Random Euclidean Bipartite Matching Problems

Dario Trevisan

UNIVERSITÀ DEGLI STUDI DI PISA

Master Classes en probabilités at IMRA Strasbourg, January 20-24, 2019

2 Lower bounds

- 3 Concentration inequalities
- 4 One-dimensional case
- 5 Self-Averaging
- 6 A PDE approach

Setting of the problem

Let $d \ge 1$, and consider $2n \ge 1$ i.i.d. random variables

 $(X_i)_{i=1}^n, (Y_i)_{i=1}^n$

taking values in $[0, 1]^d$ with uniform distribution, i.e.,

$$P(X_i \in A) = |A| = \int_A dx$$
, for every $A \subseteq [0, 1]^d$ Borel,

The Random Euclidean Bipartite Matching Problem is defined as the following random variational problem,

$$\min_{\sigma\in\mathcal{S}^n}\sum_{i=1}^n|X_i-Y_{\sigma(i)}|,$$

where S^n denotes the set of permutations over $\{1, \ldots, n\}$.

Variant: power of distance

For
$$p \in (0, +\infty)$$
, $B_{p,n} := \min_{\sigma \in S^n} \sum_{i=1}^n |X_i - Y_{\sigma(i)}|^p$.

Let us look at a simulation with n = 100, d = 2, p = 2.

We can devise lots of variants:

- Different domains
- 2 Different laws
- 3 Different distances (costs)
- 4 Different number of red/blue points: what is a matching?

Another related problem is the (monopartite) minimal matching problem:

Let $(X_i)_{i=1}^{2n}$ be i.i.d. uniform and define

$$M_{p,n} = \min_{\sigma \in S^{2n}} \sum_{i=1}^{n} |X_{\sigma(i)} - X_{\sigma(n+i)}|^{p},$$

that is, we forget about colouring of the points.

Exercise

Show that $\mathbb{E}[M_{\rho,n}] \leq \mathbb{E}[B_{\rho,n}].$

2 Lower boundsHeuristics

- A rigorous result
- 3 Concentration inequalities
- 4 One-dimensional case
- 5 Self-Averaging
- 6 A PDE approach

Heuristics

Points are "uniformly distributed" on $[0, 1]^d$ \Rightarrow for each X_i we find Y_j at a distance $\approx n^{-1/d}$.

Considering the *p*-th power and summing upon *n* leads to

$$B_{p,n} \approx n \cdot \frac{1}{n^{p/d}} = n^{1-p/d}.$$

Conjecture

The limit (e.g. in probability)

$$\lim_{n\to\infty}\frac{B_{p,n}}{n^{1-p/d}}$$

exists finite and strictly positive.

Histograms of (simulatied) matching lengths with p = 1, n = 500 and $d \in \{1, 2, 3\}$.

- 3 Concentration inequalities
- 4 One-dimensional case
- 5 Self-Averaging
- 6 A PDE approach

Proposition

There exists c(d, p) > 0 such that for every $n \ge 1$,

$$\mathbb{E}\left[B_{p,n}\right] \geq c(d,p)n^{1-p/d}$$

We use the following lemma.

Lemma

Let $m \ge 1$ and $(X_i)_{i=1}^m$ i.i.d. on $[0, 1]^d$ with uniform distribution. Then, for every $x \in [0, 1]^d$,

$$\mathbb{E}\left[\min_{i=1,\ldots,m}|X_i-x|^p\right]\geq \frac{c(d,p)}{m^{p/d}},$$

where c(d, p) > 0 is depends on d and p only.

Proposition

There exists c(d, p) > 0 such that for every $n \ge 1$,

$$\mathbb{E}\left[B_{p,n}\right] \geq c(d,p)n^{1-p/d}$$

We use the following lemma.

Lemma

Let $m \geq 1$ and $(X_i)_{i=1}^m$ i.i.d. on $[0, 1]^d$ with uniform distribution. Then, for every $x \in [0, 1]^d$, $\mathbb{E}\left[\min_{i=1,...,m} |X_i - x|^p\right] \geq \frac{c(d, p)}{m^{p/d}},$

where c(d, p) > 0 is depends on d and p only.

Proof of Lemma

Consider the survival (or reliability) function, i.e., for $t \in [0, \infty)$,

$$\begin{split} P(\min_{i=1,...,m} |X_i - x|^p > t) &= P(|X_1 - x| > t^{1/p})^m \quad \text{by independence} \\ &= \mathcal{L}^d \left([0,1]^d \setminus \overline{B(x,t^{1/p})} \right)^m \quad \text{since the law is uniform} \\ &\geq (\max\left\{ (1 - \omega_d t^{d/p}), 0\right\})^m \end{split}$$

with $\omega_d = |B(0, 1)|$.

The general formula (for non-negative random variables Z)

$$\mathbb{E}\left[Z\right] = \int_0^\infty P(Z > t) \, \mathrm{d}t$$

gives

$$\mathbb{E}\left[\min_{i=1,...,m}|X_{i}-x|^{p}\right] = \int_{0}^{\infty} P(\min_{i=1,...,m}|X_{i}-x|^{p} > t) dt$$

$$\geq \int_{0}^{\omega_{d}^{-p/d}} (1-\omega_{d}t^{d/p})^{m} dt = \omega_{d}^{-p/d} \int_{0}^{1} (1-u^{d/p})^{m} du$$

$$\geq \omega_{d}^{-p/d} \int_{0}^{m^{-p/d}} (1-u^{d/p})^{m} du \geq \omega_{d}^{-p/d} \left(1-\frac{1}{m}\right)^{m} m^{-p/d}.$$

Proof of lower bound

Given any $\sigma \in \mathcal{S}^n$, $|X_i - Y_{\sigma(i)}|^p \ge \min_{j=1,\dots,n} |X_i - Y_j|^p$,

hence

$$B_{p,n}\geq \sum_{i=1}^n \min_{j=1,\ldots,n} |X_i-Y_j|^p.$$

Taking expectation,

$$\mathbb{E}\left[B_{p,n}\right] \geq \mathbb{E}\left[\sum_{i=1}^{n} \min_{j=1,...,n} |X_i - Y_j|^p\right]$$
$$= \sum_{i=1}^{n} \mathbb{E}\left[\min_{j=1,...,n} |X_i - Y_j|^p\right]$$
$$= n\mathbb{E}\left[\min_{j=1,...,n} |X_1 - Y_j|^p\right] \quad \text{the law of } (X_i, Y_1, \dots, Y_n) \text{ does not depend on } i$$
$$= n\int_{[0,1]^d} \mathbb{E}\left[\min_{j=1,...,n} |x - Y_j|^p\right] dx \quad \text{by independence of } X_1 \text{ and } (Y_j)_j$$
$$\geq n \cdot c(d, p) n^{-p/d} \quad \text{by Lemma 1.}$$

2 Lower bounds

- Concentration inequalities
 Concentration inequalities
 Application to matching problems
- 4 One-dimensional case
- 5 Self-Averaging
- 6 A PDE approach

After studying $\mathbb{E}[B_{p,n}]$, it is natural to consider Var $(B_{p,n})$.

The general phenomenon of concentration of measure gives that $B_{p,n}$ is very close to its average because (as described by Talagrand)

the random variable depends in a "smooth" way on a large number of independent variables

Other (better known) examples are

- the law of large numbers, where $\frac{1}{n} \sum_{i=1}^{n} X_i \to \mathbb{E}[X_i]$
- Kolmogorov 0-1 laws, yielding e.g. that $\limsup_{n\to\infty} X_n$ is a.s. constant

Let *E* be a set. A function $f : E^m \to \mathbb{R}$ has bounded differences if

for every
$$i \in \{1, \ldots, m\}$$
 there exists $d_i \ge 0$ such that
 $|f(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_m) - f(x_1, \ldots, x_{i-1}, x'_i, x_{i+1}, \ldots, x_m)| \le d_i$
for every $x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_m, x'_i \in E$.

Lemma (Azuma-Hoeffding-McDiarmid)

Let (E, \mathcal{E}) be a measurable space, $f : E^m \to \mathbb{R}$ with bounded differences and and let $(X_i)_{i=1}^m$ be independent random variables with values in *E*. Then, $Z = f(X_1, \ldots, X_m)$ satisfies

$$P(|Z - \mathbb{E}[Z]| > r) \leq 2 \exp\left(-rac{2r^2}{\sum_{i=1}^m d_i^2}
ight) \quad \textit{for every } r > 0.$$

Consider the distance on *E* given by d(x, y) = 1 if and only if $x \neq y$.

Then, the following are equivalent:

- $f: E^m \to \mathbb{R}$ has bounded differences
- for every $i = 1, \ldots, m$ and $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_m \in E$, the function

$$x_i \mapsto f(x_1,\ldots,x_{i-1},x_i,x_{i+1},\ldots,x_m)$$

is Lipschitz.

Other concentration inequalities allow for Lipschitz regularity with respect to different distances (e.g., the Euclidean distance on *E* if $E \subseteq \mathbb{R}^d$).

Lipschitz functions are stable w.r.t. many operations, e.g. pointwise minima (with bounded constants).

2 Lower bounds

- 3 Concentration inequalities
 - Concentration inequalities
 - Application to matching problems
- 4 One-dimensional case
- 5 Self-Averaging
- 6 A PDE approach

Let $E = [0, 1]^d$. For any $\sigma \in S^n$ we argue that

$$f_{\sigma}(x_1,\ldots,x_n,y_1,\ldots,y_n):=\sum_{i=1}^n|x_i-y_{\sigma(i)}|^p$$

has bounded differences (with $d_i = 2d^{p/2}$). The function $\min_{\sigma \in S^n} f_{\sigma}$ will also have bounded differences.

Let $i \in \{1, ..., 2n\}$ and compute the difference of f_{σ} when evaluated at two points that may differ only for one component:

$$x_i$$
 (if $i \leq n$) or y_{i-n} (if $i > n$),

We find

$$\left|\left|x_{i}-y_{\sigma(i)}\right|^{p}-\left|x_{i}'-y_{\sigma(i)}\right|^{p}\right|\leq 2d^{p/2}$$

in the case $i \leq n$ and

$$||x_{\sigma^{-1}(i-n)} - y_{i-n}|^{p} - |x_{\sigma^{-1}(i-n)} - y'_{i-n}|^{p}| \le 2d^{p/2}$$

in the case i > n.

We apply the concentration inequality with m = 2n and the variables $(X_1, X_2, ..., X_n, Y_1, ..., Y_n)$.

Proposition

For every r > 0, one has

$$P(|B_{\rho,n}-\mathbb{E}[B_{\rho,n}]|>r)\leq 2\exp\left(-rac{r^2}{4d^{
ho}n}
ight),$$

or equivalently (replacing *r* with $rn^{1-p/d}$),

$$P\left(\left|\frac{B_{p,n}}{n^{1-p/d}}-\frac{\mathbb{E}\left[B_{p,n}\right]}{n^{1-p/d}}\right|>r\right)\leq 2\exp\left(-\frac{r^2n^{1-2p/d}}{4d^p}\right).$$

In the last inequality the right hand side is infinitesimal (summable) as $n \to \infty$ provided that $p < \frac{d}{2}$. Borel-Cantelli lemma yields:

$$\text{if } p < \frac{d}{2} \text{ and } \lim_{n \to \infty} \mathbb{E} \left[B_{p,n} \right] n^{1-p/d} = \beta_d \text{ exists (finite), then } B_{p,n} \to \beta_d \text{ P-a.s.}$$

2 Lower bounds

3 Concentration inequalities

4 One-dimensional case

Simulations

- Order statistics and monotone rearrangement
- A convergence result

5 Self-Averaging

6 A PDE approach

One-dimensional case

For d = 1 and $p \ge 1$, the bipartite matching admits a simple solution.

(Matching of n = 30 pairs of i.i.d. uniform points on the unit interval, p = 1.1)

One-dimensional case

This is not the case for p < 1:

(Matching of n = 30 pairs of i.i.d. uniform points on the unit interval, p = 0.9)

2 Lower bounds

3 Concentration inequalities

4 One-dimensional case

- Simulations
- Order statistics and monotone rearrangement
- A convergence result

5 Self-Averaging

6 A PDE approach

Given $n \ge 1$ (distinct) points $(z_i)_{i=1}^n$ in \mathbb{R} , we denote the *k*-th smallest value among them by $z_{(k)}$, e.g.

$$Z_{(1)} = \min_{i} \{Z_i\}, \quad Z_{(n)} = \max_{i} \{Z_i\},$$

and more generally, for $k \in \{1, \ldots, n-1\}$.

$$Z_{(k+1)} = \min \{ Z_i : Z_i > Z_{(k)} \}.$$

Order statistics

When $z_i = X_i$ are random, write $X_{(k)}$: these are also known order statistics (of the sample).

Proposition

Let $n \ge 1$ and let $(x_i)_{i=1}^n$, $(y_i)_{i=1}^n$ be distinct points in \mathbb{R} . Then there exists a unique $\sigma^{\dagger} \in S^n$ such that

$$\{(x_i, y_{\sigma^{\dagger}(i)})\}_{i=1}^n = \{(x_{(i)}, y_{(i)})\}_{i=1}^n$$

Moreover, for every $p \ge 1$,

$$\sum_{i=1}^{n} |x_{i} - y_{\sigma^{\dagger}(i)}|^{p} = \sum_{i=1}^{n} |x_{(i)} - y_{(i)}|^{p} = \min_{\sigma \in S^{n}} \sum_{i=1}^{n} |x_{i} - y_{\sigma(i)}|^{p}.$$

Proof by induction using the inequality (which is just the case n = 2): for any x < x', y < y', then

$$|x - y|^{p} + |x' - y'|^{p} \le |x - y'|^{p} + |x' - y|^{p}.$$

2 Lower bounds

3 Concentration inequalities

4 One-dimensional case

- Simulations
- Order statistics and monotone rearrangement
- A convergence result

5 Self-Averaging

6 A PDE approach

Lemma

Let $(Z_i)_{i=1}^n$ be i.i.d. random variables uniformly distributed on [0, 1]. Then for every $t \in [0, 1]$, k > 1,

$$P(Z_{(k)} > t > Z_{(k-1)}) = {n \choose k-1} t^{k-1} (1-t)^{n-k+1},$$

so that $Z_{(k)}$ has density Beta(k, n + 1 - k)

$$f_k(t) = \frac{n!}{(k-1)!(n-k)!} t^{k-1} (1-t)^{n-k}.$$

Combining all these facts, we find the following result

Theorem For $n \ge 1$, $\mathbb{E}[B_{2,n}] = \frac{1}{3} \frac{n}{n+1}$. In particular, $\lim_{n \to \infty} \mathbb{E}[B_{2,n}] = \frac{1}{3}$.

This shows that the general lower bound that reads in this case

$$\mathbb{E}\left[B_{2,n}\right] \geq c(d,2)n^{-1},$$

misses in fact the correct order.

As an exercise, try to argue similarly for $B_{4,n}$.

- 2 Lower bounds
- 3 Concentration inequalities
- 4 One-dimensional case

5 Self-Averaging

- Simulations
- Local matchings
- Poissonization
- A convergence result

6 A PDE approach

We describe an approach (due to various authors) to prove existence of

$$\lim_{n\to\infty}\frac{\mathbb{E}\left[B_{p,n}\right]}{n^{1-p/d}}\in(0,\infty),$$

provided that

$$0$$

Use self-similarity of cube $[0, 1]^d$:

- 1 Decompose it into smaller cubes
- 2 Find a *local matching* on each small cube

r

3 *Glue* them together to find a matching on the initial cube.

Good: cheaper to compute, one can iterate at multiple scales

Bad: on smaller cubes the number of red/blue points differ, the matching will not be globally optimal

Simulating n = 300 pair of points:

gluing local matchings at scales 2^{-k} with k = 3, 2, 1, 0 (p = 1)

Given $n \in \mathbb{N}$, $x = (x_i)_{i=1}^n \subseteq \mathbb{R}^d$, write $\mathcal{I}(x; U) := \{i \in \{1, \dots, n\} : x_i \in U\}\},$ $n(x; U) := \#\mathcal{I}(x; U).$

For $m \in \mathbb{N}$, $y = (y_i)_{i=1}^m \subseteq \mathbb{R}^d$, a "local" matching in U is a relation $\sigma \subseteq \mathcal{I}(x; U) \times \mathcal{I}(y; U)$ injective functions from the set with least elements: **a** if $n(x; U) \leq n(y; U)$, then $\sigma : \mathcal{I}(x; U) \to \mathcal{I}(y; U)$ injective **b** if $n(x; U) \geq n(y; U)$, then $\sigma : \mathcal{I}(y; U) \to \mathcal{I}(y; U)$ injective.

Let S(x, y; U) be set of "local" matchings in U and define the local cost

$$b_{\rho}(x, y; U) := \min_{\sigma \in \mathcal{S}(x, y; U)} \sum_{(i,j) \in \sigma} |x_i - y_j|^{\rho}.$$

- 2 Lower bounds
- 3 Concentration inequalities
- 4 One-dimensional case

5 Self-Averaging

- Simulations
- Local matchings
- Poissonization
- A convergence result

6 A PDE approach

Lemma

Let $n, m \in \mathbb{N}$ $x = (x_i)_{i=1}^n$, $y = (y_i)_{i=1}^m \subseteq \mathbb{R}^d$, $U \subseteq \mathbb{R}^d$ Borel. Then,

- 1 b_p is local, i.e., $b_p(x, y; U) = b_p((x_i)_{i \in \mathcal{I}(x;U)}, (y_i)_{i \in \mathcal{I}(y;U)}, U)$.
- **2** b_p is translation invariant: if $v \in \mathbb{R}^d$, then

 $b_{\rho}(x+v,y+v;U+v)=b_{\rho}(x,y;U),$

where $x + v = (x_i + v)_{i=1}^n$, $y + v = (y_i + v)_{i=1}^m$, $U + v = \{u + v : u \in U\}$. 3 b_p is *p*-homogeneous: if $\lambda \in (0, \infty)$, then

$$b_{\rho}(\lambda x, \lambda y, \lambda U) = \lambda^{\rho} b_{\rho}(x, y; U),$$

where $\lambda x = (\lambda x_i)_{i=1}^n$, $\lambda y = (\lambda y_i)_{i=1}^m$, $\lambda U = \{\lambda u : u \in U\}$.

4 b_p is **p**-subadditive: for every (Borel) partition $U = \bigcup_{k=1}^{K} U_k$, one has

$$b_p(x,y;U) \leq \sum_{k=1}^{K} b_p(x,y;U_k) + |n(x;U_k) - n(y;U_k)|\operatorname{diam}(U)^p,$$

where diam(U) = sup $\{|x - y| : x, y \in U\}$.

- 2 Lower bounds
- 3 Concentration inequalities
- 4 One-dimensional case

5 Self-Averaging

- Simulations
- Local matchings

Poissonization

A convergence result

6 A PDE approach

Back to the random case: let $X = (X_i)_{i=1}^n$, $Y = (Y_i)_{i=1}^n$ be i.i.d. uniform on $[0, 1]^d$. Then

$$n(X; U) = \sum_{i=1}^{n} I_{\{X_i \in U\}}$$

has law Bin(n, |U|). To obtain a self-similar model, we pick *n* to be also random, with Poisson law, with intensity λ , i.e., we impose that

$$P(n(X; [0, 1]^d) = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$
 for $k \in \mathbb{N}$.

Rigorously: fix $\lambda > 0$, let N_X be a Poisson random variables with intensity λ . Let also $(X_i)_{i=1}^{\infty}$ be i.i.d. uniform random variables in $[0, 1]^d$, also independent of N_X . We define a Poisson point processes of intensity λ in $[0, 1]^d$ as

$$X:=(X_i)_{i=1}^{N_X}$$

(as a random variable with values in $\bigcup_{i=1}^{\infty} \mathbb{R}^{d \times i}$).

Conditionally to $\{N_X = k\}$, then $X = (X_i)_{i=1}^k$ i.i.d. on $[0, 1]^d$ uniformly.

We consider also an independent Poisson point process of same intensity λ

$$Y = (Y_i)_{i=1}^{N_Y}.$$

Lemma

Let $\lambda > 0$ and let $X = (X_i)_{i=1}^{N_X}$ be a Poisson point process of intensity λ on $[0, 1]^d$. For every $U \subseteq [0, 1]^d$ Borel with |U| > 0, then

the random variable

$$n(X; U) = \sharp \mathcal{I}(X; U)$$

has Poisson law of parameter $\lambda |U|$,

■ conditionally to {n(X; U) = k}, the k random variables (X_i)_{i∈I(X;U)} are independent with uniform law on U.

Corollary

Let $Q = [a, b]^d \subseteq [0, 1]^d$. Then the process

$$((X_i - a)/(b - a))_{i \in \mathcal{I}(X;Q)},$$

is a Poisson point process on $[0, 1]^d$ of intensity $\lambda (b - a)^d$.

When we glue together local matching, we will not find exact monotonicity but an approximate one.

Lemma

Let $\alpha > 0$, $c \ge 0$, $f : [1, \infty) \rightarrow [0, \infty)$ be continuous and such that, for every $m \ge 1$ integer, $\lambda \ge 1$ real,

 $f(m\lambda) \leq f(\lambda) + c\lambda^{-\alpha}.$

Then $\lim_{\lambda\to\infty} f(\lambda)$ exists.

- 2 Lower bounds
- 3 Concentration inequalities
- 4 One-dimensional case

5 Self-Averaging

- Simulations
- Local matchings
- Poissonization
- A convergence result

6 A PDE approach

Theorem

Let $p \in (0, d/2)$, let X_{λ} , Y_{λ} be independent Poisson point processes on $[0, 1]^d$ with intensity λ . Then

$$\lim_{\lambda \to \infty} \frac{\mathbb{E}\left[b_{p}(X_{\lambda}, Y_{\lambda}, [0, 1]^{d})\right]}{\lambda^{1 - p/d}} \in (0, \infty)$$

exists.

We describe a recent approach to the case d = 2: one can show e.g., that

$$\lim_{n\to\infty}\frac{\mathbb{E}\left[B_{2,n}\right]}{\log(n)}=\frac{1}{2\pi}.$$

Again, the rate log(n) differs from the heuristic $n^{1-p/d} = n^0$. The following

problem is open:

does
$$\lim_{n \to \infty} \frac{\mathbb{E}[B_{1,n}]}{\sqrt{n \log(n)}}$$
 exist?

We focus on the simpler bound, for p = 1,

$$\limsup_{n\to\infty}\frac{\mathbb{E}\left[B_{1,n}\right]}{\sqrt{n\log(n)}}<\infty.$$

- 2 Lower bounds
- 3 Concentration inequalities
- 4 One-dimensional case
- 5 Self-Averaging
- 6 A PDE approach
 - Optimal transport and duality
 - A random PDE
 - Energy and renormalization

The main ideas comes from a more general theory of optimal transport, where one looks for efficient couplings between probability laws.

Matchings are particular (extreme) cases of couplings.

Analytical tools: duality formula

$$\mathcal{B}_{1,n} = \max_{f \in \mathsf{Lip}(1)} \left\{ \sum_{i=1}^{n} f(X_i) - f(Y_i) \right\}$$

where Lip(1) denotes the set of $f : [0, 1]^d \to \mathbb{R}$ such that $|f(x) - f(y)| \le |x - y|$ for every $x, y \in [0, 1]^d$.

$$B_{
ho,n}=\max\left\{\sum_{i=1}^n f(X_i)-g(Y_i)\,:\,f(x)-g(y)\leq \left|x-y
ight|^{
ho}\quadorall x,y
ight\}$$

- **1** $(Y_i)_{i=1}^n$ are factories (suppliers)
- **2** $(X_i)_{i=1}^n$ are buyers (cities)
- 3 $|x y|^p$ is the cost to transport a unit of good from x to y
- A company wants to take care of distribution of goods: buys at price g(y) and sells at price f(x).
- 5 It is competitive if $f(x) g(y) \le |x y|^{p}$.
- 6 The overall profit is

$$\sum_{i=1}^n f(X_i) - g(Y_i)$$

7 Duality reads max profit = min cost

- 2 Lower bounds
- 3 Concentration inequalities
- 4 One-dimensional case
- 5 Self-Averaging
- 6 A PDE approach
 - Optimal transport and duality
 - A random PDE
 - Energy and renormalization

A random elliptic PDE

We solve the random elliptic partial differential equation (PDE)

$$-\Delta u = \sum_{i=1}^n \left(\delta_{X_i} - \delta_{Y_i} \right) \quad \text{in } [0,1]^2,$$

where δ_x means the Dirac measure at the point *x* and use duality (for p = 1)

$$\sum_{i=1}^{n} f(X_i) - f(Y_i) = \int_{[0,1]^2} f d\left(\sum_{i=1}^{n} (\delta_{X_i} - \delta_{Y_i})\right)$$

= $-\int_{[0,1]^2} f(x) \Delta u(x) dx$
= $\int_{[0,1]^2} \nabla f(x) \nabla u(x) dx \le \int_{[0,1]^2} |\nabla u(x)| dx$

Taking expectation, we obtain the inequality

$$\mathbb{E}\left[B_{1,n}\right] \leq \mathbb{E}\left[\int_{[0,1]^2} |\nabla u(x)| \,\mathrm{d}x\right] \leq \mathbb{E}\left[\int_{[0,1]^2} |\nabla u(x)|^2 \,\mathrm{d}x\right]^{1/2}$$

- 2 Lower bounds
- 3 Concentration inequalities
- 4 One-dimensional case
- 5 Self-Averaging

6 A PDE approach

- Optimal transport and duality
- A random PDE
- Energy and renormalization

The advantage of the PDE with respect to the matching problem is linearity: explicit formulas e.g. via Fourier series:

$$u(x_1, x_2) = 4 \sum_{m \in \mathbb{N}^2} a_m \cos(m_1 \pi x_1) \cos(m_2 \pi x_2),$$

where $m = (m_1, m_2), \, |m| = \left(m_1^2 + m_2^2\right)^{1/2}, \, a_{(0,0)} = 0$ and

$$a_m = rac{4}{\pi^2 |m|^2} \sum_{i=1}^n \cos(m_1 \pi X_{i,1}) \cos(m_2 \pi X_{i,2}) - \cos(m_1 \pi Y_{i,1}) \cos(m_2 \pi Y_{i,2}).$$

Fourier coefficients are random variables, with mean 0 and variance

$$\mathbb{E}\left[a_m^2\right] = \frac{2n}{\left(\pi^2 \left|m\right|^2\right)^2}.$$

Energy estimate

Recall

$$\mathbb{E}\left[a_m^2\right] = \frac{2n}{\left(\pi^2 |m|^2\right)^2}.$$

Plancherel identity gives

$$\int_{[0,1]^2} |\nabla u(x)|^2 \, \mathrm{d}x = \sum_{m \in \mathbb{N}^2} \pi^2 \, |m|^2 \, a_m^2.$$

Taking expectation we obtain the series

$$\mathbb{E}\left[\int_{[0,1]^2} |\nabla u(x)|^2 dx\right] = \sum_{\substack{m \in \mathbb{N}^2 \\ m \neq 0,0)}} \pi^2 |m|^2 \mathbb{E}\left[a_m^2\right]$$
$$= \frac{2n}{\pi^2} \sum_{\substack{m \in \mathbb{N}^2 \\ m \neq (0,0)}} \frac{1}{|m|^2}$$

$$pprox rac{2n}{\pi^2} \int_1^\infty rac{1}{r} \mathrm{d}r rac{\pi}{2} = \infty$$

However, partial sums

$$\sum_{1 \le |m| \le a} \frac{1}{|m|^2} \approx \frac{\pi}{2} \int_1^a r \, \mathrm{d}r = \frac{\pi}{2} \log(a)$$

CLAIM: Only frequencies *m* with $|m| \leq n$ matter \Rightarrow

$$\mathbb{E}\left[B_{1,n}\right] \leq c(d)\sqrt{n\log(n)}.$$

Difficult to make rigorous!