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Self-financing portfolio

Consider a market consisting in d + 1 assets with prices

(S0
t ,S

1
t , . . .S

d
t )t≥0.

A portfolio is self-financing if its value changes only because the
asset prices change.
No money is withdrawn or inserted after the initial forming of the
portfolio.

A portfolio strategy (H0
t ,Ht)t≥0 is an (d + 1)-dim adapted

process

The corresponding value process is

Vt =
d∑

i=0

H i
tS

i
t = H0

t S
0
t + Ht · St

A portfolio is self-financing if

∆Vn = H0
n∆S0

n + Hn ·∆Sn (discrete time)

dVt = H0
t dS

0
t + Ht · dSt (continuous time)



Self-financing portfolio

In terms of discounted prices:

dṼt = Ht · dS̃t

Proposition

For any adapted process Ht = (H1
t , . . . ,H

d
t )t≥0 and any initial

value V0 = x , there exists a unique adapted process (H0
t )t≥0 such

that the strategy (H0
t ,Ht)t≥0 is self-financing.

Proof.

Ṽt = x +

∫ t

0
Hs · dS̃s = Ht · S̃t + H0

t

H0
t = x +

∫ t

0
Hs · dS̃s − Ht · S̃t .
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Complete markets

Definition

An FT -measurable random variable X is an attainable claim if
there exists a self-financing portfolio worth X at time T .

Definition

A market is complete if every contingent claim is attainable.

Theorem

Assume that the market is arbitrage-free. Then, the following two
statements are equivalent:

the market is complete

the martingale probability is unique.



Complete market models

It is theoretically possible to perfectly hedge contingent claims.

Gives a unique no-arbitrage price.

Allows us to derive a simple theory of pricing and hedging.

Is a rather restrictive assumption.



Black-Scholes model

Assuming a constant volatility B-S model gives a unique
no-arbitrage price of an option

dSt = St(µdt + σdBt)

The pricing formula depends only on one non-observable
parameter: σ

C (t, St) = xN(d1)− Ke−r(T−t)N(d2),

where

d1,2 =
log(St/K ) + (r ± σ2/2)(T − t)

σ
√
T − t

.

In practice two methods are used to evaluate σ.



Black-Scholes model

1 The historical method: Since

ST = S0 exp

[
σBT −

(
µ− σ2

2

)
T

]
the random variables

log

(
ST
S0

)
, log

(
S2T

ST

)
, . . . , log

(
SNT

S(N−1)T

)
,

are independent Gaussian distributed with variance σ2T .
Estimate σ using asset prices observed in the past.

2 The implied method: we recover σ by inversion of the
Black-Scholes formula using quoted options.
No explicit formulas! Numerical methods need to be used.



Volatility smile

Options based on the same underlying but with different strike and
expiration time yield different implied volatilities.



Time-dependent volatility models

dSt = St (µ(t)dt + σ(t)dBt)

Similar formulas as in the Black-Scholes model replacing

σ2(T − t) 
∫ T

t
σ2(s)ds.

St = S0 exp

(∫ t

0

(
µ(s)− σ2(s)

2

)
ds +

∫ t

0
σ(s)dBs

)

Does not avoid the volatility smile!



Local volatility models

The volatility depends on the time and the stock price:

dSt = St (µ(t,St)dt + σ(t,St)dBt)

Note that FS
t = FB∗

t . The market is still complete.

For each X ∈ L2(FB
T ,P∗), there exists a replicating portfolio

Vt = e−r(T−t)E∗[X |Ft ] = F (t, St), Ht =
∂F

∂x
(t, St).



Need for more realistic models...

In local volatility models, σ is perfectly correlated with the
stock price.

Empirical studies reveal that the previous models can not
capture heavy tails and asymmetries present in log-returns in
practice.

The real market is incomplete.



Stochastic volatility models

Model volatility as a random process driven by its own source of
randomness.

It is consistent with the highly variable and unpredictable nature of
volatility.

Let B1
t , B2

t be two independent Brownian motions.{
dSt = St

(
µtdt + σtdB

1
t

)
dσt = α(t, σt)dt + β(t, σt)dB

2
t



Stochastic volatility models

Let Bt := (B1
t ,B

2
t ) and Ft = FB

t .

Girsanov theorem:
(
Bt −

∫ t
0 Hs ds

)
t

is a 2-dim P∗-Brownian

motion

dP∗

dP
= exp

(∫ T

0
Hs dBs −

1

2

∫ T

0
‖Hs‖2

2 ds

)
i.e.

B̂1
t := B1

t −
∫ t

0
H1
s ds and B̂2

t := B2
t −

∫ t

0
H2
s ds

are two independent Brownian motions w.r.t. P∗.



Stochastic volatility models

If

H1
t = −µt − r

σt
,

then
dSt = St

(
rdt + σtdB̂

1
t

)
which means that the discounted price is a P∗-martingale

dS̃t = S̃t σt dB̂
1
t .

There is no restriction on the process H2
t .

Consequently, there are many probability measures under which the
traded asset is a martingale.



Stochastic volatility models

Note that FS
t ) FB1

t . The model is not complete!

Let X ∈ L2(Ω,FT ,P∗). By martingale representation theorem:

X̃ = X0 +

∫ T

0
K 1
s dB̂1

s +

∫ T

0
K 2
s dB̂2

s

for some processes K 1
t , K 2

t . Hence

X̃ = X0 +

∫ T

0

K 1
s

σs S̃s
dS̃s +

∫ T

0
K 2
s dB̂2

s

But the second integral can not be written as an integral w.r.t.
dS̃s .



Incomplete market models

Under a stochastic volatility model, the market is incomplete.

No unique price.

More random sources than traded assets.

It is not always possible to hedge a generic contingent claim.

Captures more empirical characteristics.



Limitations

Analytically less tractable.

No closed form solutions for option prices. Option prices can
only be calculated by simulation

The practical applications of stochastic volatility models are
limited.



Trinomial model

An attempt to improve the Binomial Model (CRR)...

We add a third possible state at which the stock price will not
change.



Trinomial Model

Absence of arbitrage ⇒ a < R < b.

Indeed, absence of arbitrage implies the existence of a probability
P∗ such that discounted prices are P∗-martingales.

Let P∗(S1 = 1 + a) = p1 and P∗(S1 = 1 + b) = p2.
Then,

S0 = E∗
[

S1

1 + R

]
=

S0(1 + a)p1 + S0(1 + b)p2 + S0(1− p1 − p2)

1 + R
,

or equivalently

1 + R = (1 + a)p1 + (1 + b)p2 + (1− p1 − p2).

Hence, necessarily a < R < b.



Pricing in the Trinomial Model

For the one-step trinomial model, the discounted price is a
P∗-martingale if and only if

1 + R = (1 + a)p1 + (1 + b)p2 + (1− p1 − p2),

where

P∗(S1 = 1 + a) = p1 and P∗(S1 = 1 + b) = p2.

We have to solve one equation with two unknown quantities.

No unique risk-neutral price!



Hedging in the Trinomial Model

Consider a financial derivative on the asset S with value

Xt = f (St).

At time 0, we want to construct a hedging strategy for X1

H0
1S

0
1 + H1S1 = f (S1).

Hence, (H0
1 ,H1) must satisfy

H0
1S

0
1 + H1S0(1 + a) = f (S0(1 + a))

H0
1S

0
1 + H1S0 = f (S0)

H0
1S

0
1 + H1S0(1 + b) = f (S0(1 + b))

(1)

We have to solve a system of three equations with two unknown
quantities.

We are unable to replicate the portfolio!
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