Probability Master Class 2020

Exercise Sheet on Random Euclidean Bipartite Matching Problems

Please refer to the lecture notes if some definitions are not clear.
Let $d \geq 1$ and consider i.i.d. uniform random variables $\left(X_{i}\right)_{i=1}^{\infty},\left(Y_{i}\right)_{i=1}^{\infty}$ with values in $[0,1]^{d}$ (if not otherwise stated). For $n \geq 1, p>0$ write

$$
\begin{gathered}
B_{p, n}:=\min _{\sigma \in \mathcal{S}^{n}} \sum_{i=1}^{n}\left|X_{i}-Y_{\sigma(i)}\right|^{p} \\
M_{p, n}=\min _{\sigma \in \mathcal{S}^{2 n}} \sum_{i=1}^{n}\left|X_{\sigma(i)}-X_{\sigma(n+i)}\right|^{p},
\end{gathered}
$$

for the minimum bipartite and monopartite matching costs (\mathcal{S}^{k} denotes the set of permutations over $\{1, \ldots, k\}$).

Problem 1

Show that $\mathbb{E}\left[M_{p, n}\right] \leq \mathbb{E}\left[B_{p, n}\right]$.

Problem 2

Show that there exists $c(d, p)>0$ such that, for every $m \geq 1, x \in[0,1]^{d}$.

$$
\mathbb{E}\left[\min _{i=1, \ldots, m}\left|X_{i}-x\right|^{p}\right] \leq \frac{c(d, p)}{m^{p / d}}
$$

(Hint: follow the proof of the converse inequality and try to bound from above instead of below: where should be located $x \in[0,1]^{d}$ so that $\left|[0,1]^{d} \backslash \overline{B\left(x, t^{1 / p}\right)}\right|$ is maximized?)

Problem 3

Show that for some $c(d, p)>0$ one has $\mathbb{E}\left[M_{p, n}\right] \geq c(d, p) n^{1-p / d}$.

Problem 4

Let Z be a Gaussian random variable with mean m and variance σ^{2}. Then

$$
P(|Z-m|>r) \leq \frac{2 \sigma}{\sqrt{2 \pi} r} \exp \left(-\frac{r^{2}}{2 \sigma^{2}}\right) \quad \text { for every } r>0
$$

(Hint: reduce to a standard case first, $m=0, \sigma^{2}=1$, and then compute by a change of variables

$$
\int_{r}^{\infty} e^{-x^{2} / 2} \mathrm{~d} x=e^{-r^{2} / 2} \int_{0}^{\infty} e^{-x^{2} / 2} e^{-x r} \mathrm{~d} x \leq e^{-r^{2} / 2} \int_{0}^{\infty} e^{-x r} \mathrm{~d} x
$$

Problem 5

Let E be a set, $m \geq 1$ and say that $f: E^{m} \rightarrow \mathbb{R}$ has bounded differences if there exists $\left(d_{i}\right)_{i=1}^{m}$ such that for every $i \in\{1, \ldots, m\}$ there exists $d_{i} \geq 0$ such that

$$
\begin{aligned}
& \left|f\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{m}\right)-f\left(x_{1}, \ldots, x_{i-1}, x_{i}^{\prime}, x_{i+1}, \ldots, x_{m}\right)\right| \leq d_{i} \\
& \quad \text { for every } x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{m}, x_{i}^{\prime} \in E
\end{aligned}
$$

Let $\left(f_{u}\right)_{u \in U}$ be a family of non-negative functions on E^{m} having bounded differences (and $\left(d_{i}\right)_{i=1}^{d}$ does not depend on $\left.u \in U\right)$. Then, $\inf _{u \in U} f_{u}$ also has bounded differences.

Problem 6

Recall the definition of order statistics for a set of n different points $\left(z_{i}\right)_{i=1}^{n} \subseteq \mathbb{R}$:

$$
z_{(1)}=\min \left\{z_{i}\right\}, \quad z_{(k+1)}=\min \left\{z_{i}: z_{i}>z_{(k)}\right\}
$$

Recall that we introduce the matching via order statistics between $\left(x_{i}\right)_{i=1}^{n},\left(y_{i}\right)_{i=1}^{n}$ as the permutation such that

$$
\left\{\left(x_{i}, y_{\sigma^{\dagger}(i)}\right)\right\}_{i=1}^{n}=\left\{\left(x_{(i)}, y_{(i)}\right)\right\}_{i=1}^{n}
$$

Give an explicit example showing that σ^{\dagger} is not necessarily an optimal matching if the distance is raised to power p with $0<p<1$.

Problem 7

Find an expression for $\mathbb{E}\left[B_{4, n}\right]$ and show that the following limit exists:

$$
\lim _{n \rightarrow \infty} n \mathbb{E}\left[B_{4, n}\right]
$$

Problem 8

Show that a Poisson random variable Z with parameter λ has mean λ and variance λ and that, for $\alpha \in(0,1], \lambda \geq 1$,

$$
\mathbb{E}\left[Z^{\alpha}\right] \geq c(\alpha) \lambda^{\alpha}
$$

where $c(\alpha)>0$ depends on α only. (Hint: use the inequality $Z^{\alpha} \geq \lambda^{\alpha}-|Z-\lambda|^{\alpha}$)

