {1,...,2n} and compute the difference of f, when evaluated at two
points that may differ only for one component:

X; (if i < n)ory,_p,(ifi > n),

We find
1% — Yo ? — X — yo|P| < 2d°/%

inthe case /i < nand
2
||XU*1(i7n) — Yienl® = [Xy—1(i—n) — yi,—n|p| <2d”/

inthe case i > n.



We apply the concentration inequality with m = 2n and the variables
(X1, X2, ..., Xn, Y1,... Yn).

Proposition

For every r > 0, one has

f2
P(|Bp,n —E[Bpm] | > r) S 2eXp <_4dpn> 9

or equivalently (replacing r with rn'=?/9),
r2ni—2p/d
P( >r>§2exp(f47dp).

In the last inequality the right hand side is infinitesimal (summable) as n — oo
provided that p < £. Borel-Cantelli lemma yields:

Bon _ E[Bpn]

ni—p/d nt—-p/d

if p< g and lim E[By ] n' "% = B4 exists (finite), then B, , — B4 P-a.s.



One-dimensional case
m Simulations



One-dimensional case

For d =1 and p > 1, the bipartite matching admits a simple solution.

i |
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(Matching of n = 30 pairs of i.i.d. uniform points on the unit interval, p = 1.1)



One-dimensional case

This is not the case for p < 1:
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(Matching of n = 30 pairs of i.i.d. uniform points on the unit interval, p = 0.9)



One-dimensional case

m Order statistics and monotone rearrangement



Order statistics

Given n > 1 (distinct) points (z;)_, in R, we denote the k-th smallest value
among them by z), e.g.

Z(1) = ml_in {Z,‘} s Z(n) = ml_aX {Z,'} s
and more generally, for k € {1,...,n—1}.

Z(k+1) = min {Z,' 1 Zi > Z(k)} .

Order statistics

When z; = X; are random, write X(x): these are also known order statistics (of
the sample).



Matching via order statistics

Proposition

Let n > 1 and let (xi)_+, (yi)_1 be distinct points in R. Then there exists a
unique o € 8" such that

{06 Yor)}, = {0 yo)bi -

Moreover, for every p > 1,
n n n
D= Yoipl = X0 = yol® = min > 1xi — youl®
i=1 i=1 i=1

Proof by induction using the inequality (which is just the case n = 2):
forany x < x’, y <y, then

X —ylP+ X =y P <|x=y'[P+|x -y



One-dimensional case

m A convergence result



Law of order statistics

Lemma

Let (Z)7_, be i.i.d. random variables uniformly distributed on [0, 1]. Then for
everyte [0,1], k > 1,

n = =
P(Z(k) >t > Z(k_1)) = <k B 1) t 1(1 . t)n k+1’
so that Zy has density Beta(k,n+ 1 — k)

() = L ATk

(k—1)i(n— k)



A closed formula

Combining all these facts, we find the following result

Theorem
Forn>1, ]
n
E{Ben] = 3n+1°
In particular,
. 1
nhan;oE [Bz’n] B §

This shows that the general lower bound that reads in this case
E[Bzn] > c(d,2)n"",
misses in fact the correct order.

As an exercise, try to argue similarly for B .



Self-Averaging
m Simulations



Self-Averaging

We describe an approach (due to various authors) to prove existence of

. E[Bp]
nlrgo nt—p/d

€ (0, 00),

provided that
0<p<g
2
Use self-similarity of cube [0, 1]%:
Decompose it into smaller cubes
Find a local matching on each small cube
Glue them together to find a matching on the initial cube.

Good: cheaper to compute, one can iterate at multiple scales

Bad: on smaller cubes the number of red/blue points differ, the matching will
not be globally optimal



Simulations

Simulating n = 300 pair of points:

gluing local matchings at scales 2% with k = 3,2,1,0 (p = 1)
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Local matchings: notation

Given n€ N, x = (x;)7_, C RY, write
I(x; U):={ie{1,...,n} : xie U)},
n(x; U) := 4Z(x; U).

FormeN, y = (y;)I, C R?, a “local” matching in U is a relation
o C Z(x; U) x Z(y; U) injective functions from the set with least elements:

m if n(x; U) < n(y; U), then o : Z(x; U) — Z(y; U) injective
m if n(x; U) > n(y; U), then o : Z(y; U) — Z(y; U) injective.

Let S(x, y; U) be set of “local” matchings in U and define the local cost

bp(x,y; U) min Z xi = yjI°.

aES(xy U)



Self-Averaging

m Local matchings



Lemma
Letn,meNx = (x)!,, y = (y)", CRY U C RY Borel. Then,
B by is local, i.e., bp(x, y; U) = bp((Xi)icz(xv), Vi)icz(y:uy, U)-
by is translation invariant: if v € RY, then
bp(x + v,y +v; U+ v) = by(x, y; U),
wherex +v =X+ V)L, y+v=(i+V)y,U+v={u+v:uec U}
by is p-homogeneous: if X € (0, ), then
bP(AXv )‘yv )‘U) = Apbp(X, Y U)a
where Ax = (A\xi)_1, Ay = Oyi)iZy, AU = {A\u: u e U}.
by is p-subadditive: for every (Borel) partition U = U,’f:1 Uk, one has

K
Bo(x, ¥ U) < 37 Bo(x, ¥: Us) + In(x; Us) — n(y; Us)| diam(UY?,

k=1

where diam(U) =sup{|x —y| : x,y € U)}.



Self-Averaging

m Poissonization



Poissonization

Back to the random case: let X = (Xj)[Ly, Y = (Y;)[_; be i.i.d. uniform on
[0,1]%. Then

n
n(X;U)=> lxeu
i=1

has law Bin(n, |U|). To obtain a self-similar model, we pick n to be also
random, with Poisson law, with intensity ), i.e., we impose that

k
P(n(X;[0,1]%) = k) = %e‘* for k € N.



Rigorously: fix A > 0, let Nx be a Poisson random variables with intensity A.
Let also (X;)2°; be i.i.d. uniform random variables in [0, 1]¢, also independent
of Nx. We define a Poisson point processes of intensity A in [0,1]% as

X = (X%
(as a random variable with values in |J2°, R%*).

Conditionally to {Nx = k}, then X = (X;)&; i.i.d. on [0, 1]? uniformly.

We consider also an independent Poisson point process of same intensity A

Y = (V).



Lemma

Let A\ > 0andlet X = (X,'),'.\LX1 be a Poisson point process of intensity A on
[0, 1]9. For every U C [0, 1]? Borel with [U| > 0, then

m the random variable
n(X; U) =Z(X; U)

has Poisson law of parameter \|U]|,

m conditionally to {n(X; U) = k}, the k random variables (X;),cz(x;u) are
independent with uniform law on U.

Corollary
Let Q = [a, b]? C [0, 1]°. Then the process

((Xi — a)/(b— a))icz(x.q)

is a Poisson point process on [0, 1]? of intensity A(b — a)°.



A monotonicity lemma

When we glue together local matching, we will not find exact monotonicity but
an approximate one.

Lemma

Letaa>0,c>0,f:[1,00) — [0,00) be continuous and such that, for every
m > 1 integer, A > 1 real,

f(mA) < f(A) + cA™°.

Then limx_, o f(\) exists.



Self-Averaging

m A convergence result



A convergence result

Theorem

Letp € (0,d/2), let X, Yx be independent Poisson point processes on
[0, 119 with intensity \. Then

. E[bp(Xs, Ya,[0,1]9)
A, L N —p/d ]6(0,00)

exists.



Asymptoticsind =2, p =1

We describe a recent approach to the case d = 2: one can show e.g., that

E[B:n] 1

oo log(n) 27’
Again, the rate log(n) differs from the heuristic n' ~?/¢ = n°. The following

problem is open:

does lim _E[Bral exist?
n—co  /nlog(n)
We focus on the simpler bound, for p = 1,
limsup M < 00.

n—soo /Nlog(n)



B A PDE approach
m Optimal transport and duality



Optimal transport

The main ideas comes from a more general theory of optimal transport,
where one looks for efficient couplings between probability laws.

Matchings are particular (extreme) cases of couplings.

Analytical tools: duality formula

B1n_’€nl1_lz;x {Zf ’ }

where Lip(1) denotes the set of f : [0,1]? — R such that
[f(x) — (y)| < |x — y| for every x, y € [0,1]°.



Duality for general p

n

Bp,n = max {Z f(Xi) —g(i) - f(x) —g(y) < Ix -yl VXJ}
i=1

(Yi)7; are factories (suppliers)

(X)), are buyers (cities)

|x — y|P is the cost to transport a unit of good from x to y

A company wants to take care of distribution of goods: buys at price
g(y) and sells at price f(x).

It is competitive if f(x) — g(y) < |x — y|P.
B The overall profit is

Zf(Xf)*g(Yf)

Duality reads max profit = min cost



B A PDE approach

m A random PDE



A random elliptic PDE

We solve the random elliptic partial differential equation (PDE)

n

—Au=> (dx —dy) in[0,1]%,

i=1
where dx means the Dirac measure at the point x and use duality (for p = 1)
n n
Zf(xi)—f(Yi)zf fd (Z(&xi—éy,.))
P 0,112 i=1

=— / f(x)Au(x)dx
[0,11?

— [ VHx)Vux)dx < / IV u(x)| dx
[0,12 [0,112

Taking expectation, we obtain the inequality

<E

1/2
E[B1,n]<E[/ IVu(x)| dx / |Vu(x)|2dx] .
[0,12 [0,1]2




B A PDE approach

m Energy and renormalization



The advantage of the PDE with respect to the matching problem is linearity:
explicit formulas e.g. via Fourier series:

u(x, x2) = 4 Z am cos(mymxy ) cos(Mpmxz),
meN2

where m = (mq, mp), |m| = (m& + m§)1/2, d(0,0) = 0 and

4 n
= W Z cos(mymXi 1) cos(mMamXj2) — cos(Mim Y1) cos(mamYi2).
i=1

Fourier coefficients are random variables, with mean 0 and variance

> 2n

(i)’



Energy estimate

Recall
2n

—.
(w#1mF)
Plancherel identity gives

/[0 . Vu)Pdx = 3 72 |m2 &,
1

meN2

E[afn =

Taking expectation we obtain the series

E [/[01]2 |Vu(x)|2dx} =Y = |mPE [a%n]

’ meN2



Renormalization

However, partial sums

a
%mﬁ/‘ rdr:zlog(a)
(mi<a M 205 2

CLAIM: Only frequencies m with |m| < n matter =

E(Br.1] < o(d)y/nlog(n).

Difficult to make rigorous!
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