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Equivalent probabilities

Definition
Two probabilities P1 and P2 on the same space (Ω,F) are said to be
equivalent if they have the same null-sets, i.e.

P1(A) = 0 ⇔ P2(A) = 0

Examples

Any two Gaussian probabilities
N(µ1, σ

2
1), N(µ2, σ

2
2) are

equivalent (see picture).

If B ∈ F has 0 < P(B) < 1,
then P1 = P and P2 = P(·|B)
are not equivalent.
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Radon-Nikodym theorem

If two probabilities P1 and P2 are equivalent, there is a density

L(ω) =
dP2

dP1 (ω) such that P2(A) =

∫
A

L(ω)dP1(ω)

and more generally, for every Y : Ω→ R

E2 [Y ] =

∫
Ω

YdP2 =

∫
Ω

Y · dP2

dP1 dP1 =

∫
Ω

Y · LdP1 = E1 [Y · L]

Some properties of L:

L must be strictly positive

E1 [L] = E2 [1] = 1.
1
L is the inverse density dP1

dP2 .

Converse⇒ every r.v. L > 0 with E1 [L] = 1 yields an equivalent P2 given by

E2 [Y ] := E1 [Y · L] =

∫
Ω

Y · LdP1.



Example – translation of Gaussians

Let P1 = N(0, 1) on Ω = R1,

P1(dx) =
1√
2π

exp
(
−x2

2

)
.

Fix a ∈ R⇒ P2 = N(a, 1),

P2(dx) =
1√
2π

exp
(
− (x − a)2

2

)
.

The density dP2

dP1 is the quotient

dP2

dP1 (x) =
exp

(
− (x−a)2

2

)
exp

(
− x2

2

)
= exp

(
ax − a2

2

)
.
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Girsanov’s theorem

Aim: characterize all equivalent probabilities on a a Brownian filtration

Let us start with a simplified version of Girsanov’s theorem.

Fix (Ω,F ,P), where it is defined

a Brownian motion (Bt )t∈[0,T ]

its natural filtration (Ft )t∈[0,T ] and such that FT = F .

Theorem
Fix a ∈ R and define

LT (ω) = exp
(

aBT (ω)− a2

2
T
)
.

Then

1 LT > 0, a.e., E [LT ] = 1,

2 LT is the density of an equivalent probability P? such that

dP?

dP
= LT .

3 The process (Bt − at)t∈[0,T ] is a Brownian motion w.r.t. P?.



A visualization

We “shift” a path (black) of BM by the blue line −0.7t ⇒ the red path.
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(Bt − 0.7t) is a Browninan motion if we change “weights” the original
probability according to LT .



Sketch of proof

Define

Lt (ω) = exp
(

aBt (ω)− a2

2
t
)

then Lt is a solution to (recall previous lecture)

dLt = aLtdBt , L0 = 1.

The property E [LT ] = 1 is a simple verification.

Let us see that Bt − at is N(0, t) under P∗.Take any function ϕ : R→ R

E∗ [ϕ(Bt − at)] = E [ϕ(Bt − at)Lt ] = E
[
ϕ(Bt − at) exp

(
aBt −

a2

2
t
)]

=

∫
R
ϕ(
√

tz − at) exp
(

a
√

tz − a2

2
t
) exp

(
− z2

2

)
√

2π
dz

=

∫
R
ϕ
(√

t(z − a
√

t)
) exp

(
− (z−a

√
t)2

2

)
√

2π
dz

= E [ϕ(Bt )]



General Girsanov’s theorem

Girsanov’s theorem holds for more general “shifts” than t 7→ at .

Let (Ks)s∈[0,T ] be an adapted process such that∫ T

0
K 2

s ds <∞, P-a.e.

and define

LT = exp
(∫ T

0
KsdBs −

1
2

∫ T

0
K 2

s ds
)
.

Notice that in the case Ks = a constant, we recover

LT = exp
(

aBT −
a2

2
T
)

In general, LT > 0 and always

E [LT ] ≤ 1but it can happen E [LT ] < 1.



Theorem (Girsanov)

Define

LT = exp
(∫ T

0
KsdBs −

1
2

∫ T

0
K 2

s ds
)
.

If E [LT ] = 1, then under the probability P∗ defined by the density LT ,(
Bt −

∫ t

0
Ksds

)
t∈[0,T ]

is a Brownian motion.

The condition E [LT ] = 1 is the difficult obstruction to apply the theorem

We have criterion that is sufficient in many practical cases.

Theorem (Novikov’s condition)

If E
[
exp

(
1
2

∫ T
0 K 2

s ds
)]

<∞, then E [LT ] = 1 and Girsanov theorem applies.



Itô integral and martingales

Recall (lecture 5) that every Itô integral of the first kind is a martingale:

E
[∫ T

0
H2

s ds
]
<∞ ⇒ t 7→

∫ t

0
HsdBs is a martingale.

There are many ways to build martingales (lecture 2), e.g.

let X be a r.v. with E
[
X 2] <∞ and define Mt := E [X |Ft ]

where Ft is the natural filtration of the BM (Bt )t∈[0,T ].

Problem: Is every martingale (Mt )t∈[0,T ] an Itô integral (of first kind)?

Since Itô integrals of the first kind satisfy

E

[(∫ t

0
HsdBs

)2
]

= E
[∫ T

0
H2

s ds
]
<∞, for t ∈ [0,T ].

we restrict the problem to square-integrable martingales, i.e.

E
[
M2

t

]
<∞, for t ∈ [0,T ].



The answer to the problem is YES if (Ft )t∈[0,T ] is the natural filtration of BM.

Theorem (Martingale representation theorem)

Every martingale (Mt )t∈[0,T ] such that

E
[
M2

t

]
<∞, for t ∈ [0,T ]

can be written as an Itô integral of the first kind

Mt = M0 +

∫ t

0
HsdBs

for some adapted process (Hs)s∈[0,T ] with E
[∫ T

0 H2
s ds
]
<∞.

A consequence (which is in fact equivalent) is that

Corollary

Every square-integrable r.v. X (i.e. E
[
X 2] <∞) can be written in the form

X = E [X ] +

∫ T

0
HsdBs.



In reality, one proves first the corollary, i.e. the representation

X = E [X ] +

∫ T

0
HsdBs.

The idea of the proof is that the subspace of random variables
X ∈ L2(Ω,F ,P) which are

orthogonal to all stochastic integrals
∫ T

0 HsdBs

is reduced to constant random variables.

The process (Hs)s∈[0,T ] can be intepreted as a “derivative” of X with respect
to the filtration (Ft )t∈[0,T ], hence the representation formula is a kind of
“fundamental theorem of calculus”.

In general, it might be a task to find explicit formulas for (Hs)s∈[0,T ].



Combined with Girsanov theorem, the martingale representation theorem
gives the following:

Theorem
If the filtration (Ft )t∈[0,T ] is the natural filtration of the Brownian motion, all
equivalent probabilities can be obtained by the Girsanov theorem, i.e. any
density L is of the form

L = exp
(∫ T

0
KsdBs −

1
2

∫ T

0
K 2

s ds
)
.

Now we consider the consequences of the previous results to the
Samuelson-Black-Scholes model.



Applications: the Samuelson-Black-Scholes model

We saw (in lecture 6)⇒ Samuelson’s equation for financial asset

dSt = St (µdt + σdBt )⇒ St = S0 exp
((

µ− σ2

2

)
t + σBt

)
while for a risk-less asset (e.g. bond) is similar (but zero volatility)

dS0
t = S0

t rdt ⇒ S0
t = exp (rt)
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In the picture:
(red) a path of the risky asset St , with
µ = 1, σ = 1
(black) a path of the risk-less asset S0

t ,
with r = 0.8.



The discounted value of St is

S̃t :=
St

S0
t

= S0

((
µ− r − σ2

2

)
t + Bt

)

in Itô differential notation

dS̃t = S̃t ((µ− r) dt + σdBt )

= σS̃td
(

Bt +
(µ− r

σ

)
t
)

We look for an equivalent probability P∗ such that Bt +
(
µ−r
σ

)
t becomes a

BM.
⇒ Girsanov theorem gives that

dP∗
dP

= exp
(
−
(µ− r

σ

)
BT −

1
2

(µ− r
σ

)2
T
)

⇒ under P∗ the process B∗t = Bt +
(
µ−r
σ

)
t is a Brownian motion hence

dS̃t = σS̃tdB∗t ⇔ S̃t = S̃0 +

∫ t

0
σS̃r dB∗r

is a martingale. Hence P∗ is a risk-neutral measure.



Moreover, completeness of the market means that every contingent claim X
can be written as

X̃ :=
X
S0

T
= c +

∫ T

0
Hr dS̃r ,

i.e. the final value at time T of a self-financing portfolio.

By the martingale representation theorem, if X̃ is square integrable w.r.t. P∗

then

X̃ = E∗
[
X̃
]

+

∫ T

0
Kr dB∗r ,

We can rewrite the stochastic integral in terms of dS̃r , since

dS̃r = σS̃r dB∗r ⇒ dB∗r =
1
σS̃r

dS̃r ,

and therefore

X̃ = E∗
[
X̃
]

+

∫ T

0

Kr

σS̃r
dS̃r .

In summary:

Girsanov theorem⇒ P∗ risk-neutral measure (no-arbitrage)

Martingale representation⇒ self-financing portfolio (market complete)
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