Arbitrage and Pricing Theory

Dario Trevisan
Università degli Studi di Pisa

San Miniato-13 September 2016

Overview

1 Derivatives

- Examples
- Leverage
- Arbitrage

2 The Arrow-Debreu model

- Definitions
- Arbitrage portfolios
- The fundamental theorem of pricing
- Asset pricing
- Proof of the theorem
- Probability and frequencies

Derivatives

Derivatives

Contracts whose value derives from the performance of an underlying entity (asset, index, interest rate, another derivative...)

Derivatives

Derivatives

Contracts whose value derives from the performance of an underlying entity (asset, index, interest rate, another derivative...)

Why derivatives?

- insuring against price movements (hedging)
- increasing exposure to price movements
- speculation
- getting access to hard-to-trade assets or markets

Common types of derivatives - Futures

Futures contract

Agreement between two parties to buy/sell an asset at a specified future time at a price agreed upon today.

Common types of derivatives - Futures

Futures contract

Agreement between two parties to buy/sell an asset at a specified future time at a price agreed upon today.

- the party agreeing to buy the underlying asset \Rightarrow long
- the party agreeing to sell the underlying \Rightarrow short.

Common types of derivatives - Futures

Futures contract

Agreement between two parties to buy/sell an asset at a specified future time at a price agreed upon today.

- the party agreeing to buy the underlying asset \Rightarrow long
\square the party agreeing to sell the underlying \Rightarrow short.
Example: the today ${ }^{1}$ (spot) price of 1 OZ of gold is $1,325.36$ USD, but the price for a future contract GCG17 (Feb '17) is 1, 329.9 USD.

Such a contract allows e.g. an investor who needs gold in Feb '17 to protect against uprising of the price (hedge risk).

Common types of derivatives - Futures

Futures contract

Agreement between two parties to buy/sell an asset at a specified future time at a price agreed upon today.

- the party agreeing to buy the underlying asset \Rightarrow long
- the party agreeing to sell the underlying \Rightarrow short.

Example: the today ${ }^{1}$ (spot) price of 1 OZ of gold is $1,325.36$ USD, but the price for a future contract GCG17 (Feb '17) is 1, 329.9 USD.

Such a contract allows e.g. an investor who needs gold in Feb '17 to protect against uprising of the price (hedge risk).

Of course it also allows for speculation. Suppose we buy now the contract for 1 OZ gold and at the delivery month (Feb) the spot price of gold has become $1,339.9$ USD. Then we could sell our 1 OZ of gold and obtain a net gain of

$$
1,339.9-1,329.9=10 \text { USD }
$$

If the price is lower than $1,329.9$ USD, our gains will become losses.

[^0]
Common types of derivatives - Options

Option contract

Agreement between two parties which gives the right (not the obligation) to the buyer of the contract to

- buy (call option) or

■ sell (put option)
an underlying asset on (or before) a specified future date at a specified strike price.

Common types of derivatives - Options

Option contract

Agreement between two parties which gives the right (not the obligation) to the buyer of the contract to

- buy (call option) or
- sell (put option)
an underlying asset on (or before) a specified future date at a specified strike price.
- the buyer of the contract (holder) can exercise the option: in that case
- the seller of the contract (writer) must fulfil the transaction.

Common types of derivatives - Options

Option contract

Agreement between two parties which gives the right (not the obligation) to the buyer of the contract to

- buy (call option) or
- sell (put option)
an underlying asset on (or before) a specified future date at a specified strike price.
- the buyer of the contract (holder) can exercise the option: in that case
- the seller of the contract (writer) must fulfil the transaction.

European option: If the holder can exercise only on the expiration date American option: If the holder can exercise at any time before the expiration date.

Example

The spot (today) price of 1 OZ gold is 1,320 USD.

Example

The spot (today) price of 1 OZ gold is 1,320 USD.
In the market some company is selling a European call option for 2 USD per OZ with expiration date in Feb' 17 and strike price 1,330 USD.

Example

The spot (today) price of 1 OZ gold is 1,320 USD.
In the market some company is selling a European call option for 2 USD per OZ with expiration date in Feb' 17 and strike price 1,330 USD.

Suppose we buy it, so we pay 2 USD now to hold the right to buy 1 OZ of gold at 1,330 USD on Feb' 17.

Example

The spot (today) price of 1 OZ gold is 1,320 USD.
In the market some company is selling a European call option for 2 USD per OZ with expiration date in Feb' 17 and strike price 1,330 USD.

Suppose we buy it, so we pay 2 USD now to hold the right to buy 1 OZ of gold at 1,330 USD on Feb' 17.

On the expiration date there could be different scenarios, depending on the trading price of gold.

Example

The spot (today) price of 1 OZ gold is 1,320 USD.
In the market some company is selling a European call option for 2 USD per OZ with expiration date in Feb' 17 and strike price 1,330 USD.

Suppose we buy it, so we pay 2 USD now to hold the right to buy 1 OZ of gold at 1,330 USD on Feb' 17.

On the expiration date there could be different scenarios, depending on the trading price of gold.

- gold is worth $X>1,330+2$ USD per OZ. Then, we exercise our right, buy gold and then sell it immediately on the market at X USD, thus getting $X-1,330$ USD. In total, we gain $X-1,330$ USD, but we have to subtract the initial 2 USD, hence we made profit (we are in the money).

Example

The spot (today) price of 1 OZ gold is 1,320 USD.
In the market some company is selling a European call option for 2 USD per OZ with expiration date in Feb' 17 and strike price 1,330 USD.

Suppose we buy it, so we pay 2 USD now to hold the right to buy 1 OZ of gold at 1, 330 USD on Feb' 17.

On the expiration date there could be different scenarios, depending on the trading price of gold.

- gold is worth $X>1,330+2$ USD per OZ. Then, we exercise our right, buy gold and then sell it immediately on the market at X USD, thus getting $X-1,330$ USD. In total, we gain $X-1,330$ USD, but we have to subtract the initial 2 USD, hence we made profit (we are in the money).
- gold is worth between $X=1,330$ and 1,330 USD per OZ. We do the same and end up with no profit, (at the money).

Example

The spot (today) price of 1 OZ gold is 1,320 USD.
In the market some company is selling a European call option for 2 USD per OZ with expiration date in Feb' 17 and strike price 1,330 USD.

Suppose we buy it, so we pay 2 USD now to hold the right to buy 1 OZ of gold at 1,330 USD on Feb' 17.

On the expiration date there could be different scenarios, depending on the trading price of gold.

- gold is worth $X>1,330+2$ USD per OZ. Then, we exercise our right, buy gold and then sell it immediately on the market at X USD, thus getting $X-1,330$ USD. In total, we gain $X-1,330$ USD, but we have to subtract the initial 2 USD, hence we made profit (we are in the money).
- gold is worth between $X=1,330$ and 1,330 USD per OZ. We do the same and end up with no profit, (at the money).
- gold is worth less than $X=1,330$ USD per OZ. There is no reason to exercise our right, so we end up with 2 USD losses (out of the money).

Financial leverage

Options allows us to amplify gains (but losses as well): in the previous example, with only 2 USD I could enter the gold market and (partially) act as if I had 1 OZ of gold (which would cost 1,320 USD today).

Financial leverage

Options allows us to amplify gains (but losses as well): in the previous example, with only 2 USD I could enter the gold market and (partially) act as if I had 1 OZ of gold (which would cost 1,320 USD today).

Hence, if I want to speculate on the fact that the price of gold will increase (bullish investor) instead of paying 1,320 USD for only 1 OZ I can buy

1,320 USD $/ 2 U S D=660$ call options
and act almost as if I had 660 OZ of gold:

Financial leverage

Options allows us to amplify gains (but losses as well): in the previous example, with only 2 USD I could enter the gold market and (partially) act as if I had 1 OZ of gold (which would cost 1,320 USD today).

Hence, if I want to speculate on the fact that the price of gold will increase (bullish investor) instead of paying 1,320 USD for only 1 OZ I can buy

1,320 USD $/ 2$ USD $=660$ call options
and act almost as if I had 660 OZ of gold:

- if the option is in the money I amplified my gains.

■ if the option is out of the money I amplified my losses.

Financial leverage

Options allows us to amplify gains (but losses as well): in the previous example, with only 2 USD I could enter the gold market and (partially) act as if I had 1 OZ of gold (which would cost 1,320 USD today).

Hence, if I want to speculate on the fact that the price of gold will increase (bullish investor) instead of paying 1,320 USD for only 1 OZ I can buy

1,320 USD $/ 2$ USD $=660$ call options
and act almost as if I had 660 OZ of gold:

- if the option is in the money I amplified my gains.

■ if the option is out of the money I amplified my losses.
This effect is called financial leverage.

Arbitrage

Question

Is it possible to make sure (without risks) gain by acting in markets?

Arbitrage

Question

Is it possible to make sure (without risks) gain by acting in markets? Such a possibility is called arbitrage.

Arbitrage

Question

Is it possible to make sure (without risks) gain by acting in markets?
Such a possibility is called arbitrage.
Arbitrage can be realized
■ (almost) instantaneously: e.g. the same good is sold at different prices (mispricing) on different financial markets and no execution risks (transportation costs)
■ in future date: e.g. we make sure profit by buying something today which is worth more tomorrow (and no storage costs...).

When time intervals become large, arbitrage occurs when the value increases with higher rates than the risk-free rates (e.g. simply put your money in a "safe" bank).

Arbitrage

Question

Is it possible to make sure (without risks) gain by acting in markets?
Such a possibility is called arbitrage.
Arbitrage can be realized

- (almost) instantaneously: e.g. the same good is sold at different prices (mispricing) on different financial markets and no execution risks (transportation costs)
■ in future date: e.g. we make sure profit by buying something today which is worth more tomorrow (and no storage costs...).

When time intervals become large, arbitrage occurs when the value increases with higher rates than the risk-free rates (e.g. simply put your money in a "safe" bank).

Common assumption is that arbitrage opportunities do NOT exist in reality.

IN A DEEP SENSE, SOCIETY FUNCTOONS ONLY BECAUSE WE GENERALU' AVOID TAKING THESE PEOPLE OUT TO DINNER.

The Arrow-Debreu model

Aim

We want to show how probability emerges naturally from a simple model of market with uncertainty where impose the
no-arbitrage assumption.

The Arrow-Debreu model

Aim

We want to show how probability emerges naturally from a simple model of market with uncertainty where impose the
no-arbitrage assumption.

We fix a market where $N \geq 1$ securities (i.e. bonds, stocks or derivatives)

$$
\vec{a}=\left(a_{1}, a_{2}, \ldots, a_{N}\right)
$$

can be held long or short by any investor.

The Arrow-Debreu model

Aim

We want to show how probability emerges naturally from a simple model of market with uncertainty where impose the
no-arbitrage assumption.

We fix a market where $N \geq 1$ securities (i.e. bonds, stocks or derivatives)

$$
\vec{a}=\left(a_{1}, a_{2}, \ldots, a_{N}\right)
$$

can be held long or short by any investor.
For simplicity, we consider only the present $t=0$ and a fixed future $t=1$.

At $t=0$ we have the observed spot prices of the N securities

$$
\vec{p}=\left(p_{1}, p_{2}, \ldots, p_{N}\right)=\left(p_{i}\right)_{i=1}^{N} \in \mathbb{R}^{N}
$$

At $t=0$ we have the observed spot prices of the N securities

$$
\vec{p}=\left(p_{1}, p_{2}, \ldots, p_{N}\right)=\left(p_{i}\right)_{i=1}^{N} \in \mathbb{R}^{N}
$$

At $t=1$, the market attains one state among M possible "scenarios"

$$
s \in\{1, \ldots, M\} .
$$

At $t=0$ we have the observed spot prices of the N securities

$$
\vec{p}=\left(p_{1}, p_{2}, \ldots, p_{N}\right)=\left(p_{i}\right)_{i=1}^{N} \in \mathbb{R}^{N}
$$

At $t=1$, the market attains one state among M possible "scenarios"

$$
s \in\{1, \ldots, M\} .
$$

If s is attained \Rightarrow "dividends" (prices) of the securities at $t=1$

$$
\vec{D}^{s}=\left(D_{1}^{s}, D_{2}^{s}, \ldots, D_{N}^{s}\right)
$$

At $t=0$ we have the observed spot prices of the N securities

$$
\vec{p}=\left(p_{1}, p_{2}, \ldots, p_{N}\right)=\left(p_{i}\right)_{i=1}^{N} \in \mathbb{R}^{N}
$$

At $t=1$, the market attains one state among M possible "scenarios"

$$
s \in\{1, \ldots, M\} .
$$

If s is attained \Rightarrow "dividends" (prices) of the securities at $t=1$

$$
\vec{D}^{s}=\left(D_{1}^{s}, D_{2}^{s}, \ldots, D_{N}^{s}\right)
$$

The actual $s \in\{1, \ldots, M\}$ is uncertain to investors at time $t=0$.

At $t=0$ we have the observed spot prices of the N securities

$$
\vec{p}=\left(p_{1}, p_{2}, \ldots, p_{N}\right)=\left(p_{i}\right)_{i=1}^{N} \in \mathbb{R}^{N}
$$

At $t=1$, the market attains one state among M possible "scenarios"

$$
s \in\{1, \ldots, M\}
$$

If s is attained \Rightarrow "dividends" (prices) of the securities at $t=1$

$$
\vec{D}^{s}=\left(D_{1}^{s}, D_{2}^{s}, \ldots, D_{N}^{s}\right)
$$

The actual $s \in\{1, \ldots, M\}$ is uncertain to investors at time $t=0$.

Example

$$
a_{1}=\text { "gold", } a_{2}=\text { "future contract on gold", } a_{3}=\text { "call option on gold" }
$$

$$
t=0 \rightarrow \text { today } \quad t=0 \rightarrow \text { Feb '17 }
$$

$$
s \in\{\text { possible prices of gold on Feb '17\} }
$$

Let us draw a picture with $M=\{1,2,3,4\}$.

Let us draw a picture with $M=\{1,2,3,4\}$.

Let us draw a picture with $M=\{1,2,3,4\}$.

This resembles a Markov chain. . . but we have no transition probabilities $\left(\hat{\pi}_{1}, \ldots, \hat{\pi}_{M}\right)$.

Portfolio

An investor position $\vec{\theta}$ on the market represented by the amounts of securities

$$
\theta^{i} \in \mathbb{R} \quad\left(\theta^{i}>0 \text { if he is short, } \theta^{i}<0 \text { if he is long on } a_{i}\right)
$$

for $i \in\{1, \ldots, N\}$.

Portfolio

An investor position $\vec{\theta}$ on the market represented by the amounts of securities

$$
\theta^{i} \in \mathbb{R} \quad\left(\theta^{i}>0 \text { if he is short, } \theta^{i}<0 \text { if he is long on } a_{i}\right)
$$

for $i \in\{1, \ldots, N\}$.
The value of a portfolio at time $t=0$ is

$$
\vec{\theta} \cdot \vec{p}=\sum_{i=1}^{N} \theta^{i} p_{i} \in \mathbb{R} .
$$

Portfolio

An investor position $\vec{\theta}$ on the market represented by the amounts of securities

$$
\theta^{i} \in \mathbb{R} \quad\left(\theta^{i}>0 \text { if he is short, } \theta^{i}<0 \text { if he is long on } a_{i}\right)
$$

for $i \in\{1, \ldots, N\}$.
The value of a portfolio at time $t=0$ is

$$
\vec{\theta} \cdot \vec{p}=\sum_{i=1}^{N} \theta^{i} p_{i} \in \mathbb{R} .
$$

At $t=1$, if the market is in state $s \in\{1, \ldots, M\}$, the value of θ becomes

$$
\vec{\theta} \cdot \vec{D}^{s}=\sum_{i=1}^{N} \theta^{i} D_{i}^{s} \in \mathbb{R} .
$$

We can formulate what arbitrage is in this model:

We can formulate what arbitrage is in this model:

Definition

An arbitrage opportunity is a portfolio $\vec{\theta}$ such that

We can formulate what arbitrage is in this model:

Definition

An arbitrage opportunity is a portfolio $\vec{\theta}$ such that
■ either (free-luch tomorrow)

$$
\vec{\theta} \cdot \vec{p}=0
$$

and

$$
\vec{\theta} \cdot \vec{D}^{s} \geq 0 \quad \text { for every } s \in\{1, \ldots, M\}
$$

with strict inequality at least for one s,

We can formulate what arbitrage is in this model:

Definition

An arbitrage opportunity is a portfolio $\vec{\theta}$ such that
■ either (free-luch tomorrow)

$$
\vec{\theta} \cdot \vec{p}=0
$$

and

$$
\vec{\theta} \cdot \vec{D}^{s} \geq 0 \quad \text { for every } s \in\{1, \ldots, M\}
$$

with strict inequality at least for one s,
■ or (free-luch today)

$$
\vec{\theta} \cdot \vec{p}<0
$$

and

$$
\vec{\theta} \cdot \vec{D}^{s} \geq 0 \quad \text { for every } s \in\{1, \ldots, M\}
$$

We can formulate what arbitrage is in this model:

Definition

An arbitrage opportunity is a portfolio $\vec{\theta}$ such that

- either (free-luch tomorrow)

$$
\vec{\theta} \cdot \vec{p}=0
$$

and

$$
\vec{\theta} \cdot \vec{D}^{s} \geq 0 \quad \text { for every } s \in\{1, \ldots, M\}
$$

with strict inequality at least for one s,

- or (free-luch today)

$$
\vec{\theta} \cdot \vec{p}<0
$$

and

$$
\vec{\theta} \cdot \vec{D}^{s} \geq 0 \text { for every } s \in\{1, \ldots, M\} .
$$

This distinction usually does not matter too much if the free-lunch today can be "safely" invested to get free-lunch tomorrow.

Theorem
If there are no arbitrage opportunities,

Theorem

If there are no arbitrage opportunities, then there exists a vector

$$
\left(\pi_{s}\right)_{s=1, \ldots, M}, \quad \pi_{s}>0, \text { for every } s
$$

such that

Theorem

If there are no arbitrage opportunities, then there exists a vector

$$
\left(\pi_{s}\right)_{s=1, \ldots, M}, \quad \pi_{s}>0, \text { for every } s
$$

such that

$$
\vec{p}=\sum_{s=1}^{M} \vec{D}^{s} \pi_{s}, \quad \text { i.e. } p_{i}=\sum_{s=1}^{M} D_{i}^{s} \pi_{s} \text { for every } i \in\{1, \ldots, N\} .
$$

Theorem

If there are no arbitrage opportunities, then there exists a vector

$$
\left(\pi_{s}\right)_{s=1, \ldots, M}, \quad \pi_{s}>0, \text { for every } s
$$

such that

$$
\vec{p}=\sum_{s=1}^{M} \vec{D}^{s} \pi_{s}, \quad \text { i.e. } p_{i}=\sum_{s=1}^{M} D_{i}^{s} \pi_{s} \text { for every } i \in\{1, \ldots, N\} .
$$

Conversely, if there is such π, then there cannot be arbitrage opportunities.

Prices are discounted expected values w.r.t. risk-neutral probability

Define R and $\hat{\pi}$ by the relation

$$
1+R=\frac{1}{\sum_{s=1}^{M} \pi_{s}}, \quad \hat{\pi}_{s}=\frac{\pi_{s}}{\sum_{r=1}^{M} \pi_{r}} .
$$

Prices are discounted expected values w.r.t. risk-neutral probability

Define R and $\hat{\pi}$ by the relation

$$
1+R=\frac{1}{\sum_{s=1}^{M} \pi_{s}}, \quad \hat{\pi}_{s}=\frac{\pi_{s}}{\sum_{r=1}^{M} \pi_{r}} .
$$

Assume there is a risk-free security a_{1} (e.g. a bond) such that in any scenario s we have $D_{1}^{s}=1$.

Prices are discounted expected values w.r.t. risk-neutral probability

Define R and $\hat{\pi}$ by the relation

$$
1+R=\frac{1}{\sum_{s=1}^{M} \pi_{s}}, \quad \hat{\pi}_{s}=\frac{\pi_{s}}{\sum_{r=1}^{M} \pi_{r}}
$$

Assume there is a risk-free security a_{1} (e.g. a bond) such that in any scenario s we have $D_{1}^{s}=1$.

Then

$$
p_{1}=\sum_{s=1}^{M} D_{1}^{S} \pi_{1}=\sum_{s=1}^{M} \pi_{s}=\frac{1}{1+R}
$$

i.e.

$$
(1+R) p_{1}=1
$$

we can think of R as a linear interest rate for the risk-free security a_{1}.

Prices are discounted expected values w.r.t. risk-neutral probability

Define R and $\hat{\pi}$ by the relation

$$
1+R=\frac{1}{\sum_{s=1}^{M} \pi_{s}}, \quad \hat{\pi}_{s}=\frac{\pi_{s}}{\sum_{r=1}^{M} \pi_{r}}
$$

Assume there is a risk-free security a_{1} (e.g. a bond) such that in any scenario s we have $D_{1}^{s}=1$.

Then

$$
p_{1}=\sum_{s=1}^{M} D_{1}^{S} \pi_{1}=\sum_{s=1}^{M} \pi_{s}=\frac{1}{1+R}
$$

i.e.

$$
(1+R) p_{1}=1
$$

we can think of R as a linear interest rate for the risk-free security a_{1}.

Corollary (prices are discounted expectations)

For every $i \in\{1, \ldots, N\}$

$$
p_{i}=\frac{1}{1+R} E\left[D_{i}\right]=\frac{1}{1+R} \sum_{s=1}^{M} D_{i}^{s} \hat{\pi}_{s} .
$$

No-arbitrage assumption \Rightarrow existence of some "transition probabilities"

$$
\hat{\pi}_{s}=\frac{\pi_{s}}{\sum_{r=1}^{M} \pi_{r}}
$$

which are called risk-neutral measures.

No-arbitrage assumption \Rightarrow existence of some "transition probabilities"

$$
\hat{\pi}_{s}=\frac{\pi_{s}}{\sum_{r=1}^{M} \pi_{r}}
$$

which are called risk-neutral measures.

Proof of the theorem

Assume first that some π as required exists.

Proof of the theorem

Assume first that some π as required exists. We show that there is no-arbitrage portfolios.

Proof of the theorem

Assume first that some π as required exists. We show that there is no-arbitrage portfolios.

- Let $\vec{\theta}$ be a portfolio with value $\vec{\theta} \cdot \vec{p}=0$. Then,

$$
0=\vec{\theta} \cdot \vec{p}=\vec{\theta} \cdot \sum_{s=1}^{M} \vec{D}^{s} \pi_{s}=\sum_{s=1}^{M} \vec{\theta} \cdot \vec{D}^{s} \pi_{s}
$$

Proof of the theorem

Assume first that some π as required exists. We show that there is no-arbitrage portfolios.

- Let $\vec{\theta}$ be a portfolio with value $\vec{\theta} \cdot \vec{p}=0$. Then,

$$
0=\vec{\theta} \cdot \vec{p}=\vec{\theta} \cdot \sum_{s=1}^{M} \vec{D}^{s} \pi_{s}=\sum_{s=1}^{M} \vec{\theta} \cdot \vec{D}^{s} \pi_{s} .
$$

\Rightarrow not all of $\vec{\theta} \cdot \vec{D}^{s} \pi_{s}$ can be ≥ 0, with at least one >0.

Proof of the theorem

Assume first that some π as required exists. We show that there is no-arbitrage portfolios.

- Let $\vec{\theta}$ be a portfolio with value $\vec{\theta} \cdot \vec{p}=0$. Then,

$$
0=\vec{\theta} \cdot \vec{p}=\vec{\theta} \cdot \sum_{s=1}^{M} \vec{D}^{s} \pi_{s}=\sum_{s=1}^{M} \vec{\theta} \cdot \vec{D}^{s} \pi_{s} .
$$

\Rightarrow not all of $\vec{\theta} \cdot \vec{D}^{s} \pi_{s}$ can be ≥ 0, with at least one >0.
\Rightarrow not all of $\vec{\theta} \cdot \vec{D}^{s}$ can be ≥ 0, with at least one >0.

Proof of the theorem

Assume first that some π as required exists. We show that there is no-arbitrage portfolios.

- Let $\vec{\theta}$ be a portfolio with value $\vec{\theta} \cdot \vec{p}=0$. Then,

$$
0=\vec{\theta} \cdot \vec{p}=\vec{\theta} \cdot \sum_{s=1}^{M} \vec{D}^{s} \pi_{s}=\sum_{s=1}^{M} \vec{\theta} \cdot \vec{D}^{s} \pi_{s}
$$

\Rightarrow not all of $\vec{\theta} \cdot \vec{D}^{s} \pi_{s}$ can be ≥ 0, with at least one >0.
\Rightarrow not all of $\vec{\theta} \cdot \vec{D}^{s}$ can be ≥ 0, with at least one >0.

- Let $\vec{\theta}$ be a portfolio with value $\vec{\theta} \cdot \vec{p}<0$. Then,

$$
0>\vec{\theta} \cdot \vec{p}=\vec{\theta} \cdot \sum_{s=1}^{M} \vec{D}^{s} \pi_{s}=\sum_{s=1}^{M} \vec{\theta} \cdot \vec{D}^{s} \pi_{s}
$$

Proof of the theorem

Assume first that some π as required exists. We show that there is no-arbitrage portfolios.

- Let $\vec{\theta}$ be a portfolio with value $\vec{\theta} \cdot \vec{p}=0$. Then,

$$
0=\vec{\theta} \cdot \vec{p}=\vec{\theta} \cdot \sum_{s=1}^{M} \vec{D}^{s} \pi_{s}=\sum_{s=1}^{M} \vec{\theta} \cdot \vec{D}^{s} \pi_{s}
$$

\Rightarrow not all of $\vec{\theta} \cdot \vec{D}^{s} \pi_{s}$ can be ≥ 0, with at least one >0.
\Rightarrow not all of $\vec{\theta} \cdot \vec{D}^{s}$ can be ≥ 0, with at least one >0.

- Let $\vec{\theta}$ be a portfolio with value $\vec{\theta} \cdot \vec{p}<0$. Then,

$$
0>\vec{\theta} \cdot \vec{p}=\vec{\theta} \cdot \sum_{s=1}^{M} \vec{D}^{s} \pi_{s}=\sum_{s=1}^{M} \vec{\theta} \cdot \vec{D}^{s} \pi_{s} .
$$

\Rightarrow not all of $\vec{\theta} \cdot \vec{D}^{s} \pi_{s}$ can be ≥ 0.

Assume now that no arbitrage opportunities exist.

Assume now that no arbitrage opportunities exist. The argument is geometrical.

Assume now that no arbitrage opportunities exist. The argument is geometrical.

Consider the cone in the $M+1$ dimensional space

$$
R_{+}^{M+1}=\left\{\vec{x}=\left(x_{0}, x_{1}, x_{2}, \ldots, x_{M}\right): x_{0} \geq 0, x_{1} \geq 0, \ldots, x_{M} \geq 0\right\}
$$

and the linear subspace of \mathbb{R}^{M+1} :

$$
L=\left\{\left(-\vec{\theta} \cdot \vec{p}, \vec{\theta} \cdot D^{1}, \vec{\theta} \cdot D^{2}, \ldots, \vec{\theta} \cdot D^{M}\right): \vec{\theta} \in \mathbb{R}^{M}\right\} .
$$

Assume now that no arbitrage opportunities exist. The argument is geometrical.

Consider the cone in the $M+1$ dimensional space

$$
R_{+}^{M+1}=\left\{\vec{x}=\left(x_{0}, x_{1}, x_{2}, \ldots, x_{M}\right): x_{0} \geq 0, x_{1} \geq 0, \ldots, x_{M} \geq 0\right\}
$$

and the linear subspace of \mathbb{R}^{M+1} :

$$
L=\left\{\left(-\vec{\theta} \cdot \vec{p}, \vec{\theta} \cdot D^{1}, \vec{\theta} \cdot D^{2}, \ldots, \vec{\theta} \cdot D^{M}\right): \vec{\theta} \in \mathbb{R}^{M}\right\} .
$$

If $R_{+}^{M+1} \cap L \neq\{0\}$, we have an arbitrage opportunity taking $\vec{\theta}$ such that

$$
-\vec{\theta} \cdot \vec{p} \geq 0 \quad \vec{\theta} \cdot D^{1} \geq 0 \quad \vec{\theta} \cdot D^{2} \geq 0 \quad \ldots \quad \vec{\theta} \cdot D^{M} \geq 0
$$

and not all equal to 0 .

Assume now that no arbitrage opportunities exist. The argument is geometrical.

Consider the cone in the $M+1$ dimensional space

$$
R_{+}^{M+1}=\left\{\vec{x}=\left(x_{0}, x_{1}, x_{2}, \ldots, x_{M}\right): x_{0} \geq 0, x_{1} \geq 0, \ldots, x_{M} \geq 0\right\}
$$

and the linear subspace of \mathbb{R}^{M+1} :

$$
L=\left\{\left(-\vec{\theta} \cdot \vec{p}, \vec{\theta} \cdot D^{1}, \vec{\theta} \cdot D^{2}, \ldots, \vec{\theta} \cdot D^{M}\right): \vec{\theta} \in \mathbb{R}^{M}\right\} .
$$

If $R_{+}^{M+1} \cap L \neq\{0\}$, we have an arbitrage opportunity taking $\vec{\theta}$ such that

$$
-\vec{\theta} \cdot \vec{p} \geq 0 \quad \vec{\theta} \cdot D^{1} \geq 0 \quad \vec{\theta} \cdot D^{2} \geq 0 \quad \ldots \quad \vec{\theta} \cdot D^{M} \geq 0
$$

and not all equal to 0 .
Therefore the sets $R_{+}^{M+1} \backslash\{0\}$ and L are disjoint.

The sets $R_{+}^{M+1} \backslash\{0\}$ and L are disjoint and convex.

The sets $R_{+}^{M+1} \backslash\{0\}$ and L are disjoint and convex.
\Rightarrow (Hahn-Banach) there exists a hyperplane

$$
H_{\lambda}=\left\{x \in R^{M+1}: \sum_{s=0}^{M} \lambda^{s} x_{s}=0\right\}
$$

which separates $R_{+}^{M+1} \backslash\{0\}$ and L, i.e.

$$
\sum_{s=0}^{M} \lambda^{s} x_{s}>0 \quad \text { for every } x \in R_{+}^{M+1} \backslash\{0\}
$$

and

$$
\sum_{s=0}^{M} \lambda^{s} x_{s} \leq 0 \quad \text { for every } x \in L
$$

The sets $R_{+}^{M+1} \backslash\{0\}$ and L are disjoint and convex.
\Rightarrow (Hahn-Banach) there exists a hyperplane

$$
H_{\lambda}=\left\{x \in R^{M+1}: \sum_{s=0}^{M} \lambda^{s} x_{s}=0\right\}
$$

which separates $R_{+}^{M+1} \backslash\{0\}$ and L, i.e.

$$
\sum_{s=0}^{M} \lambda^{s} x_{s}>0 \quad \text { for every } x \in R_{+}^{M+1} \backslash\{0\}
$$

and

$$
\sum_{s=0}^{M} \lambda^{s} x_{s} \leq 0 \quad \text { for every } x \in L
$$

We collect some consequences:

- $\lambda^{s}>0$ for every s

The sets $R_{+}^{M+1} \backslash\{0\}$ and L are disjoint and convex.
\Rightarrow (Hahn-Banach) there exists a hyperplane

$$
H_{\lambda}=\left\{x \in R^{M+1}: \sum_{s=0}^{M} \lambda^{s} x_{s}=0\right\}
$$

which separates $R_{+}^{M+1} \backslash\{0\}$ and L, i.e.

$$
\sum_{s=0}^{M} \lambda^{s} x_{s}>0 \quad \text { for every } x \in R_{+}^{M+1} \backslash\{0\}
$$

and

$$
\sum_{s=0}^{M} \lambda^{s} x_{s} \leq 0 \quad \text { for every } x \in L
$$

We collect some consequences:

- $\lambda^{s}>0$ for every s
- $\sum_{s=0}^{M} \lambda^{s} x_{s}=0$ for every $x \in L$.

The sets $R_{+}^{M+1} \backslash\{0\}$ and L are disjoint and convex.
\Rightarrow (Hahn-Banach) there exists a hyperplane

$$
H_{\lambda}=\left\{x \in R^{M+1}: \sum_{s=0}^{M} \lambda^{s} x_{s}=0\right\}
$$

which separates $R_{+}^{M+1} \backslash\{0\}$ and L, i.e.

$$
\sum_{s=0}^{M} \lambda^{s} x_{s}>0 \quad \text { for every } x \in R_{+}^{M+1} \backslash\{0\}
$$

and

$$
\sum_{s=0}^{M} \lambda^{s} x_{s} \leq 0 \quad \text { for every } x \in L
$$

We collect some consequences:

- $\lambda^{s}>0$ for every s
- $\sum_{s=0}^{M} \lambda^{s} x_{s}=0$ for every $x \in L$.
- $\vec{p} \lambda_{0}=\sum_{s=1}^{M} \vec{D}^{s} \lambda_{s}$.

The sets $R_{+}^{M+1} \backslash\{0\}$ and L are disjoint and convex.
\Rightarrow (Hahn-Banach) there exists a hyperplane

$$
H_{\lambda}=\left\{x \in R^{M+1}: \sum_{s=0}^{M} \lambda^{s} x_{s}=0\right\}
$$

which separates $R_{+}^{M+1} \backslash\{0\}$ and L, i.e.

$$
\sum_{s=0}^{M} \lambda^{s} x_{s}>0 \text { for every } x \in R_{+}^{M+1} \backslash\{0\}
$$

and

$$
\sum_{s=0}^{M} \lambda^{s} x_{s} \leq 0 \quad \text { for every } x \in L
$$

We collect some consequences:

- $\lambda^{s}>0$ for every s

■ $\sum_{s=0}^{M} \lambda^{s} x_{s}=0$ for every $x \in L$.

- $\vec{p} \lambda_{0}=\sum_{s=1}^{M} \vec{D}^{s} \lambda_{s}$.

Hence, we define $\pi_{s}:=\lambda^{s} / \lambda_{0}$ and obtain

$$
\vec{p}=\sum_{s=1}^{M} \vec{D}^{s} \pi_{s} .
$$

Probability and frequencies

Question

What is the link between $\hat{\pi}$ and the observed frequencies of prices?

Probability and frequencies

Question

What is the link between $\hat{\pi}$ and the observed frequencies of prices?
In principle, there could be no link, as in general:
there could be no link between probability and observed long-run frequencies!

Example

Historically, there have been as many US presidents from democratic and republican parties ~ 18. Bookmakers give

$$
P(\text { "Clinton (or Sanders?) wins") }=86 \%, \quad P \text { ("Trump wins") }=14 \%
$$

Probability and frequencies

Question

What is the link between $\hat{\pi}$ and the observed frequencies of prices?
In principle, there could be no link, as in general:
there could be no link between probability and observed long-run frequencies!

Example

Historically, there have been as many US presidents from democratic and republican parties ~ 18. Bookmakers give

$$
P(\text { "Clinton (or Sanders?) wins") }=86 \%, \quad P \text { ("Trump wins") }=14 \%
$$

If observed frequencies were the only information we had, the naive conclusion
frequency = probability
may be true,

Probability and frequencies

Question

What is the link between $\hat{\pi}$ and the observed frequencies of prices?
In principle, there could be no link, as in general:
there could be no link between probability and observed long-run frequencies!

Example

Historically, there have been as many US presidents from democratic and republican parties ~ 18. Bookmakers give

$$
P(\text { "Clinton (or Sanders?) wins") }=86 \%, \quad P \text { ("Trump wins") }=14 \%
$$

If observed frequencies were the only information we had, the naive conclusion
frequency = probability
may be true, but actual market investors act on the basis of more information!

[^0]: ${ }^{1} 2$ Sep 2016

