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Ordinary differential equations

By ordinary differential equation we mean an equation whose unknown is a
curve (function)

x : [t0,T ]→ R,{ dx
dt (t) = f (t , x(t)) for t ∈ (t0,T ),
x(t0) = x0

We can think of f (t , y) as a prescribed velocity for the curve, at time t , if its
position is y .

A solution is therefore a function such that

x(t) = x0 +

∫ t

t0

f (s, x(s))ds for t ∈ [t0,T ].

Example

If f (t , y) = ay , then the equation is

dx
dt

(t) = ax(t) ⇒ x(t) = x0ea(t−t0).



Stochastic Differential Equations - SDE’s

In a similar way, we call Stochastic differential equation an equation whose
unknown is a Itô process

X : Ω× [0,T ]→ R,

in the form – using the “differential notation”{
dXt = α(t ,Xt )dt + β(t ,Xt )dBt for t ∈ (0,T ),
X0 = x0

In integral form, we mean that

Xt = x0 +

∫ t

0
α(s,Xs)ds +

∫ t

0
β(s,Xs)dBs for t ∈ [0,T ].

We can think of

α(t , y) as a prescribed velocity (drift) for the process, at time t , if its
position is y .

β(t , y) as a prescribed intensity of “oscillations” (diffusion coefficient) for
the process, at time t , if its position is y .



Existence and uniqueness results

You may recall a classical result for ordinary differential equations (theorem of
Cauchy-Lipschitz), stating that{ dx

dt (t) = f (t , x(t)) for t ∈ (t0,T ),
x(t0) = x0

admits a unique solution (for a small interval) around t0, if

f (t , y) is continuous and uniformly Lipschitz w.r.t. y , i.e. for some K > 0
|f (t , y1)− f (t , y2)| ≤ K |y1 − y2|, for every y1, y2 ∈ R.



Theorem (Existence and uniqueness for SDE’s)

Assume that drift α and diffusion β are continuous and satisfy, for every
t ∈ [0,T ], y1, y2 ∈ R,

|α(t , y1)− α(y2)| ≤ K |y1 − y2| and |β(t , y1)− α(y2)| ≤ K |y1 − y2|

|α(t , y)| ≤ C(1 + |y |) and |β(t , y)| ≤ C(1 + |y |)

then the equation{
dXt = α(t ,Xt )dt + β(t ,Xt )dBt for t ∈ (0,T ),
X0 = x0

has a unique solution on [0,T ] (global, i.e. defined for all times).

Example (geometric Brownian motion)

dSt = Stµdt + StσdBt

we have α(t , y) = yµ and β(t , y) = yσ,⇒ the solution we found is unique:

St = S0 exp
((

µ− σ2

2

)
t + σBt

)



Example (Langevin’s equation)

We consider the SDE{
dXt = rXtdt + σdBt for t ∈ (0,T ),
X0 = x0

Recall that the linear ordinary differential equation
dx
dt

(t) = rx(t) + g(t)

admits an “explicit formula” for its solution,

x(t) = x(0)ert + ert
∫ t

0
e−rsg(s)ds

Formally taking g(t) = σ dBt
dt , we obtain

x(0)ert + ert
∫ t

0
e−rsσ

dBs

ds
ds = x(0)ert + ert

∫ t

0
e−rsσdBs

where the right hand side in an Itô integral.

One can verify that formal substitution gives the the unique solution

Xt = x0ert + σert
∫ t

0
e−rsdBs

called Ornstein-Uhlenbeck process.



SDE’s and Partial Differential Equations (PDE’s)

We show that SDE’s and certain linear Partial Differential Equations are
linked (a simplified version of the Feynmann-Kac formula). The fundamental
tool we use is Itô formula.

Assume that (Xt )t∈[0,T ] is a solution to the equation{
dXt = rXtdt + σ(t ,Xt )dBt for t ∈ (0,T ),
X0 = x0

Let us consider the linear differential operator

At = rx
∂

∂x
+
σ2(t , x)

2
∂2

(∂x)2 ,

acting on functions u(t , x) that are differentiable (at least)

once w.r.t. t ∈ (0,T ) and twice w.r.t. x ∈ R:

we write

(Atu) (t , x) = rx
∂u
∂x

(t , x) +
σ2(t , x)

2
∂2u

(∂x)2 (t , x)



We show that the operator At appears when we apply Itô formula. Recall that

dXt = rXtdt + σ(t ,Xt )dBt ⇒ (dXt )
2 = (σ(t ,Xt ))2 dt .

Let u(t , x) be differentiable once w.r.t. t ∈ (0,T ) and twice w.r.t. x ∈ R. Then

d (u(t ,Xt )) =
∂u
∂t

(t ,Xt )dt +
∂u
∂x

(t ,Xt )dXt +
1
2
∂2u

(∂x)2 (t ,Xt ) (dXt )
2

=

(
∂u
∂t

(t ,Xt ) + rXt
∂u
∂x

(t ,Xt ) +
1
2

(σ(t ,Xt ))2
)

dt +
∂u
∂x

(t ,Xt )σ(t ,Xt )dBt

=

(
∂u
∂t

(t ,Xt ) + (Atu)(t ,Xt )

)
dt +

∂u
∂x

(t ,Xt )σ(t ,Xt )dBt

If we apply Itô formula to e−rtu(t ,Xt ) we obtain instead

d
(

e−rtu(t ,Xt )
)

= e−rt
{(

∂u
∂t

(t ,Xt ) + (Atu)(t ,Xt )− ru(t ,Xt )

)
dt +

∂u
∂x
σ(t ,Xt )dBt

}



We found (all the functions are evaluated at (t ,Xt ))

d
(

e−rtu(t ,Xt )
)

= e−rt
{(

∂u
∂t

+ (Atu)− ru
)

dt +
∂u
∂x
σdBt

}
,

Assume that u(t , x) is a (classical, differentiable) solution to the PDE{
∂u
∂t (t , x) + (Atu)(t , x)− ru(t , x) = 0, for (t , x) ∈ (0,T )× R
u(T , x) = f (x) for x ∈ R

and assume that ∫ t

0
e−rs ∂u

∂x
(s,Xs)σ(s,Xs)dBs

is a martingale (e.g. a stochastic integral of the first kind).

⇒ e−rtu(t ,Xt ) is a a martingale an in particular

e−rtu(t ,Xt ) = E
[
e−rT u(T ,XT ) |Ft

]
= E

[
e−rT f (XT ) |Ft

]
.



Two different approaches to Black-Scholes equation

Recall that in the Samuelson-Black-Sholes model

St = S0 exp
((

µ− σ2

2

)
+ σBt

)
, and S0

t = e−rt .

We illustrate two approaches to prove

Thoerem (Black-Scholes formulas)

The price of a call option (ST − K )+ at time t ∈ [0,T ] is given by

Ct (ω) = C(t ,St (ω))

where
Ct (x) = xN(d+) + ke−r(T−t)N(d−)

N(d) =

∫ d

−∞

e−
z2
2

√
2π

dz (c.d.f. of a N (0, 1))

d± =
log
( x

k

)
+
(

r ± σ2

2

)
(T − t)

σ
√

T − t

Similar formula for put option (K − St )
+.



First approach to BS formulas

We consider a general option X whose value at time T is f (ST ).

We use partial differential equations (original approach by Black-Scholes).

W.r.t. the general case studied before, we have σ(t , x) = σ · x ⇒ the PDE is

{
∂F
∂t (t , x) + rx ∂F

∂x (t , x) + σ2x2

2
∂2F
(∂x)2 (t , x)− rF (t , x) = 0, for (t , x) ∈ (0,T )× R+

F (T , x) = f (x) for x > 0

Theorem
The no-arbitrage price of the option X at time t is

F (t ,St (ω)).



Ideas of proof

We use the general result from the previous section, with σ(t , x) = σ · x ⇒

e−rtF (t ,St ) = E∗
[
e−rT F (T ,ST )|Ft

]
= E∗

[
e−rT f (ST )|Ft

]
where E∗ means that we use the equivalent martingale probability.

To obtain Black-Scholes formulas, we solve explicitly the PDE.



Second approach to BS formulas

We use stochastic calculus:

1 Every (square integrable) option can be replicated by a self-financing
portfolio (martingale representation theorem)

2 Under an equivalent probability P∗ (Girsanov theorem) the asset’s price
is given by

St = S0 exp
((

r − σ2

2

)
t + σB∗t

)
where B∗t is a P∗-Brownian motion.

3 The value at time t ∈ [0,T ] of the replicating portfolio is given by

Vt = e−r(T−t)E∗ [f (ST )|Ft ] .

⇒ we have to find an expression for E∗ [f (ST )|Ft ].



We have to find an expression for E∗ [f (ST )|Ft ].

S0 exp
((

r − σ2

2

)
t + σB∗t

)
gives

ST = St exp
((

r − σ2

2

)
(T − t) + σ (B∗T − B∗t )

)

By the properties conditional expectation

E∗ [f (ST )|Ft ] = E∗
[
f
(

St exp
((

r − σ2

2

)
(T − t) + σ (B∗T − B∗t )

))
|Ft

]
= G(t ,St ),

where, by independence of increments of B∗,

G(t , x) = E∗
[
f
(

x exp
((

r − σ2

2

)
(T − t) + σ (B∗T − B∗t )

))]



To compute

G(t , x) = E∗
[
f
(

x exp
((

r − σ2

2

)
(T − t) + σ (B∗T − B∗t )

))]

we use the fact that B∗T − B∗t =
√

T − tZ , where Z = N (0, 1).

G(t , x) =

∫ +∞

−∞
f
(

x exp
((

r − σ2

2

)
(T − t) + σ

√
T − tz

))
e−

z2
2

√
2π

dz.

To obtain BS-formula for call, write f (x) = (x − k)+ (we skip some
computations on integrals. . . )



Comments on the two approaches

1 The first method (PDE’s) is “classic” (analytical, does not require
stochastic integration) but it works only for particular models (Markovian
models)

2 The second method requires “advanced” tools form stochastic
integration, but it is open to more general models (possibly non
Markovian).
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