Stochastic Processes and Stochastic Calculus - 7 Two Fundamental Results on Stochastic Integration

Prof. Maurizio Pratelli
Università degli Studi di Pisa

San Miniato-15 September 2016

Overview

1 Girsanov theorem

- Equivalent probabilities
- A simpler version - linear shifts
- The general case

2 The Martingale representation theorem

3 Applications: the Samuelson-Black-Scholes model

Equivalent probabilities

Definition

Two probabilities P^{1} and P^{2} on the same space (Ω, \mathcal{F}) are said to be equivalent if they have the same null-sets, i.e.

$$
P^{1}(A)=0 \quad \Leftrightarrow \quad P^{2}(A)=0
$$

Examples

- Any two Gaussian probabilities $N\left(\mu_{1}, \sigma_{1}^{2}\right), N\left(\mu_{2}, \sigma_{2}^{2}\right)$ are equivalent (see picture).
- If $B \in \mathcal{F}$ has $0<P(B)<1$, then $P^{1}=P$ and $P^{2}=P(\cdot \mid B)$ are not equivalent.

Radon-Nikodym theorem

If two probabilities P^{1} and P^{2} are equivalent, there is a density

$$
L(\omega)=\frac{d P^{2}}{d P^{1}}(\omega) \text { such that } P^{2}(A)=\int_{A} L(\omega) d P^{1}(\omega)
$$

and more generally, for every $Y: \Omega \rightarrow \mathbb{R}$

$$
E^{2}[Y]=\int_{\Omega} Y d P^{2}=\int_{\Omega} Y \cdot \frac{d P^{2}}{d P^{1}} d P^{1}=\int_{\Omega} Y \cdot L d P^{1}=E^{1}[Y \cdot L]
$$

Some properties of L :

- L must be strictly positive
- $E^{1}[L]=E^{2}[1]=1$.
- $\frac{1}{L}$ is the inverse density $\frac{d P^{1}}{d P^{2}}$.

Converse \Rightarrow every r.v. $L>0$ with $E^{1}[L]=1$ yields an equivalent P^{2} given by

$$
E^{2}[Y]:=E^{1}[Y \cdot L]=\int_{\Omega} Y \cdot L d P^{1} .
$$

Example - translation of Gaussians

Let $P^{1}=N(0,1)$ on $\Omega=R^{1}$,

$$
P^{1}(d x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)
$$

Fix $a \in \mathbb{R} \Rightarrow P^{2}=N(a, 1)$,

$$
P^{2}(d x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{(x-a)^{2}}{2}\right) .
$$

The density $\frac{d P^{2}}{d P}$ is the quotient

$$
\begin{aligned}
\frac{d P^{2}}{d P^{1}}(x) & =\frac{\exp \left(-\frac{(x-a)^{2}}{2}\right)}{\exp \left(-\frac{x^{2}}{2}\right)} \\
& =\exp \left(a x-\frac{a^{2}}{2}\right)
\end{aligned}
$$

Girsanov's theorem

Aim: characterize all equivalent probabilities on a a Brownian filtration
Let us start with a simplified version of Girsanov's theorem.
Fix (Ω, \mathcal{F}, P), where it is defined
■ a Brownian motion $\left(B_{t}\right)_{t \in[0, T]}$
■ its natural filtration $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$ and such that $\mathcal{F}_{T}=\mathcal{F}$.

Theorem

Fix $a \in \mathbb{R}$ and define

$$
L_{T}(\omega)=\exp \left(a B_{T}(\omega)-\frac{a^{2}}{2} T\right) .
$$

Then
$11 L_{T}>0$, a.e., $E\left[L_{T}\right]=1$,
2. L_{T} is the density of an equivalent probability P^{\star} such that

$$
\frac{d P^{\star}}{d P}=L_{T} .
$$

3 The process $\left(B_{t}-a t\right)_{t \in[0, T]}$ is a Brownian motion w.r.t. P^{\star}.

A visualization

We "shift" a path (black) of BM by the blue line $-0.7 t \Rightarrow$ the red path.

$\left(B_{t}-0.7 t\right)$ is a Browninan motion if we change "weights" the original probability according to L_{T}.

Sketch of proof

Define

$$
L_{t}(\omega)=\exp \left(a B_{t}(\omega)-\frac{a^{2}}{2} t\right)
$$

then L_{t} is a solution to (recall previous lecture)

$$
d L_{t}=a L_{t} d B_{t}, \quad L_{0}=1
$$

The property $E\left[L_{T}\right]=1$ is a simple verification.
Let us see that $B_{t}-$ at is $N(0, t)$ under P^{*}. Take any function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$

$$
\begin{aligned}
E^{*}\left[\varphi\left(B_{t}-a t\right)\right] & =E\left[\varphi\left(B_{t}-a t\right) L_{t}\right]=E\left[\varphi\left(B_{t}-a t\right) \exp \left(a B_{t}-\frac{a^{2}}{2} t\right)\right] \\
& =\int_{\mathbb{R}} \varphi(\sqrt{t} z-a t) \exp \left(a \sqrt{t} z-\frac{a^{2}}{2} t\right) \frac{\exp \left(-\frac{z^{2}}{2}\right)}{\sqrt{2 \pi}} d z \\
& =\int_{\mathbb{R}} \varphi(\sqrt{t}(z-a \sqrt{t})) \frac{\exp \left(-\frac{(z-a \sqrt{t})^{2}}{2}\right)}{\sqrt{2 \pi}} d z \\
& =E\left[\varphi\left(B_{t}\right)\right]
\end{aligned}
$$

General Girsanov's theorem

Girsanov's theorem holds for more general "shifts" than $t \mapsto a t$.
Let $\left(K_{s}\right)_{s \in[0, T]}$ be an adapted process such that

$$
\int_{0}^{T} K_{s}^{2} d s<\infty, \quad P \text {-a.e. }
$$

and define

$$
L_{T}=\exp \left(\int_{0}^{T} K_{s} d B_{s}-\frac{1}{2} \int_{0}^{T} K_{s}^{2} d s\right)
$$

Notice that in the case $K_{s}=$ a constant, we recover

$$
L_{T}=\exp \left(a B_{T}-\frac{a^{2}}{2} T\right)
$$

In general, $L_{T}>0$ and always
$E\left[L_{T}\right] \leq 1$ but it can happen $E\left[L_{T}\right]<1$.

Theorem (Girsanov)

Define

$$
L_{T}=\exp \left(\int_{0}^{T} K_{s} d B_{s}-\frac{1}{2} \int_{0}^{T} K_{s}^{2} d s\right) .
$$

If $E\left[L_{T}\right]=1$, then under the probability P^{*} defined by the density L_{T},

$$
\left(B_{t}-\int_{0}^{t} K_{s} d s\right)_{t \in[0, T]} \text { is a Brownian motion. }
$$

The condition $E\left[L_{T}\right]=1$ is the difficult obstruction to apply the theorem

We have criterion that is sufficient in many practical cases.
Theorem (Novikov's condition)
If $E\left[\exp \left(\frac{1}{2} \int_{0}^{T} K_{s}^{2} d s\right)\right]<\infty$, then $E\left[L_{T}\right]=1$ and Girsanov theorem applies.

Itô integral and martingales

Recall (lecture 5) that every Itô integral of the first kind is a martingale:

$$
E\left[\int_{0}^{T} H_{s}^{2} d s\right]<\infty \quad \Rightarrow \quad t \mapsto \int_{0}^{t} H_{s} d B_{s} \text { is a martingale. }
$$

There are many ways to build martingales (lecture 2), e.g.

$$
\text { let } X \text { be a r.v. with } E\left[X^{2}\right]<\infty \text { and define } M_{t}:=E\left[X \mid \mathcal{F}_{t}\right]
$$

where \mathcal{F}_{t} is the natural filtration of the $\mathrm{BM}\left(B_{t}\right)_{t \in[0, T]}$.
Problem: Is every martingale $\left(M_{t}\right)_{t \in[0, T]}$ an Itô integral (of first kind)?
Since Itô integrals of the first kind satisfy

$$
E\left[\left(\int_{0}^{t} H_{s} d B_{s}\right)^{2}\right]=E\left[\int_{0}^{T} H_{s}^{2} d s\right]<\infty, \quad \text { for } t \in[0, T]
$$

we restrict the problem to square-integrable martingales, i.e.

$$
E\left[M_{t}^{2}\right]<\infty, \text { for } t \in[0, T] .
$$

The answer to the problem is YES if $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$ is the natural filtration of BM.

Theorem (Martingale representation theorem)

Every martingale $\left(M_{t}\right)_{t \in[0, T]}$ such that

$$
E\left[M_{t}^{2}\right]<\infty, \text { for } t \in[0, T]
$$

can be written as an Itô integral of the first kind

$$
M_{t}=M_{0}+\int_{0}^{t} H_{s} d B_{s}
$$

for some adapted process $\left(H_{s}\right)_{s \in[0, T]}$ with $E\left[\int_{0}^{T} H_{s}^{2} d s\right]<\infty$.
A consequence (which is in fact equivalent) is that

Corollary

Every square-integrable r.v. X (i.e. $E\left[X^{2}\right]<\infty$) can be written in the form

$$
X=E[X]+\int_{0}^{T} H_{s} d B_{s} .
$$

In reality, one proves first the corollary, i.e. the representation

$$
X=E[X]+\int_{0}^{T} H_{s} d B_{s}
$$

The idea of the proof is that the subspace of random variables $X \in L^{2}(\Omega, \mathcal{F}, P)$ which are
orthogonal to all stochastic integrals $\int_{0}^{T} H_{s} d B_{s}$
is reduced to constant random variables.

The process $\left(H_{s}\right)_{s \in[0, T]}$ can be intepreted as a "derivative" of X with respect to the filtration $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$, hence the representation formula is a kind of "fundamental theorem of calculus".

In general, it might be a task to find explicit formulas for $\left(H_{s}\right)_{s \in[0, T]}$.

Combined with Girsanov theorem, the martingale representation theorem gives the following:

Theorem

If the filtration $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$ is the natural filtration of the Brownian motion, all equivalent probabilities can be obtained by the Girsanov theorem, i.e. any density L is of the form

$$
L=\exp \left(\int_{0}^{T} K_{s} d B_{s}-\frac{1}{2} \int_{0}^{T} K_{s}^{2} d s\right) .
$$

Now we consider the consequences of the previous results to the Samuelson-Black-Scholes model.

Applications: the Samuelson-Black-Scholes model

We saw (in lecture 6) \Rightarrow Samuelson's equation for financial asset

$$
d S_{t}=S_{t}\left(\mu d t+\sigma d B_{t}\right) \Rightarrow S_{t}=S_{0} \exp \left(\left(\mu-\frac{\sigma^{2}}{2}\right) t+\sigma B_{t}\right)
$$

while for a risk-less asset (e.g. bond) is similar (but zero volatility)

$$
d S_{t}^{0}=S_{t}^{0} r d t \Rightarrow S_{t}^{0}=\exp (r t)
$$

In the picture: (red) a path of the risky asset S_{t}, with $\mu=1, \sigma=1$ (black) a path of the risk-less asset S_{t}^{0}, with $r=0.8$.

The discounted value of S_{t} is

$$
\tilde{S}_{t}:=\frac{S_{t}}{S_{t}^{0}}=S_{0}\left(\left(\mu-r-\frac{\sigma^{2}}{2}\right) t+B_{t}\right)
$$

in Itô differential notation

$$
\begin{aligned}
d \tilde{S}_{t} & =\tilde{S}_{t}\left((\mu-r) d t+\sigma d B_{t}\right) \\
& =\sigma \tilde{S}_{t} d\left(B_{t}+\left(\frac{\mu-r}{\sigma}\right) t\right)
\end{aligned}
$$

We look for an equivalent probability P^{*} such that $B_{t}+\left(\frac{\mu-r}{\sigma}\right) t$ becomes a BM.
\Rightarrow Girsanov theorem gives that

$$
\frac{d P_{*}}{d P}=\exp \left(-\left(\frac{\mu-r}{\sigma}\right) B_{T}-\frac{1}{2}\left(\frac{\mu-r}{\sigma}\right)^{2} T\right)
$$

\Rightarrow under P^{*} the process $B_{t}^{*}=B_{t}+\left(\frac{\mu-r}{\sigma}\right) t$ is a Brownian motion hence

$$
d \tilde{S}_{t}=\sigma \tilde{S}_{t} d B_{t}^{*} \Leftrightarrow \tilde{S}_{t}=\tilde{S}_{0}+\int_{0}^{t} \sigma \tilde{S}_{r} d B_{r}^{*}
$$

is a martingale. Hence P^{*} is a risk-neutral measure.

Moreover, completeness of the market means that every contingent claim X can be written as

$$
\tilde{X}:=\frac{X}{S_{T}^{0}}=c+\int_{0}^{T} H_{r} d \tilde{S}_{r},
$$

i.e. the final value at time T of a self-financing portfolio.

By the martingale representation theorem, if \tilde{X} is square integrable w.r.t. P^{*} then

$$
\tilde{X}=E^{*}[\tilde{X}]+\int_{0}^{T} K_{r} d B_{r}^{*},
$$

We can rewrite the stochastic integral in terms of $d \tilde{S}_{r}$, since

$$
d \tilde{S}_{r}=\sigma \tilde{S}_{r} d B_{r}^{*} \quad \Rightarrow \quad d B_{r}^{*}=\frac{1}{\sigma \tilde{S}_{r}} d \tilde{S}_{r},
$$

and therefore

$$
\tilde{X}=E^{*}[\tilde{X}]+\int_{0}^{T} \frac{K_{r}}{\sigma \tilde{S}_{r}} d \tilde{S}_{r} .
$$

In summary:

- Girsanov theorem $\Rightarrow P^{*}$ risk-neutral measure (no-arbitrage)

■ Martingale representation \Rightarrow self-financing portfolio (market complete)

