Probability Master Class 2020

Exercise Sheet on Random Euclidean Bipartite Matching Problems

Please refer to the lecture notes if some definitions are not clear.

Let $d \ge 1$ and consider i.i.d. uniform random variables $(X_i)_{i=1}^{\infty}$, $(Y_i)_{i=1}^{\infty}$ with values in $[0,1]^d$ (if not otherwise stated). For $n \ge 1$, p > 0 write

$$B_{p,n} := \min_{\sigma \in \mathcal{S}^n} \sum_{i=1}^n |X_i - Y_{\sigma(i)}|^p$$

$$M_{p,n} = \min_{\sigma \in \mathcal{S}^{2n}} \sum_{i=1}^{n} |X_{\sigma(i)} - X_{\sigma(n+i)}|^p,$$

for the minimum bipartite and monopartite matching costs (S^k denotes the set of permutations over $\{1, \ldots, k\}$).

Problem 1

Show that $\mathbb{E}[M_{p,n}] \leq \mathbb{E}[B_{p,n}].$

Problem 2

Show that there exists c(d, p) > 0 such that, for every $m \ge 1$, $x \in [0, 1]^d$.

$$\mathbb{E}\left[\min_{i=1,\dots,m}|X_i-x|^p\right] \le \frac{c(d,p)}{m^{p/d}}.$$

(Hint: follow the proof of the converse inequality and try to bound from above instead of below: where should be located $x \in [0,1]^d$ so that $\left| [0,1]^d \setminus \overline{B(x,t^{1/p})} \right|$ is maximized?)

Problem 3

Show that for some c(d, p) > 0 one has $\mathbb{E}[M_{p,n}] \ge c(d, p)n^{1-p/d}$.

Problem 4

Let Z be a Gaussian random variable with mean m and variance σ^2 . Then

$$P(|Z - m| > r) \le \frac{2\sigma}{\sqrt{2\pi}r} \exp\left(-\frac{r^2}{2\sigma^2}\right)$$
 for every $r > 0$.

(Hint: reduce to a standard case first, m = 0, $\sigma^2 = 1$, and then compute by a change of variables

$$\int_{r}^{\infty} e^{-x^2/2} \mathrm{d}x = e^{-r^2/2} \int_{0}^{\infty} e^{-x^2/2} e^{-xr} \mathrm{d}x \leq e^{-r^2/2} \int_{0}^{\infty} e^{-xr} \mathrm{d}x.$$

Problem 5

Let E be a set, $m \ge 1$ and say that $f: E^m \to \mathbb{R}$ has bounded differences if there exists $(d_i)_{i=1}^m$ such that

for every
$$i \in \{1, ..., m\}$$
 there exists $d_i \geq 0$ such that $|f(x_1, ..., x_{i-1}, x_i, x_{i+1}, ..., x_m) - f(x_1, ..., x_{i-1}, x_i', x_{i+1}, ..., x_m)| \leq d_i$ for every $x_1, ..., x_{i-1}, x_i, x_{i+1}, ..., x_m, x_i' \in E$.

Let $(f_u)_{u\in U}$ be a family of non-negative functions on E^m having bounded differences (and $(d_i)_{i=1}^d$ does not depend on $u\in U$). Then, $\inf_{u\in U} f_u$ also has bounded differences.

Problem 6

Recall the definition of order statistics for a set of n different points $(z_i)_{i=1}^n \subseteq \mathbb{R}$:

$$z_{(1)} = \min \{z_i\}, \quad z_{(k+1)} = \min \{z_i : z_i > z_{(k)}\}.$$

Recall that we introduce the matching via order statistics between $(x_i)_{i=1}^n$, $(y_i)_{i=1}^n$ as the permutation such that

 $\left\{ (x_i, y_{\sigma^{\dagger}(i)}) \right\}_{i=1}^n = \left\{ (x_{(i)}, y_{(i)}) \right\}_{i=1}^n.$

Give an explicit example showing that σ^{\dagger} is not necessarily an optimal matching if the distance is raised to power p with 0 .

Problem 7

Find an expression for $\mathbb{E}\left[B_{4,n}\right]$ and show that the following limit exists:

$$\lim_{n\to\infty}n\mathbb{E}\left[B_{4,n}\right].$$

Problem 8

Show that a Poisson random variable Z with parameter λ has mean λ and variance λ and that, for $\alpha \in (0,1], \lambda \geq 1$,

$$\mathbb{E}\left[Z^{\alpha}\right] \ge c(\alpha)\lambda^{\alpha},$$

where $c(\alpha) > 0$ depends on α only. (Hint: use the inequality $Z^{\alpha} \geq \lambda^{\alpha} - |Z - \lambda|^{\alpha}$)