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Abstract
These are lecture notes for the Master Classes en probabilités at IMRA, Université

de Strasbourg, January 20-24th 2020. They provide a rather gentle introduction
to the problem of Random Bipartite Matching, aimed at master students (M1) in
mathematics. We thank the organizers and in particular N. Juillet for many suggestions
while translating the content in French. We also thank all the students for finding
many typos and occasional errors.

1 Introduction
Let d ≥ 1, and consider 2n ≥ 1 i.i.d. random variables

(Xi)ni=1, (Yi)ni=1

taking values in the cube [0, 1]d with uniform distribution, i.e.,

P (Xi ∈ A) = |A|, for every A ⊆ [0, 1]d Borel,

and |A| denotes (the d-dimensional) Lebesgue measure of A. We can think of (Xi)i
as red points and (Yi)i as blue points (Figure 1). The Random Euclidean Bipartite
Matching Problem is defined as the following random variational problem,

min
σ∈Sn

n∑
i=1
|Xi − Yσ(i)|,

where Sn denotes the set of permutations over {1, . . . , n}, and |·| denotes the Euclidean
norm:

|x| =

√√√√ d∑
k=1

x2
k, for x = (xk)di=1 ∈ Rd.

In other words, we look for a correspondence (or “matching”) between red and blue
points (given by a permutation σ) in such a way that the sum of the distances between
connected points is minimized.

Aim of this lectures is to give an introduction to some features of this problem, in
particular when n becomes large. Actually, we slightly generalize allowing for a power
of the distance: given p ∈ (0,+∞), we define the random variable

Bp,n := min
σ∈Sn

n∑
i=1
|Xi − Yσ(i)|p. (1.1)

We will address natural questions such as the asymptotic behaviour of the random
variables Bp,n and the structure of matching associated to (random) minimizers σp,n,
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Figure 1: a sample of n = 100 pairs of i.i.d. uniform points on a unit square.
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Figure 2: the associated optimal matching with p = 2 (below).
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i.e., the maps (xi, yσp,n(i))ni=1 (Figure 2). We will see however that many problems are
in fact open already at the level of asymptotics for Bp,n.

This and related random combinatorial optimization problems have been investigated
by many authors, as they naturally appear in modelling several phenomena. Moreover,
as a general philosophy, one may expect that a “generic” (hence random) instance of a
problem exhibits some less peculiar features with respect to specific ones (usually the
“worst case scenarios”) and one may devise/analyse suitable algorithms.

We can consider many variants of the bipartite matching problem, not only by
allowing for more general domains than the cube, but also introducing correlations
between the random variables. We will also consider a variant where the numbers
of red and blue points are different. In this case however one has to be precise on
what a matching is. Depending on the interpretation, this may vary: e.g., [STAD13]
we could think that red points are mobile phone users and blue points are antennas
(typically much less than the number of users) , so that it is natural then to impose
some constraint on the number of users that can connect to each antenna.

Another closely related random combinatorial optimization problem is the minimal
matching problem, where one considers 2n i.i.d. variables (Xi)2n

i=1 and looks for

Mp,n = min
σ∈S2n

n∑
i=1
|Xσ(i) −Xσ(n+i)|p,

i.e., one does not prescribe a color of the 2n points and simply tries to connect pairs
of them. We may call this problem monopartite matching when comparing it with
the bipartite one (1.1). For an introductory monograph on random combinatorial
optimization problems, we suggest [Ste97].

Exercise 1.1. Show that E [Mp,n] ≤ E [Bp,n].

2 Lower bounds
Let us argue heuristically first. Since red/blue points are “uniformly distributed” on
[0, 1]d, the typical configuration should be such that for each Xi one can find Yj within
a distance approximately 1/n1/d (thinking e.g. of a grid of evenly spaced points).

This leads to the conjecture

Bp,n ∼ n ·
1

np/d
= n1−p/d.

However, looking at simulations (Figure 3) it appears that at least in the case
d = 1, p = 1, the guess may not be correct, for many distances are larger. A striking
feature of the bipartite problem is that indeed the guess is correct (fixing p = 1) only if
d ≥ 3, as first showed in [AKT84], although the case d = 2 is wrong by a much smaller
(logarithmic) term. (For the monopartite one, the same guess is correct instead for any
d ≥ 1).

In this section we show nevertheless how to extract a rigorous lower bound from
the idea above. We start with the following lemma.

Lemma 2.1. Let m ≥ 1 and (Xi)mi=1 i.i.d. on [0, 1]d with uniform distribution. Then,
for every x ∈ [0, 1]d,

E
[

min
i=1,...,m

|Xi − x|p
]
≥ c(d, p)

mp/d
,

where c(d, p) > 0 is a positive constant (depending on d and p only).

Proof. As usual with minima of independent random variables (this case |Xi − x|p) it
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Figure 3: Histograms of matching lengths with p = 1, n = 500 and d ∈ {1, 2, 3}.
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is convenient to consider the survival (or reliability) function, i.e., for t ∈ [0,∞),

P ( min
i=1,...,m

|Xi − x|p > t) = P (|X1 − x| > t1/p)m by independence

= Ld
(

[0, 1]d \B(x, t1/p)
)m

since the law is uniform

≥ (max
{

(1− ωdtd/p), 0
}

)m

where we denote ωd = |B(0, 1)| the measure of the unit ball in Rd. Integrating with
respect to t, using the general formula (for non-negative random variables)

E [Z] =
∫ ∞

0
P (Z > t)dt,

gives

E
[

min
i=1,...,m

|Xi − x|p
]

=
∫ ∞

0
P ( min

i=1,...,m
|Xi − x|p > t)dt

≥
∫ ω

−p/d
d

0
(1− ωdtd/p)mdt

= ω
−p/d
d

∫ 1

0
(1− ud/p)mdu

≥ ω−p/dd

∫ m−p/d

0
(1− ud/p)mdu

≥ ω−p/dd

(
1− 1

m

)m
m−p/d,

hence the thesis with c(d, p) = ω
−p/d
d /2 since (1− 1/m)m ≥ 1/2 for every m ≥ 2.

Exercise 2.2. Show that the converse inequality holds (possibly with a different
c(d, p). For every m ≥ 1, x ∈ [0, 1]d.

E
[

min
i=1,...,m

|Xi − x|p
]
≤ c(d, p)

mp/d
.

(Hint: following again the same argument, where should be located x ∈ [0, 1]d so that∣∣∣[0, 1]d \B(x, t1/p)
∣∣∣ is maximized?)

As a consequence, we establish the following lower bound.

Proposition 2.3. There exists c(d, p) > 0 such that for every n ≥ 1

E [Bp,n] ≥ c(d, p)n1−p/d.

Proof. Indeed, given any σ ∈ Sn,

|Xi − Yσ(i)|p ≥ min
j=1,...,n

|Xi − Yj |p,

hence

Bp,n ≥
n∑
i=1

min
j=1,...,n

|Xi − Yj |p.
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Taking expectation,

E [Bp,n] ≥ E

[
n∑
i=1

min
j=1,...,n

|Xi − Yj |p
]

=
n∑
i=1

E
[

min
j=1,...,n

|Xi − Yj |p
]

= nE
[

min
j=1,...,n

|X1 − Yj |p
]

the law of (Xi, Y1, . . . , Yn) does not depend on i

= n

∫
[0,1]d

E
[

min
j=1,...,n

|x− Yj |p
]

dx by independence of X1 and (Yj)j

≥ n · c(d, p)n−p/d by Lemma 2.1.

Exercise 2.4. Show that for some c(d, p) > 0 one has E [Mp,n] ≥ c(d, p)n1−p/d.

3 Concentration Inequalities
In the previous section we provided a lower bound on the expectation of Bp,n. One
may wonder about its variance (or higher moments). In fact, a general phenomenon
called concentration of measure yields that the random variable Bp,n is very close to
its average. This is because, in the language of Talagrand [Tal96], the random variable
depends in a “regular” way on a large number of independent variables, hence it must
be close to a constant (i.e., its expected value). Examples of this phenomenon that
fit in this situation and are surely better known are the law of large numbers, where
1
n

∑n
i=1 Xi → E [Xi], or Kolmogorov 0-1 laws, yielding e.g. that lim supn→∞Xn must

be a.s. constant, if (Xn)n are independent real-valued random variables.
There are many (related) results that describe this phenomenon precisely. For our

purpose, we use the following inequality. We refer to the already quoted [Tal96, Ste97]
but see also [RS13] for another exposition with applications of concentration inequalities
in information theory.

Lemma 3.1 (Azuma-Hoeffding-McDiarmid). Let (E, E) be a measurable space and
let (Xi)mi=1 be independent random variables with values in E. Let f : Em → R have
bounded differences in the following sense:

for every i ∈ {1, . . . ,m} there exists di ≥ 0 such that
|f(x1, . . . , xi−1, xi, xi+1, . . . , xm)− f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xm)| ≤ di

for every x1, . . . , xi−1, xi, xi+1, . . . , xm, x
′
i ∈ E.

(3.1)

Then, Z = f(X1, . . . , Xm) satisfies

P (|Z − E [Z] | > r) ≤ 2 exp
(
− 2r2∑m

i=1 d
2
i

)
for every r > 0.

In other words, the tail probabilities of Z have a Gaussian-like behaviour, with
variance σ2 = 1

4
∑m
i=1 d

2
i (if you have not seen inequalities for Gaussian tail probabilities

consider the following exercise).

Exercise 3.2. Let Z be a Gaussian random variable with mean m and variance σ2.
Then

P (|Z −m| > r) ≤ 2σ√
2πr

exp
(
− r2

2σ2

)
for every r > 0.
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(Hint: reduce to a standard case first, m = 0, σ2 = 1, and then compute by a change
of variables∫ ∞

r

e−x
2/2dx = e−r

2/2
∫ ∞

0
e−x

2/2e−xrdx ≤ e−r
2/2
∫ ∞

0
e−xrdx,

and by symmetry one also deals with the integral between (−∞, r).)

Remark 3.3. The bounded difference condition is equivalent to a Lipschitz regularity
of f with respect to the metric on E given by d(x, y) = 1 if and only if x 6= y.
Precisely, we have that, for every i ∈ {1, . . . ,m}, and x1, . . . , xi−1, xi+1, . . . xm ∈ E,
the function xi 7→ f(x1, . . . , xi−1, xi, xi+1, . . . , xm) is Lipschitz with constant bounded
by di. Other concentration inequalities allow for Lipschitz regularity with respect to
different distances (e.g., the Euclidean distance on E if E ⊆ Rd).

As a consequence of the remark above and the fact that pointwise minima of
Lipschitz functions (with bounded constants) are still Lipschitz, we have the following
result, that can be proved also directly as an exercise.

Exercise 3.4. With the notation of Lemma 3.1, let (fu)u∈U be a family of non-negative
functions on Em such that the bounded difference condition (3.1) holds with fu instead
of f (and di does not depend on u ∈ U). Then, (3.1) holds also for infu∈U fu.

As an application, we obtain the following concentration result for Bp,n.

Proposition 3.5. For every r > 0, one has the inequality

P (|Bp,n − E [Bp,n] | > r) ≤ 2 exp
(
− r2

4dpn

)
,

or equivalently (replacing r with rn1−p/d),

P

(∣∣∣∣ Bp,nn1−p/d −
E [Bp,n]
n1−p/d

∣∣∣∣ > r

)
≤ 2 exp

(
−r

2n1−2p/d

4dp

)
. (3.2)

Proof. Using Exercise 3.4 and the fact that Bp,n is defined as a minimum over Sn, it
is sufficient to fix σ ∈ Sn and argue that

fσ(x1, . . . , xn, y1, . . . , yn) :=
n∑
i=1
|xi − yσ(i)|p

satisfies (3.1), and then apply Lemma 3.1 with E = [0, 1]d and m = 2n. Indeed, if we
choose i ∈ {1, . . . , 2n} and compute the difference of fσ when evaluated at two points
that may differ only for the component xi (if i ≤ n) or yi−n (if i > n), it is clear that
the difference reduces to ∣∣|xi − yσ(i)|p − |x′i − yσ(i)|p

∣∣
in the case i ≤ n and ∣∣|xσ−1(i−n) − yi−n|p − |xσ−1(i−n) − y′i−n|p

∣∣
in the case i > n. But in both cases, we trivially estimate each distance between
points in [0, 1]d with the diameter of the cube

√
d, so that (3.1) holds with 2dp/2, and∑2n

i=1 d
2
i = 8ndp/2.

Remark 3.6. In (3.2) the right hand side is infinitesimal (actually summable) as n→∞
provided that p < d

2 . An application of Borel-Cantelli lemma gives then the following
result:

if p < d/2 and lim
n→∞

E [Bp,n]n1−p/d = βd exists (finite), then Bp,n
n1−p/d → βd P -a.s.
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Figure 4: matching of n = 30 pairs of i.i.d. uniform points on the unit interval, p = 1.1
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Figure 5: matching of n = 30 pairs of i.i.d. uniform points on the unit interval, p = 0.9

4 One-dimensional case
When d = 1 and p ≥ 1, the bipartite matching admits a rather simple solution: one
has to put in increasing order the red and blue points (separately), and then pair the
smallest red with the smallest blue, the second smallest red with the second smallest
blue, etc. This can be realized directly from simulations (Figure 4). When p < 1, the
situation appears to be less “rigid” (Figure 5).

To prove this general fact (which does not depend on the sampling of random
points) we introduce the following notation. Given n ≥ 1 (distinct) points (zi)ni=1 in R,
we denote the k-th smallest value among them by z(k), so that

z(1) = min
i
{zi} , z(n) = max

i
{zi} ,

and more generally, for k ∈ {1, . . . , n− 1}.

z(k+1) = min
{
zi : zi > z(k)

}
.
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When zi = Xi or zi = Yi are random we write accordingly X(k) and Y(k): these are
also known order statistics (of the samples (Xi)i and (Yi)i). Notice that we chose for
simplicity to define order statistics in the case of distinct points, which happens in the
random case P -a.s. (the reader is invited both to give a precise definition in the case
of n-points possibly with repetitions, and to argue that P -a.s. all the red and blue
points are distinct).
Proposition 4.1 (Matching via order statistics (monotone rearrangement)). Let n ≥ 1
and let (xi)ni=1, (yi)ni=1 be distinct points in R. Then there exists a unique σ† ∈ Sn
such that {

(xi, yσ†(i))
}n
i=1 =

{
(x(i), y(i))

}n
i=1 .

Moreover, for every p ≥ 1,
n∑
i=1
|xi − yσ†(i)|p =

n∑
i=1
|x(i) − y(i)|p = min

σ∈Sn

n∑
i=1
|xi − yσ(i)|p. (4.1)

Proof. The first statement is obvious (all points are assumed to be distinct). For the
second part, we argue inductively using the following inequality (which is essentially
the case n = 2): given x < x′, y < y′, then

|x− y|p + |x′ − y′|p ≤ |x− y′|p + |x′ − y|p. (4.2)

Indeed, assuming that σ̄ is a minimizer in (4.1), if σ̄ does not match x(1) := x to
y(1) =: y but to another point y′ > y(1) (and therefore also y(1) is matched to another
point x′ > x(1)) by applying (4.2) with these four points it follows that the matching
that pairs x(1) with y(1) and x′ with y′ and is defined as σ in the other cases has a
smaller (or equal) cost. Therefore, we can assume that σ̄ matches x(1) with y(1) and
removing these points and arguing by induction the thesis would follow.

Of course, it remains to prove (4.2). Without loss of generality, we can assume that
x = 0 and that y > 0, so that it reduces to

yp + |x′ − y′|p ≤ (y′)p + |x′ − y|p, for every x′ > 0, 0 < y < y′,

which is equivalent to

yp − |y − x′|p ≤ (y′)p − |y′ − x′|p for every x′ > 0, 0 < y < y′,

i.e., the function y 7→ yp − |y − x′|p is increasing for every x′ > 0. Differentiating with
respect to y gives the expression

p(yp−1 − sign(y − x′)|y − x′|p−1),

which is clearly positive if y < x′ while for y > x′ is positive since z 7→ zp−1 is increasing
(here we use the condition p ≥ 1).

Remark 4.2. Notice that if p > 1 in (4.2) the inequalities are strict, hence σ† is
the unique minimizer in (4.1). For p = 1 there may be other minimizers, e.g. if
x(1) ≤ x(2) ≤ y(1) ≤ y(2), then pairing x(1) with y(2) and x(2) with y(1) gives the same
cost.
Exercise 4.3. Give an explicit example showing that σ† is not necessarily optimal in
(4.1) if 0 < p < 1.
Exercise 4.4. If one associates to (xi)ni=1 the “empirical” cumulative distribution
function Fx(t) = 1

n ] {i : zi ≤ t} and its generalized inverse (quantile function), for
α ∈ (0, 1),

qx(α) := inf {t ∈ R : F (t) ≥ α} ,
and similarly for y = (yi)ni=1, then one has the identity (valid for any p > 0)

n∑
i=1
|x(i) − y(i)|p =

∫ 1

0
|qx(α)− qy(α)|pdα.
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Back to the random case, we have now a way to estimate Bp,n in terms of the order
statistics of (Xi)ni=1 and (Yi)ni=1. Limiting ourselves to the expectation, we find

E [Bp,n] =
n∑
i=1

E
[
|X(i) − Y(i)|p

]
. (4.3)

The variables X(i) and Y(i) are independent, and their law is very well understood, as
the following result shows.

Lemma 4.5. Let (Zi)ni=1 be i.i.d. random variables uniformly distributed on [0, 1].
Then for every t ∈ [0, 1], k>1,

P (Z(k) > t > Z(k−1)) =
(

n

k − 1

)
tk−1(1− t)n−k+1,

so that Z(k) has density (on [0, 1])

fk(t) = n!
(k − 1)!(n− k)! t

k−1(1− t)n−k.

Proof. The event Z(k) > t > Z(k−1) can be written as the a.s. disjoint union of events
where (k − 1) random variables are < t and n− k + 1 are > t. Since all these

(
n
k−1
)

events have the same probability, that is

P (X1 < t,X2 < t, . . . ,Xk−1 < t,Xk > t,Xk+1 > t, . . .Xn > t) = tk−1(1− t)n−k+1,

the first statement follows. Now we argue by induction: in case k = 1, we have

P (Z(1) > t) = (1− t)n,

hence f1(t) = n(1− t)n−1. Now assume that we proved the formula for the density of
fk−1, and compute

− d

dt
P (Z(k) > t) = − d

dt

[
P (Z(k) > t > Z(k−1)) + P (Z(k−1) > t)

]
= −

(
n

k − 1

)
d

dt
tk−1(1− t)n−k+1 + fk−1(t)

= −
(

n

k − 1

)[
(k − 1)tk−2(1− t)n−k+1 − (n− k + 1)tk−1(1− t)n−k

]
+

+ n!
(k − 2)!(n− k + 1)! t

k−2(1− t)n−k+1

= n!
(k − 1)!(n− k)! t

k−1(1− t)n−k.

The density fk belongs to the Beta(α, β) family, which reads

Beta(α, β)(t) = 1
B(α, β) t

α−1(1− t)β−1

for t ∈ (0, 1). In particular fk is Beta(k, n+ 1− k). This allows us to compute all its
moments, hence find (in principle) a closed formula for E [Bp,n], at least when p is
even. Let us limit ourselves to the case p = 2.

Theorem 4.6. For n ≥ 1,
E [B2,n] = 1

3
n

n+ 1 .

In particular,
lim
n→∞

E [B2,n] = 1
3 .
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This shows that the lower bound of Proposition 2.3, that reads in this case

E [B2,n] ≥ c(d, 2)n−1,

misses in fact the correct order, confirming the “educated” guess that the typical
matching lengths is of order n−1/2. As already anticipated, the situation will be similar
also for d = 2, but in a subtler way.

Proof. For every k ∈ {1, . . . , n}, we have

E
[
|X(k) − Y(k)|2

]
= E

[
X2

(k)

]
− E

[
X(k)

]
E
[
Y(k)

]
+ E

[
Y 2

(k)

]
= 2

(
E
[
X2

(k)

]
− E

[
X(k)

]2)
= 2 Var

(
X(k)

)
.

Next, we compute

E
[
X(k)

]
=
∫ 1

0
t

n!
(k − 1)!(n− k)! t

k−1(1− t)n−kdt

=
∫ 1

0

n!
(k − 1)!(n− k)! t

(k+1)−1(1− t)n−kdt

= k

n+ 1

∫ 1

0

(n+ 1)!
((k + 1)− 1)!(n− k)! t

(k+1)−1(1− t)n−kdt

= k

n+ 1 ,

where we used the Beta(k + 1, n+ 1− k) density to argue that the last integral is 1.
Similarly,

E
[
X2

(k)

]
=
∫ 1

0
t2

n!
(k − 1)!(n− k)! t

k−1(1− t)n−kdt

=
∫ 1

0

n!
(k − 1)!(n− k)! t

(k+2)−1(1− t)n−kdt

= k

n+ 1

∫ 1

0

(n+ 2)!
((k + 2)− 1)!(n− k)! t

(k+1)−1(1− t)n−kdt

= (k + 1)k
(n+ 2)(n+ 1) .

Therefore,

Var
(
X(k)

)
= (k + 1)k

(n+ 2)(n+ 1) −
k2

(n+ 1)2 .

Using (4.3), we obtain

E [B2,n] =
n∑
k=1

2
(

(k + 1)k
(n+ 2)(n+ 1) −

k2

(n+ 1)2

)
= 2

[
n(n+ 1)(2n+ 1)
6(n+ 2)(n+ 1) + n(n+ 1)

2(n+ 2)(n+ 1) −
n(n+ 1)(2n+ 1)

6(n+ 1)2

]
= n ((n+ 1)(2n+ 1) + 3(n+ 1)− (n+ 2)(2n+ 1))

3(n+ 1)(n+ 2) = 1
3

n

n+ 1 .

Exercise 4.7. Find a closed expression for E [B4,n] and show that the following limit
holds

lim
n→∞

nE [B4,n] = 2
5 .
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Exercise 4.8. Consider the random Euclidean bipartite matching when (Xi)ni=1,
(Yi)ni=1 are i.i.d. with exponential law of parameter 1. Is it possible to find closed
expressions for E [B2,n], or at least provide precise asymptotics as n→∞? It may be
useful to use the fact that X(k) has the same law as

∑k
i=1

Zi
n−i+1 where Zi are i.i.d.

with exponential law of parameter 1.

5 Self-averaging argument
In this section we describe an approach [BdMM02, BB13] that ultimately yields
existence of

lim
n→∞

E [Bp,n]n−1+p/d ∈ (0,∞),

provided that 0 < p < d/2. The main idea is that, by decomposing the original
cube into smaller cubes, one obtains a similar picture (only with less points). Hence,
one could construct a matching by gluing together “local” matchings on each small
cube. Since the total cost of the optimal matching must be smaller, this would lead
to a monotonicity property of a suitably rescaled Bp,n (it should be decreasing) and
therefore existence of a limit (simply because any decreasing sequence converges to its
infimum).

There are at least two issues to be solved in order to put this idea into a rigorous
formulation.

The first one concerns the fact that, if we choose any (good) region U ⊆ [0, 1]d,
we may observe a different number of red and blue points. How to define a “local”
matching in this case? We choose to extend the matching problem in the following
way: if we observe that there are n(X;U) red points and n(Y ;U) blue points, we
try to match (in an optimal way), only min {n(X;U), n(Y ;U)} points and leave the
remaining |n(X;U)− n(Y ;U)| points “unmatched”. This will add an extra error term
in the monotonicity argument above, since we will need to pair the leftover points
outside the small cubes.

The main idea will be then to iterate this construction going from smaller to larger
scales, e.g. in a dyadic way (Figure 6).
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Figure 6: Defining a matching between n = 300 pair of points by iteratively “gluing local
matchings at scales 2−k with k = 3, 2, 1, 0 (p = 1).

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) n = 300 pairs of i.i.d. uniform points.
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(b) Matchings on squares of side lengths 2−3.
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(c) Unmatched points in the previous step.
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(d) Matchings on squares of side lengths 2−2.
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(e) Unmatched points in the previous step.
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(f) matchings on squares of side lengths 2−1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(g) Unmatched points in the previous step.
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(h) Matching on unit square.

Let us introduce some notation in order do properly define this extension. Given
n ∈ N, x = (xi)ni=1 ⊆ Rd, write

I(x;U) := {i ∈ {1, . . . , n} : xi ∈ U)} ,

for the subset (of indices) of points in U , so that n(x;U) := ]I(x;U). If we are given
also m ∈ N points y = (yi)mi=1 ⊆ Rd, the “local” matchings in U will be parametrized
by relations σ ⊆ I(x;U)× I(y;U) that are injective functions from I(x;U) to I(y;U)
if n(x;U) ≤ n(y;U) or viceversa if n(x;U) ≥ n(y;U). Let us write S(x, y;U) for such
a set and finally let

bp(x, y;U) := min
σ∈S(x,y;U)

∑
(i,j)∈σ

|xi − yj |p.

for the “local” bipartite matching cost in U . Notice that there may be no (red or blue)
points in U , and in that case the local cost is zero.

We will need only basic properties of bu, summarized in the following lemma.
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Lemma 5.1. Let n, m ∈ N x = (xi)ni=1, y = (yi)mi=1 ⊆ Rd, U ⊆ Rd Borel. Then,
1. bp is local, i.e., bp(x, y;U) = bp((xi)i∈I(x;U), (yi)i∈I(y;U), U).
2. bp is translation invariant: if v ∈ Rd, then

bp(x+ v, y + v;U + v) = bp(x, y;U),

where x+ v = (xi + v)ni=1, y + v = (yi + v)mi=1, U + v = {u+ v : u ∈ U}.
3. bp is p-homogeneous with respect to dilations: if λ ∈ (0,∞), then

bp(λx, λy, λU) = λpbp(x, y;U),

where λx = (λxi)ni=1, λy = (λyi)mi=1, λU = {λu : u ∈ U}.

4. bp is p-subadditive: for every (Borel) partition U =
⋃K
k=1 Uk, one has

bp(x, y;U) ≤
K∑
k=1

bp(x, y;Uk) + |n(x;Uk)− n(y;Uk)|diam(U)p,

where diam(U) = sup {|x− y| : x, y ∈ U)}.

Proof. We leave properties 1-3 to the reader. To show 4, notice that any collection
of matchings (σk)Kk=1 with σk ∈ S(x, y;Uk) gives a relation σ :=

⋃K
k=1 σk that is left

and right injective (i.e., if (i, j) ∈ σ, there are no other pairs which share at least one
coordinate with (i, j)). To obtain an injective function, it is sufficient to arbitrarily
match points from the remaining ones, up to min {n(x;U), n(y;U)}. Each will give a
contribution smaller than diam(U)p, and the overall number is bounded from above
by
∑K
k=1 |n(x;Uk)− n(y;Uk)|.

Next, we address the second issue: when X = (Xi)ni=1, Y = (Yi)ni=1 are random
i.i.d. uniform on the cube [0, 1]d, the probabilistic properties of the points inside U are
different than the original ones (even if U is a sub-cube). For example (exercise)

n(X;U)

has a Binomial law with parameters (n, |U |). In order to gain self-similarity (at least
in law), the idea here is to pick n (the initial number of points) to be also random,
with a Poisson law, with intensity λ, i.e., we impose that

P (n(X; [0, 1]d) = k) = λk

k! e
−λ for k ∈ N.

Exercise 5.2. Show that a Poisson random variable Z with parameter λ has mean λ
and variance λ and that, for α ∈ (0, 1], λ ≥ 1,

E [Zα] ≥ c(α)λα,

where c(α) > 0 depends on α only. (Hint: use the inequality Zα ≥ λα − |Z − λ|α)

This Poissonization procedure can be rigorously constructed as follows. Let λ > 0,
let NX and NY be independent Poisson random variables with intensity λ. Let also
(Xi)∞i=1, (Yi)∞i=1 be i.i.d. uniform random variables in the cube, also independent of NX
and NY . We consider then the two independent Poisson point processes of intensity λ
on [0, 1]d defined as

X := (Xi)NXi=1, Y := (Yi)NYi=1,

i.e., on the event {NX = k} one has X = (Xi)ki=1 (and similarly for Y ).
We collect some useful properties of this construction in the following lemma.
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Lemma 5.3. Let λ > 0 and let X = (Xi)NXi=1 be a Poisson point process of intensity λ
on [0, 1]d. For every U ⊆ [0, 1]d Borel with |U | > 0, the random variable

n(X;U) = ]I(X;U)

has Poisson law of parameter λ|U | and, conditionally to the event {n(X;U) = k}, the
k random variables (Xi)i∈I(X;U) are independent with uniform law on U (i.e., with
density 1

|U | on U).

Proof. Given k ≥ 1 and Borel subsets (Ai)ki=1 of [0, 1]d, we write

I = {]I(X;U) = k} ,

A =
{
]I(X;U) = k, (Xi)i∈I(X;U) ∈

k∏
i=1

Ai

}
,

where the notation (Xi)i∈I(X;U) ∈
∏k
i=1 Ai means that the k points (Xi)i∈I(X;U) are

imposed to belong respectively to the k sets (A1, A2, . . . , Ak) keeping the natural order
in their parametrization (i.e., the point Xi with smallest index i ∈ I(X;U) has to
belong to A1, and so on). The thesis can be stated as

P (I) = (λ|U |)k

k! e−λ|U |, (5.1)

P (A|I) =
k∏
i=1

|Ai|
|U |

. (5.2)

We compute separately P (I) and P (A ∩ I) = P (A). In both cases, we decompose
over the alternatives {NX = n} (clearly only with n ≥ k), so that (with B = I or
B = A ∩ I),

P (B) =
+∞∑
n=k

P (B|NX = n)P (NX = n).

By assumption,
P (NX = n) = λn

n! e
−λ.

To compute P (I|NX = n), it is sufficient to notice that when X = (Xi)ni=1 are i.i.d.
uniform points then

n(X;U) =
n∑
i=1

IU (Xi)

is the sum of n independent Bernoulli random variables with parameter |U |, hence it
has Binomial law with parameters (n,Ld(U)), so that

P (I|NX = n) =
(
n

k

)
|U |k(1− |U |)n−k.

Therefore,

P (I) =
+∞∑
n=k

(
n

k

)
|U |k(1− |U |)n−k λ

n

n! e
−λ

= (λ|U |)k

k! e−λ
∞∑
n=k

λn−k(1− |U |)n−k

(n− k)!

= (λ|U |)k

k! e−λ|U |.
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This proves (5.1). To show (5.2), we notice that the event A ∩ {NX = n} can be
decomposed into the disjoint union of events of the type

n⋂
j=1
{Xj ∈ Bj} ,

where each Bj is [0, 1]d \ U or one of the sets (Ai)ki=1. Moreover, each set Ai must
appear only once and in the given order. Clearly, each event of the type above has
probability

P (
n⋂
j=1
{Xj ∈ Bj} |NX = n) =

n∏
j=1
|Bj | = (1− |U |)n−k

k∏
i=1
|Ai|,

Their number is
(
n
k

)
, for once we specify the subset of k indices that are not [0, 1]d \ U

the sequence is uniquely determined because the sets (Ai)ni=1 appear in a specified
order. Hence,

P (A|NX = n) =
(
n

k

)
(1− |U |)n−k

k∏
i=1
|Ai|.

The computation now is identical to the previous case, with |U |k replaced by
∏k
i=1 |Ai|.

We conclude that

P (A) =
λk
∏k
i=1 |Ai|
k! e−λ|U |.

Taking the quotient, (5.2) follows.

As a consequence, we obtain the following self-similarity property of X.

Corollary 5.4. With the notation above, let also Q = [a, b]d ⊆ [0, 1]d.1 Then the
process obtained by “restriction” of X to Q and transformation to [0, 1]d via an affine
map, i.e.,

((Xi − a)/(b− a))i∈I(X;Q),

is a Poisson point process on [0, 1]d of intensity λ(b− a)d.

Proof. Indeed, it is sufficient to let U = Q in the result above and use the fact that i.i.d.
random variables with uniform law on Q are transformed to i.i.d. random variables
with uniform law on [0, 1]d via the affine map.

As we mentioned at the beginning of this section, we will not establish an exact
monotonicity when decomposing into smaller cubes. To take care of this fact and still
show existence of a limit, we need the following analytical result.

Lemma 5.5. Let α > 0, c ≥ 0, f : [1,∞)→ [0,∞) be continuous and such that, for
every m ≥ 1 integer, λ ≥ 1 real, one has

f(mλ) ≤ f(λ) + cλ−α. (5.3)

Then limλ→∞ f(λ) exists.

Proof. We crucially use the following fact: for any open interval (a, b) ⊆ R, the
union

⋃∞
m=1(ma,mb) contains a half-line (A,+∞) for some A > 0. Indeed, one

has (ma,mb) ∩ ((m + 1)a, (m + 1)b) 6= ∅ if mb > (m + 1)a, which holds for every
m > a/(b− a).

1In fact, I should always consider here and in what follows more general cubes of the type Q =
{v + x : x ∈ [0, (b− a)]p}, where v ∈ Rd, a, b ∈ R, a < b and Q ⊆ [0, 1]d, but I will not change it for
simplicity of notation in the exposition.
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Since both f and cλ−α are continuous on [1, 2], they are bounded and, by (5.3),
for every m ≥ 1, λ ∈ [1, 2],

f(mλ) ≤ sup
s∈[1,2]

(
f(s) + cs−α

)
<∞.

since
⋃∞
m=1[m, 2m] = [1,∞), it follows that f is uniformly bounded on [1,∞). To

show that the limit exists, it is sufficient to argue that

lim sup
λ→∞

f(λ) ≤ lim inf
λ→∞

f(λ).

Let ε > 0 and x0 > 0 be such that cx−α < ε for every x > x0. Let also λ0 ∈ (x0,∞)
be such that

f(λ0) < lim inf
λ→∞

f(λ) + ε.

By continuity of f , there exists (a, b) such that the same inequality holds on it (and,
without loss of generality, a > x0). For every m ≥ 1, x ∈ I it follows that

f(mx) ≤ f(x) + cx−α < lim inf
λ→∞

f(λ) + ε+ cx−α

≤ lim inf
λ→∞

f(λ) + 2ε.

By the fact established at the beginning of the proof shows that, it follows that

f(x) ≤ lim inf
λ→∞

f(λ) + 2ε

for every x ∈ (A,+∞), for some A > 0. It follows that

lim sup
λ→∞

f(λ) ≤ lim inf
λ→∞

f(λ) + 2ε,

hence the thesis letting ε→ 0.

Theorem 5.6. Let p ∈ (0, d/2) and let Xλ, Yλ be independent Poisson point processes
on [0, 1]d with intensity λ. Then

lim
λ→∞

E
[
bp(Xλ, Yλ, [0, 1]d)

]
λ1−p/d ∈ (0,∞)

exists.

Proof. Fix λ and write f(λ) = E
[
bp(X,Y ; [0, 1]d)

]
λp−d, for X, Y independent Poisson

point processes on [0, 1]d with intensity λd (notice the slight change of parametrization).
The thesis becomes then that the limit limλ→∞ f(λ) exists finite and strictly positive.
Let us notice that, by conditioning upon the event {NX = n,NY = m}, we can write

f(λ) = λp−d
∞∑

n,m=1
E
[
bp((Xi)ni=1, (Yj)mj=1; [0, 1]d)

] λnd
n! e

−λd λ
md

m! e
−λd . (5.4)

where we used also that, if one among n,m is null, then the matching cost is by definition
zero. We notice that λ 7→ f(λ) is a continuous function, e.g. by Lebesgue dominated
convergence (use the trivial inequality E

[
bp,n((Xi)ni=1, (Yj)mj=1

]
≤ dp/2(n+m)). Hence,

we only need to show (5.3) so that Lemma 5.5 applies. Before we do so, we also argue
that f(λ) > c(d, p) > 0 for some constant independent of λ.2 This amounts to go back
to Proposition 2.3 and extend the result to the Poisson case. Indeed, if both n, m are

2There are surely shorter ways to prove this, but all the proofs I found were less elementary. If you find
a shorter and more elementary I would like to know.
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natural and positive, we suggest as an instructive exercise to check that Proposition 2.3
gives the inequality

E
[
bp((Xi)ni=1, (Yj)mj=1; [0, 1]d)

]
≥ c(d, p) min {n,m}

max {n,m}p/d
.

Therefore, we can write

f(λ) ≥ λp−d
∞∑

n,m=1
c(d, p)n1−p/dλ

nd

n! e
−λd ≥ c(d, p)λp−dE

[
min {NX , NY }

max {NX , NY }p/d

]
.

To obtain a lower bound, we try to argue as in Exercise 5.2 with α ∈ (0, 1], in place
of Z Poisson, the variables Z1 = min {NX , NY } and Z2 = max {NX , NY }. Indeed we
have

max
{
E
[∣∣Z1 − λd

∣∣] ,E [∣∣Z2 − λd
∣∣]} ≤

E
[∣∣min(NX , NY )− λd

∣∣]+ E
[∣∣max(NX , NY )− λd

∣∣]
= E

[∣∣min(NX , NY )− λd
∣∣+
∣∣max(NX , NY )− λd

∣∣]
= E

[∣∣NX − λd∣∣+
∣∣NY − λd∣∣] ≤ 2λd/2,

If α ≤ 1, the triangle inequality holds, hence λαd ≤ |Z|α + |Z − λd|α and taking
expectation we have

E [Zα1 ] ≥ λαd − E
[
|Z1 − λd|α

]
≥ λαd − 2αλαd/2 ≥ c(d, α)λαd for λ large enough,

having used Hölder inequality with exponent 1/α ≥ 1 to estimate from above

E
[
|Z1 − λd|α

]
≤ E

[
|Z1 − λd|

]α ≤ 2αλdα/2.

For Z2, we need to argue in the opposite direction, so that

E [Z2] ≤ λd + E
[
|Z2 − λd|

]
≤ λd + 2λd/2 ≤ c′(1, d)λd

for λ large enough. To conclude, we use the fact that, letting γ = p/d ∈ (0, 1/2) and
β = 1 + γ > 1, the function h(x, y) = xβ

yγ is convex on (0,+∞)× (0,+∞). Indeed, its
Hessian matrix is given by the symmetric matrix(

∂2

∂x2h
∂2

∂x∂yh
∂2

∂x∂yh
∂2

∂y2h

)
=
(
β(β − 1)xβ−2y−γ −βγxβ−1y−γ−1

−βγxβ−1y−γ−1 γ(γ + 1)xβy−γ−2

)
that has positive trace and determinant equal to

βγ [(β − 1)(γ + 1)− βγ]x2β−2y−2γ−2 = 0,

Therefore, by Jensen inequality

E

[
Z1

Z
p/d
2

]
= E

[
h
(
Z

1/β
1 , Z2

)]
≥ h

(
E
[
Z

1/β
1

]
,E [Z2]

)

=
E
[
Z

1/β
1

]β
E [Z2]p/d

≥ c(β, d)βλd

c′(1, d)p/dλp

≥ c′′(p, d)λd−p,
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that gives f(λ) > c′′(p, d) > 0 for λ large enough.
Let us now focus on the monotonicity property (5.3). If Q = [a, b]d, then

E [bp(X,Y ;Q)] = E
[
bp((Xi)i∈I(X;Q), (Yi)i∈I(Y ;Q);Q)

]
by Lemma 5.1.1

= (b− a)pE
[
bp
(
((Xi − a)/(b− a))i∈I(X;Q), ((Yi − a)/(b− a))i∈I(Y ;Q); [0, 1]d

)]
by Lemma 5.1.2–3

= (b− a)pE
[
bp(X̃, Ỹ ; [0, 1]d)

]
by Corollary 5.4, where X̃ and Ỹ have now intensity (λ(b− a))d.

Multiplying both sides by λp−d, it follows that

λp−dE [bp(X,Y ;Q)] = (b− a)df(λ(b− a)). (5.5)

Let now m ≥ 1 be an integer. Decomposing [0, 1]d into md disjoint subcubes (Qi)m
d

i=1
of side length 1/m, it follows from Lemma 5.1.4 and the identity just obtained that

f(λ) ≤ λp−d
md∑
i=1

E [bp(X,Y ;Qi)] + E [|n(X;Qi)− n(Y ;Qi)|]

=
md∑
i=1

m−df(λ/m) + λp−dE [|n(X;Qi)− n(Y ;Qi)|]

= f(λ/m) + λp−d
md∑
k=1

E [|n(X;Qi)− n(Y ;Qi)|] .

To estimate the last sum, we use the first part of Lemma 5.3, so that the random
variables n(X;Qk) and n(Y ;Qk) are independent Poisson with parameter λ|Qk| =
λdm−d, hence

E [|n(X;Qi)− n(Y ;Qi)|] ≤ E
[
|n(X;Qi)− n(Y ;Qi)|2

]1/2

= (2 Var (n(X;Qi)))1/2

=
√

2λd/2m−d/2.

Summing all the md contributions, we conclude that

f(λ) ≤ f(λ/m) +
√

2λp−d/2md/2

or equivalently, replacing λ with λ/m,

f(mλ) ≤ f(λ) +
√

2mpλp−d/2. (5.6)

This is almost (5.3) with α = d/2 − p > 0, but the constant c depends on m and
diverges for m → ∞. To solve this issue, we need to argue using “multiple scales”
instead of decomposing directly [0, 1]d into md sub-cubes. Notice indeed, that iterating
k times (5.6) with m = 2 gives

f(2kλ) ≤ f(2k−1λ) +
√

22pλ−α2−(k−1)α

≤ f(2k−2λ) +
√

22pλ−α(2−(k−1)α + 2−(k−2)α)

≤ . . . ≤ f(λ) +
√

22pλ−α
k−1∑
i=0

2−αi

≤ f(λ) + cλ−α,

(5.7)

with c =
√

22p
∑+∞
i=0 2−αi.
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To argue similarly, for a general m > 1, we need however to repeat all the derivation
of (5.6) in a more careful way. Choose k ≥ 1 so that 2k−1 < m ≤ 2k and consider the
cube Q̃ = [0, 2k/m]d ⊇ [0, 1]d. Notice that

λp−dE
[
bp(X,Y ; Q̃)

]
= λp−dE [bp(X,Y ;Q)] ,

since the point processes X and Y take values in Q. For every i ∈ {1, . . . , k}, we
decompose Q̃ into 2id sub-cubes (Qi,j)2id

j=1 of side length 2k−i/m. When i = k, this
decomposition induces one of [0, 1]d into md sub-cubes. However, not all cubes
Qi,j will be entirely contained in [0, 1]d, hence the self-similarity identity (5.5) fails
for them. When i = k we can however argue that if a sub-cube Q̃i is disjoint
from [0, 1]d, then bp(X,Y ; Q̃i) = 0. On the other side, each term of the type
E [|n(X;Qi,j)− n(Y ;Qi,j)|] can be always bounded from above by

√
2
(
λ2(k−i)/m

)d/2,
since n(X;Qi,j) and n(Y ;Qi,j) are independent Poisson random variables with a
(possibly smaller) parameter λd|Qi,j ∩ [0, 1]d|. Finally, to mimic (5.7), we use the fact
that the decomposition can be thought as an iterative procedure, hence we can apply
Lemma 5.1.4 to each Qi,j , that has diameter

√
d2k−i/m, and summing upon j (with i

fixed) obtaining

2id∑
j=1

E [bp(X,Y ;Qi,j)] ≤
2(i+1)d∑
j=1

E [bp(X,Y ;Qi+1,j)]

+
(√

d2k−i/m
)p

E [|n(X;Qi,j)− n(Y ;Qi,j)|] .

Let us focus on the “error terms”
2id∑
j=1

√
d
(
2k−i/m

)p E [|n(X;Qi,j)− n(Y ;Qi,j)|] ≤ 2id
(√

d2k−i/m
)p√

2
(
λ2(k−i)/m

)d/2

=
√

2dpλd/22i(d/2−p),

having used that m/2k ≤ 1.
Multiplying by λp−d and iterating this procedure from i = 0 to i = k − 1 leads to

f(λ) ≤

2kd∑
j=1

λp−dE [bp(X,Y ;Qk,j ]

+
√

2dpλp−d/2
k−1∑
i=0

2i(d/2−p).

Focusing once again on the “error terms”, we use the inequality
k−1∑
i=0

2i(d/2−p) = 2k(d/2−p) − 1
2d/2−p − 1

≤ 1
2d/2−p − 1

md/2−p.

to deduce that

√
2dpλp−d/2

k−1∑
i=0

2i(d/2−p) ≤
√

2dp
2d/2−p − 1

(λ/m)p−d/2.

To conclude, we use the fact that, since i = k, a cube Qk,j is either contained in
[0, 1]d or disjoint from it (hence giving no contribution to the sum). By (5.5), since
the cubes that give contribution are md, we have

2kd∑
j=1

λp−dE [bp(X,Y ;Qk,j ] = f(λ/m).

Putting all together, we have the inequality, equivalent to (5.3),

f(λ) ≤ f(λ/m) + c(λ/m)d/2−p,

with c =
√

2dp/(2d/2−p − 1) independent of m or λ.
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Remark 5.7. There is a final step that for brevity we do not perform (see [BdMM02,
BB13] for a proof) deduce from Theorem 5.6 that

lim
n→∞

E [Bp,n]
n1−p/d ∈ (0,∞),

and in fact coincides with the limit for the Poisson case.

6 A PDE approach
In this last section we describe a recent approach [CLPS14, AST19] which (at present)
allows one to rigorously deduce rather precise estimates when d = 2. In particular, for
d = 2, p = 2, one can prove that

lim
n→∞

E [B2,n]
log(n) = 1

2π .

Notice that the rate log(n) differs from the heuristic n1−p/d = n0. This phenomenon
was already known [AKT84], but the existence of a limit was not. Infact, the following
problem is open:

does lim
n→∞

E [B1,n]√
n log(n)

exist?

To give an illustration of the method, in this section we sketch how one can prove
that

0 < lim inf
n→∞

E [B1,n]√
n log(n)

and lim sup
n→∞

E [B1,n]√
n log(n)

<∞.

Notice that, also in this case the heuristic rate should be n1−1/2 =
√
n.

The main idea is to consider the bipartite matching problem as a special instance
of optimal transport problems, which in recent years attracted much interest both
from theoretical [Vil09, AGS08] and applied research [San15, PC18]. In particular, it
allows us to consider generalized matching problems both for discrete and “continuous”
distributions of points. Instead of looking for a permutation σ, one should instead
search for a more general way to match points, allowing e.g. multiple matchings: the
main idea (due to L. Kantorovich) is to replace permutations σ ∈ Sn with transition
probabilities (Markov kernels), so that one obtains a probabilistic pairing between
points. The strength of the approach is that Markov kernels make sense both in
discrete and continuous setting, so that the theory can be generalized.

For our purpose, we do not enter in a detailed description, for we will only use a
basic (but crucial) duality formula, stating that

B1,n = max
f∈Lip(1)

{
n∑
i=1

f(Xi)− f(Yi)
}
, (6.1)

where Lip(1) denotes the set of f : [0, 1]d → R such that |f(x) − f(y)| ≤ |x − y| for
every x, y ∈ [0, 1]d.
Remark 6.1. For general p duality reads

Bp,n = max
{

n∑
i=1

f(Xi)− g(Yi) : f(x)− g(y) ≤ |x− y|p
}
, (6.2)

which allows for a nice economical interpretation. Imagine that blue points (Yi)ni=1 are
suppliers of some product and red points (Xi)ni=1 are potential buyers, and because of
some (geographical) reason, to transport a unit of good from y to x costs |x− y|p. A
transport company offers us to take care of distributing such products. Because of the
way they are organized, they are willing to buy a unit of product located at position
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y at the price g(y) and sell a unit at position x at price f(x). To be competitive, in
general, inequality f(x)− g(y) ≤ |x− y|p must hold (the selling price at x should be
smaller than buying the goods at y and transporting from y to x). The term

n∑
i=1

f(Xi)− g(Yi)

becomes then the overall profit for this company. Formula (6.2) then states that the
maximum profit obtainable equals the minimum matching cost.

Back to the random bipartite matching problem, the main idea is to solve the
elliptic partial differential equation (PDE)

−∆u =
n∑
i=1

(δXi − δYi) in [0, 1]2, (6.3)

and use it in (6.1). Indeed, we notice that
n∑
i=1

f(Xi)− f(Yi) =
∫

[0,1]2
fd
(

n∑
i=1

(δXi − δYi)
)

= −
∫

[0,1]2
f(x)∆u(x)dx

=
∫

[0,1]2
∇f(x)∇u(x)dx ≤

∫
[0,1]2

|∇u(x)|dx

(6.4)

where in the last line, in the integration by parts we did not consider the boundary
terms, and then e.g. assumed that f is continuously differentiable with |∇f(x)| ≤ 1 on
[0, 1]2. A part from these issues, we exploit the fact that the last expression does not
depend on f , so

B1,n = max
f∈Lip(1)

{
n∑
i=1

f(Xi)− f(Yi)
}
≤
∫

[0,1]2
|∇u(x)|dx.

Taking expectation, we obtain the inequality

E [B1,n] ≤ E

[∫
[0,1]2

|∇u(x)|dx
]
. (6.5)

To be more rigorous, we need at least to specify boundary conditions for u. We choose
Neumann boundary conditions

∂u

∂η
= 0, on ∂[0, 1]2,

where η denotes the outer normal at [0, 1]2, i.e. η(x) = (1, 0) on {0}× (0, 1), {1}× (0, 1)
and η(x) = (0, 1) on (0, 1)× {0}, (0, 1)× {1}. This way, there are no boundary terms
when we integrate by parts in (6.4)

We can solve (6.3) explicitly via Fourier series: a general formula for the solution
to −∆u = µ− ν, where µ, ν are measures (with µ([0, 1]2) = ν([0, 1]2)) is

u(x1, x2) = 4
∑
m∈N2

am cos(m1πx1) cos(m2πx2),

where m = (m1,m2), |m| =
(
m2

1 +m2
2
)1/2, a(0,0) = 0 and

am = 4
π2 |m|2

∫
[0,1]2

cos(m1πx1) cos(m2πx2)d(µ− ν)(x1, x2).

When µ =
∑n
i=1 δXi , ν =

∑n
i=1 δYi are random, it follows that am is a random

variables. We can compute mean and variance easily using the following result.
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Lemma 6.2. Let n ≥ 1, g : [0, 1]2 → R be continuous. Then the random variable∫
[0,1]2

gd
(

n∑
i=1

δXi − δYi

)
=

n∑
i=1

(g(Xi)− g(Yi))

has zero mean and variance

2n

∫
[0,1]2

g2(x)dx−
(∫

[0,1]2
g(x)dx

)2
 .

Proof. Clearly, the mean is zero, for E [g(Xi)] = E [g(Yi)] =
∫

[0,1]2 g(x)dx. For the
variance, notice that it is a sum of 2n independent random variables, each with variance
(the minus sign in −g(Yi) does not matter)

E
[
g2(Xi)

]
− E [g(Xi)]2 =

∫
[0,1]2

g2(x)dx−
(∫

[0,1]2
g(x)dx

)2

.

As a consequence, since g(x1, x2) = 4 cos(m1πx1) cos(m2πx2) is such that∫
[0,1]2

g(x)dx = 0,
∫

[0,1]2
g2(x)dx = 1,

we have that (for m 6= (0, 0)),

E
[
a2
m

]
= 2n(

π2 |m|2
)2 .

By Cauchy-Schwarz inequality and Plancherel formula∫
[0,1]2

|∇u(x)| dx ≤
(∫

[0,1]2
|∇u(x)|2 dx

)1/2

=
(∫

[0,1]2

(
∂u

∂x1
(x1, x2)

)2
+
(
∂u

∂x1
u(x1, x2)

)2
dx
)1/2

=
( ∑
m∈N2

π2 |m|2 a2
m

)1/2

.

Taking expectation and using Cauchy-Schwarz inequality once more,

E

[∫
[0,1]2

|∇u(x)| dx
]
≤ E

( ∑
m∈N2

π2 |m|2 a2
m

)1/2


≤ E

[ ∑
m∈N2

π2 |m|2 a2
m

]1/2

=

 ∑
m∈N2\(0,0)

2n
π2 |m|2

1/2

.

Unfortunately, the series we found is divergent, as one can see by comparison with
the integral ∑

m∈N2\(0,0)

2n
π2 |m|2

≈
∫ ∞

1

∫ π/2

0

2n
π2r2 rdrdθ = n

π

∫ ∞
1

1
r

dr = +∞.
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To overcome this issue we need to carefully approximate u with a smoothed version
obtained by “filtering” the high frequencies out, e.g. by restricting summation to
m ∈ N2 with |m| smaller than a function h(n)→∞ to be suitably chosen:

uh(x1, x2) := 4
∑
m∈N2

|m|≤h(n)

a(m1,m2) cos(m1πx1) cos(m2πx2).

This of course produces some error terms in (6.5). Once we estimate them, it turns out
that one can choose approximatively h(n) = n1/2 (which corresponds to smoothing
with respect to the space variable on a radius of order n−1/2). This way, the partial
sums still diverges, but in a controlled way:∑

m∈N2\(0,0)
|m|≤n1/2

2n
π2 |m|2

≈
∫ n1/2

1

∫ π/2

0

2n
π2r2 rdrdθ = n

π

∫ n1/2

1

1
r

dr = n log(n)
2π .

This ultimately leads to the upper bound

lim sup
n→∞

E [B1,n]√
n log(n)

≤ 1√
2π
.

Concerning the lower bound, going back to the duality formula (6.2) and the formal
derivation (6.4), one is tempted to choose

f(x) = u(x)
supy∈[0,1]2 |∇u(y)| .

This way, however, it would be difficult to estimate the expectation of the resulting
random variable:

E

[ ∫
[0,1]2 |∇u(x)|2 dx

supy∈[0,1]2 |∇u(y)|

]
≤ E [B1,n] .

Moreover, we already know that we should use uh instead of u (with h(n) = n1/2).
Clearly, uh is smooth, but it turns out that, with some effort, one can estimate from
above

E

[∫
[0,1]2

|∇uh(x)|4 dx
]1/4

≤ c
√
n log(n).

where c ≥ 0 is some constant (independent of n ≥ 1).
Next, we exploit a classical result from the theory of Sobolev functions [Liu77].

Theorem 6.3. For every p > 1 there exists cp > 0 such that the following holds. For
every g : [0, 1]2 → R be C1, there exists f : [0, 1]2 → R such that

f ∈ Lip(1) and
∣∣{x ∈ [0, 1]2 : f(x) 6= g(x)

}∣∣ ≤ cp ∫
[0,1]2

|∇g|p (x)dx.

To obtain the lower bound, we choose M > 0 (to be specified later) and apply
the result with p = 4 and g = uh/(M

√
n log(n)), obtaining f ∈ Lip(1) so that (after

taking care of the substitution of u with uh),

B1,n ≥
n∑
i=1

f(Xi)− f(Yi) = −
∫

[0,1]2
f(x)∆uh(x)dx

=
∫

[0,1]2
∇f(x)∇uh(x)dx

=
∫
{f=g}

∇g(x)∇uh(x)dx+
∫
{f 6=g}

∇f(x)∇uh(x)dx

=
∫

[0,1]2
∇g(x)∇uh(x)dx−

∫
{f 6=g}

∇g(x)∇uh(x)dx+
∫
{f 6=g}

∇f(x)∇uh(x)dx
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The first term in the sum above equals

M√
n log(n)

∫
[0,1]2

|∇uh(x)|2dx,

so that its expectation divided by
√
n log(n) converges:

lim
n→∞

1
Mn log(n)

∫
[0,1]2

|∇uh(x)|2dx = 1
M2π .

We estimate the remaining terms using Hölder inequality∣∣∣∣∣
∫
{f 6=g}

∇g(x)∇uh(x)dx

∣∣∣∣∣ ≤
(
|f 6= g|2

∫
[0,1]2

|∇g(x)|4dx
∫

[0,1]2
|∇uh(x)|4dx

)1/4

≤ c1/2

M−3(n log(n))3/2

∫
[0,1]2

|∇uh(x)|4dx,

so that in expectation

E

[∣∣∣∣∣
∫
{f 6=g}

∇g(x)∇uh(x)dx

∣∣∣∣∣
]
≤
c
√
n log(n)
M3 ,

where c ≥ 0 denotes a different constant (independent of n and M). One obtains a
similar estimate for the third term. It follows that

lim inf
n→∞

E [B1,n]√
n log(n)

≥ 1
M2π −

1
M3 > 0

by choosing M large enough.
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